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Abstract. Optimal order L*-in-time, L?-in-space a priori error estimates are derived for mixed
finite element approximations for both displacement and stress for a second order hyperbolic equation
with first order absorbing boundary conditions. Continuous-in-time, explicit-in-time, and implicit-in-
time procedures are formulated and analyzed.
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1. Introduction. Let  be a bounded domain in IR™ with Lipschitz boundary, 99, and unit

outward normal v. For fixed 0 < T < oo, we discuss mixed finite element approximations of the
second order hyperbolic equation with first order absorbing boundary conditions:

(1) e — V-AVu=f in Qx(0,T),
(2) ut+ a(AVu)-v =g on 3Q x (0,7),
3) u(-,0) =uo in Q,

(4) ue(+,0) =w1 in Q.

A is a symmetric matrix with elements that are uniformly bounded and measurable. Additionally,
we assume that the spatial operator is uniformly elliptic, i.e. there exists a constants C;,C; > 0 such
that

CiE'E < EA()E L CaE'E, z €T, E€R™

We assume that « is a bounded, non-negative function independent of time. When o is identically
zero, (2) is a just a non-standard way of specifying Dirichlet boundary conditions with g being the time
derivative of the standard Dirichlet data. Consequently, the case of Dirichlet boundary conditions will
be a special case of the analysis presented in this paper. The functions f, g, o, 41 are given data for
the problem and will be assumed as regular as necessary. The solution u and its time derivate u, will
be referred to as the displacement and velocity, respectively. We refer to AVu as the stress.

A priori error estimates for Galerkin approximations for this problem have been previously derived
by Dupont [6] using a standard energy argument. In the case of Dirichlet boundary conditions, these
estimates were improved by Baker [2] using a technique that can be interpreted as a non-standard
energy argument. In this paper, we formulate a mixed finite element scheme for the approximation
of (1)-(4) and establish optimal order L*-in-time, L?-in-space error bounds for mixed finite element
approximations to displacement, velocity and stress in the cases of continuous-in-time, explicit-in-time,
and implicit-in-time methods. The error estimates for displacement are analogues of the estimates of
Baker, while those for velocity and stress follow from natural energy arguments. Particular attention
is given to the explicit-in-time scheme since the numerical experiments of [4] seem to suggest that this
may be the preferred formulation in terms of both computational effort and numerical accuracy.

Mixed finite element approximations to second order hyperbolic equations with Dirichlet boundary
conditions have been previously considered by Geveci [7] and the authors [4]. In [7], Geveci derives
L®-in-time, L2-in-space error bounds for the continuous-in-time mixed finite element approximations
of velocity and stress. The authors in [4] derive bounds for the continuous-in-time mixed finite ele-
ment approximation for displacement which require less regularity than was needed in [7]. Stability
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for a family of discrete-in-time schemes was also demonstrated in [4). For Dirichlet boundary condi-
tions, continuous-in-time and implicit-in-time results for displacement, velocity and stress can also be
deduced directly from the work of Makridakis [9] for elastodynamics. The results contained herein
for « = 0 differ from those recovered from [9] in two significant ways. First, the estimates for the
approximation of displacement require less regularity of the solution. Second, the initial conditions
are implemented as the L? projections of uo and ) instead of the computationally more expensive
elliptic projections.

The paper consists of six additional sections. The next two sections are devoted to preliminaries.
In Section 2, the notation used throughout this paper is defined, and in Section 3 some properties
of the Raviart-Thomas mixed finite element spaces are recalled. A weak form of (1)-(4) suitable for
approximation by mixed finite elements is formulated in Section 4. A continuous-in-time mixed finite
element approximation is also presented and a priori error estimates are derived. Explicit-in-time
and implicit-in-time mixed finite element approximations to (1)-(4) are formulated and analyzed in
Section 5 and Section 6, respectively. Finally, in Section 7, estimates for approximation with BDM
or BDFM mixed finite element spaces instead of the Raviart-Thomas spaces are discussed.

2. Notation. In this section we define some notation used in this paper. Denote by L*(9),
(L*(Q))", H*(Q), (H*(Q))" the standard Sobolev spaces of real- and real-vector-valued functions
defined on ; see, e.g., [1, 8. When it is clear from context, we denote L*(Q) and H*(Q) by L? and
H* respectively. Let the inner products on L?*(Q) and (L?(£2))" be denoted by (-,-). And let the
standard norms on H*(f) and (H*(€))" be denoted by ||-||s, dropping the subscript in the cases of
L*(Q) and (L?(R))". Also, define the A-weighted L?-norm ||-]|a on (L?(2))" by

IMla = (a7 v, v}, ve @ @)™
Define H(Q;div), a subspace of (L*(2))", by
H(Q;div) = {v € (L*(Q))"|V-v € L*(Q)},
with associated norm
Vil = IvI® + I19-vi.

Let L2(82) be the space of Lebesgue measurable functions defined on 99 which are square integrable;
equip this space with the inner product <-,->. For convenience, denote by <,>> the bilinear form

£Lu,v> =<u-y,v-r>.
Let H(;div) be the subspace of H(Q;div) such that for all v € H(Q; div), a'/?v-v is in L?(39), and
norm this space with
1% = I + lladv-vlZacon).

Let X be a normed space with norm ||-]|x. Take C*(0,T; X) to be the space of k-times continuously
differentiable maps of [0,7] into X, and define the following norms for 1 < p < oo and suitable
functions v: [0: T] = X

T
lollzrozsy = ( / o (e)lI%de) 2.
1]

For p = oo, the usual modification is made.
Adopt the following notation related to functions defined at discrete time levels. Let N be a
positive integer, A2 = T/N, and t" = nAt. Set

() v =o(t"),

(6) o= 2T "),

(1) dev™E = (0™ — ")/,

(8) B?v" = (3:0""'% - 3,1:"_15)/&,

) bk = Zom 4 2o o

Define two discrete L°°-norms for time-discrete functions by

10 o P n

(10) vl 22 (0,752) oJax, lo™ |l x,

(11) Ivll = max_[lv"t .
LFO,T;X)  ogn<N-1 ‘

2
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3. “Raviart-Thomas” Mixed Finite Element Space. In this section, we specify the as-
sumptions we use on the finite element spaces upon which we base our methods. The assumptions
are directly motivated by the properties of the Raviart-Thomas-Nedelec mixed finite element spaces
(12, 11, 10]. We consider a collection of finite dimensional subspaces V5 x Wh of H(Q;div) x L*(Q)
which satisfy conditions that make them look like Raviart-Thomas-Nedelec spaces of order k+1, where
k is a fixed non-negative integer (RTx and RTj in the notation of [3]). For each V, x W), we associate
a positive parameter h which can be thought of as the element size.

For each of our finite element spaces, we require that the divergence operator is a map of V}, onto
Wi and that there exists projections

Hthh:VxLz(Q)—»thWh,

wherej;' is a subspace of H(Q;div) whose members are slightly more regular; for instance, if q>2,
then V could be the space {v € H(Q;div)|lv € (L(R))"}. These projections have the following
properties:

(i) Pn is L? projection onto Wj, hence

(12) (V-v,u - Pru) =0, v EVy;

(ii) div Op = Ps div: V@ > onto >> Wh, thus

(13) (V-(z - Taz),w) =0, w€ Wh, z€V;
(iii) the following approximation properties hold:

(14) llz — Oazll <Csh™llzlls, 1<r<k+1,

(15) lu— Paull < Cohllulle, 0<r<k+1;

(iv) there exists af € L*°(9R) such that
(16) <a2(z—]1hz),v>=0, v €V,
and o approximates a in the sense that
11
(17) | <(a—an)p,vr>|< Csh%||a?v-v|Lacoq)l¥llL2ien)y, V€ Va, ¢ € L?(09);
(v) if & — a}, is not identically zero, we assume that

(18) I(z = Tnz)-vll2gon) < Csh™ 3izlly, 1<r<k+1.
(e9)

In the case of the explicit-in-time method introduced in Section 5, we use the following inverse
assumption:

(19) IV-2z]l < Ceh™iz)|la, 2z € V.

Except where explicitly stated otherwise, these assumptions are precisely the conditions we use to
derive our results. We note, however, that the /2 factor in (16) may be replaced by a full power of
k at the expense of a possibly larger Cs for a more regular o and that (15) is not always needed.

In the subsequent sections, we refer to spaces that satisfy the above assumptions as “R-T-N
spaces”. The description of the properties of the function spaces follows the exposition given by
Arnold, Douglas and Roberts [5]; in their work, they extend (12)-(15) to hold for Raviart-Thomas
elements with one curved edge in IR? and remarked on the extension to IR®. The conditions (16)-
(18) are not standard, but are easily checked in the case of the Raviart-Thomas-Nedelec elements as
extended. In this case, aj, may be taken to be a suitable projection of « into the space of piecewise
constant functions. To see that the average of (z — [Inz)-v is zero on the curved edge one uses (13)
with w =1 together with the fact that the average is zero on the straight edges.

Henceforth, C will denote a generic constant which may depend on the differential problem, k,
Cs, and Cy, but is not dependent on the parameter h. In the remaining sections, r will be a fixed
integer satisfying 1 <r <k +1.



4. Weak formulation and Continuous-Time Estimates. In this section we choose a weak
form of (1)-(4) conducive to approximation by mixed finite elements. We then introduce the continuous-
time mixed finite element approximation of this weak form and derive a priori estimates of its error.
In particular, we reduce the question of the convergence of the transient problem to the approximation
properties of the projections introduced in the previous section using a non-standard energy argument
similar to that used by Baker [2].

We now consider a weak formulation of (1)-(4). We write the differential equation (1) as the first
order system with respect to the spatial derivatives:

(20) we+Vez=f in Qx (0,7),
(21) A7'z4+Vu=0 inQx(0,7).

For smooth test functions w and v, we have

(22) (uee, w) + (V-2,w) = (f, w),
(23) (A7'z,v) = (3, V-v) = —<u,v-v>.

Differentiating (23) with respect to time and using the boundary condition (2), we arrive at the weak
form we shall consider:

w€C*(0,T;1%(Q), z€C'(0,T;H(®div)),

satisfying

(24) (u(0), w) = (uo,w), w€ L*(Q),

(25) (A™12(0),v) = (40, V-v) = —<uo,v-v>, v € H(Qdiv),

(26) (ue(0), w) = (w1, w), wE Lz(n)’

(27) (wee, w) + (V-z,w) = (f,w), wE€ L*(Q), t> 0,
(28) (A7 'z, v) = (ue, V-V) + €0z, v> = — <g,v-v>, Vv Eﬁ(ﬂ;div), t>0.

As mentiox)\ed in the introduction, when a = 0, this is a non-standard formulation for the Dirichlet
problem and H(Q;div) = H(Q;div). The usual weak formulation follows by integrating (28) in time,
cf. [4]. The error estimates presented below and in subsequent sections hold for this case.

By the continuous-time mized finite element approzimation to (24)-(28), we mean

UeC*0,T;Ws), z€C0,T;Va),

satisfying

(29) (U(0),w) = (uo,w), w€E W,

(30) (A™'Z(0),v) = (U(0),V-v) = —=<uo,v-v>, VEVa,

(31) (U(0), w) = (w1,w), e Wa,

(32) (Ueeyw) + (V-Z,w) = (fiw), weWx t>0,
(33) (A™'Z,v) = (U, V-v) + K@Z,v» = —<g,v-v>, VEVH t>0.

We now show that the mixed finite element approximation {U(t), Z(t)} is close to the projection
of {u(t),z(t)} introduced in Section 3. Let

r=U—-Puu, o=Z—-1xz, n=2z-Uxz.

Subtracting (24)-(28) from (29)-(33) and using properties (12) and (13) of the projections, we find
that

(34) (r(0),w)=0, we W,
(35) (A7'0(0),v) = (A7'n(0),v), VEVa,
(36) (re(0),w) =0, we W,
(37) (ree, w) + (V-o,w) =0, w€Ws, t>0,

(38) (A7l v) = (1, V-V) + a0, v> = (A 'ne,v) + €an,v>, VEVs t>0.



Motivated by the work of Baker [2], we consider

o= | Ca(ads, €(t) = / "n(s)ds.

Integrating (37) and (38) in time and using (34)—(36), we have

(39) (Tg,ll)) + (V‘¢,‘UJ) = 01 weE Wh, t> 0»
(40) (A_1¢g,v)—(r,V-v)+<a¢,v>=(A'ln,v)+<a£,v>, VGVh, t>0.
Adding (39) and (40) with w = 7 and v = ¢ and using (17), we see that

1d -
(41) U + 1812 + llad b slZacony = (A70n, 6) + <ok, 6>

=(A7'n,8) + (o — ah)é, 6>
1 -
< 5lla¥ $-vilzagoq) + (A7, 8) + ChIE-I[3a(on)

Integrating in time, using (34), ¢(0) = 0, r(0) = 0, and Cauchy-Schwarz, we have for ¢ > 0 that
Y
W) IFO+ISEO+ [ lodb(e) s amds
0
¢ ¢
<2 (47000, 8o+ Ob [ (o) oEomyds
0 0

t t
<C ("¢||L°=(o,T;L2)/ ln(s)llds + h/ |lf(3)'l’||§,2(an)d3) .
1] 1]

Hence,

1
(43) Imllzoo 0,322y + IBllLooo,7522) + % @-¥|| L2(0, 7 L2¢00))
1
<C (||7I||L1(0,T;L2) +h3? |lf'V||L=(o,T;L=(an))) .

Using the approximation properties of the IIs-projection, we have proven the first part of the
following theorem. The estimates for (Z — IIxz) and (U: — Phu,) are derived via similar arguments
by using the test functions w = 7, and v = o in (37) and (38).

THEOREM 4.1. Ifz € L'(0,T; H") then there ezists a constant C independent of h such that

(44) lU = Phu||peo(o,1;22) < CA™.

Moreover, if in addition z, € L' (0,T; H") then

(45) Ut = Pauel|Loo(o,1;22) + 1Z — OaZ||zoo(o,1;22) < CR™.

By an application of the triangle inequality and an appeal to the approximation properties (14)-(15)
of the projections, the following estimates are easily deduced from (44) and (45).

THEOREM 4.2. Assume (44) holds. If u € L™(0,T; H), then there ezists a constant C indepen-
dent of h such that

(46) U = ul|goo(o,7;22) < CA".

Moreover, if ue € L*(0,T;H"), z € L*(0,T; H") and (45) holds, then there ezists a constant C
independent of h such that

(47) [IUe = uell Loo(o,7;22) + I1Z = Z|| Lo (0,1;22) < CA".



5. Explicit Method. The ezplicit-in-time mized finite element approzimation to (24)-(28) is
given by a sequence of pairs {U",Z"} € Wa x V4, 0<n < N satisfying

(48) (U°, w) = (uo,w), wEWh,

(49) (A1 2% v) - (U°,V-v) = — <uo,v-»>, VEVy,

(50) (ZoU},u)+(VZ0) = (f° + mui,v), weWs,

(51) (2U™,w) + (V2" w) = (f*,w), w€Whn, n>1,
(52)  (A~'8Z™E,v) - (AU, Vov) + €aZ™HE V>

t”+1
=- </ g(t)dt,v-v>, VEVs n2>0.
"l

Equation (50) arises naturally by defining a fictitious value U ~! satisfying the condition
Ul - U—l

P ==
and considering (51) with n = 0.

The method is explicit in time in the sense that the calculation of {U",Z"}, 0 < n < N involves
only the inversion of mass-type matrices associated with the spaces Vi and Wh. In particular, U o,
Z°, and U! are determined sequentially by solving (48), (49) and (50), respectively. The explicit
calculations proceeds by alternately solving (51) for U n+1 having already calculated U™, U™™! and
Z™ and solving (52) for Z™*! having calculated Z", U™+! and U™.

As expected for such an explicit scheme, this method is only conditionally stable. A sufficient
condition for stability for the Dirichlet problem is derived in Theorem 5.1 of [4]. The condition,
At < 2h/Cy, arises naturally in the proof of the following theorem, and so we do not repeat the
stability argument here.

THEOREM 5.1. If At < 2h/Cy and

o™u

z € L*(0,T; H™(Q)), o € LY(0,T; L3 (), m <4,  ze-v € L'(0,T; L*(89)),

then for {U™,Z"} defined by (48)-(52), there ezists a constant C such that
(53) U = PhullLeg(o,r;22) < C(A® +17).
If additionally

ze € L®(0,T; H'(Q)), zeee € L'(0,T; L*()),
then there ezists a constant C such that

(54) |8:U — Pa(ue)ll +11Z — Oazll Lo 0,122) £ C(at® + 7).

T3 (0,T;L3)
THEOREM 5.2. Assume that (53) holds and u € L*°(0, T; H™(R)), then for {U™,Z"} defined by

(48)-(52), there ezists a constant C such that

(55) U = ullzgo.rL2) < C(AL + ).

Moreover, if (54) holds and u¢ € L=(0,T; H™(Q)), z € L*=(0,T; H™(R)), then there exists a constant
C such that

(56) "a‘U - u‘”Zvo‘(o’T;Lz) + "z - z"L:"(O,T;Lz) S C(Nz + hr)'

Proof. Let

Tt =U" = Puu", o"=2Z" -0nz", 9" =(z-1rz)".




Subtracting (24)—(28) from (48)-(52) and using properties (12) and (13) of the projections, we find
that

(57) (r°w) =0, weWh,
(58) (A7'e% v) = (A7'%,v), veEV,,
(59) (%agr%,w) + (V-o'o, w) = (2r°,w), w € Wy,
(60) (@I w)+ (Voo™ w) = (", w), weWx, n2>1,

(61)  (A7'00™t 3 v) — (8r™ 3 Vov) + €ao™ i v>
=(A" atn"+%,v)+<ae“+%,v>, VEVh n2>0,

where
(62) =L () +—((u) - dpu’ )—_; A‘(t—At)zaa (t)dt,
' v ' )T T 13
n a*
(63) = (ue)” — " = G(N)z / (It - At)3 "(t + t)dt,
1 en+l
(64) ettt [ -t
VAN 2 I
1L [% 2,0 Z il n+}
=N _“(t = (M) /)57 (772 +)dt + 972
3
Therefore, we have
u
(65) =)l < CN”‘B}?”L“’(O T;13(Q))
<Ca (" FTH ||Ll(o T;L2(0)) + || e Nz L?(n)))
t"’+l
(66) 77 < CN/ ||(t)dt n>1,.
And letting
o+ / (2 = (a0 T2+ 1 o,

we have from (17) that for every v € Vi,
(67) €ae™ i v> = <an™ ¥ v> + €ad™ i v>
=< (-t v + €ad™ i v>

‘n+l
1 1 1
< Clla?v vl acsq) (h’ In™* 7 |l L2con) + O ||zct"’”L=(an)dt) , m2>0.
‘.

Analogous to the techniques used in the previous section, we consider the “discrete integral” of o
defined by

0 __ A 0 n__
#=50 =2y Atz
Recalling that 87 1™ = (a,r"*‘% - a,r"-%)/m and summing (60) over time levels, we have

(68) (@™ =0 w) 4 (T8 = ), w) = (3 u), w21

=1
Using (59), we see that
(69) @™ w) + (V4" w) = (R w), n20,
7



where R™ = Aty ¢ o
Multiplying (61) by A and summing over time levels, we see that

(70) (A7 (™ = 0°),v) = (7" =7, Vv) + <aNza‘+§,V>
1=0
=A@ = "), V) +<aE™ v>, vEVA, n20,

where E"t! =AY et = B MY 7't 3. Noting that

n
(11) st =y ot no,
i=1
(72) 3e¢"+% =o"*, a>o0.
and using (57), (58), (71) and (72), we have
(73) (A710,¢™E v) - (7, Vo) + €ag™ v

= (A’l'q”“,v) +<aE™ v>, veVy, n>o0.
Adding (69) and (73) with w = Y and v= ¢"+§, we find that
1 n n
9 g (I I 1 - 1)
+€ag™h gmt s 4 (47, e - (Vg e
= (R™, 7} 4 (A7, 67 ) f <aEnH g7, n>0.
Multiplying (74) by 2A¢ and using Cauchy-Schwarz along with

(75) (V-47, 7% 8) = (Vg3 ) = % [(V-¢™,7") = (V-¢™+, 7)),
we have
(6) (™2 = ™I + ™ 1 - 16711%) +20t<ag™ d, 6™ >

+ At [(V‘an,‘l’n) - (V'¢n+1’rn+l)]
< 2881 7,2 + O™ bl 0 7,02,
+<aE™ 4™ ), n>o0.

Summing over time levels and using (57) and (58), we see that

() IR + 9705 +2 ) M<ag™E g > — aa(v.47, 7

=0
o)’ - i i
< B 1o 4 3 MRl 0,20y + Ol Ml 07,1
1=0

n
+3 s<aB* §* >, 20
=0
Since ¢ € Vi and using (67), we see that

1]
(1B} aE ¢ > =3 acae’t gt i >

7=0

s
P 1 g
< Cllad ¢ 3 )| agony (Y At h¥ (|17 3 -v]l1agm)
i=0
PL 28

£y [ tms@laany

=0
1l 41 1 2
< Clla? 6™ 2 |2 on)(h? lln-vllzz(mm(am, + (&) Zee- vl L1 (o, 752¢00)))-
8




If At is chosen such that -2’;— < 1, then we may bound the term in (77) involving the divergence by
using Cauchy-Schwarz and the inverse hypothesis (19) since

(79) At|(V-g™H, 7| < || VT
< ACRTH|™ lallr™
<He™ 1% + =™+
Taking the maximum of (77) over 0 < n < N — 1, and using ||v||
and (79), we conclude that

Zz(O,T;LQ) < ”vI|L°°(0 T;L3) with (78)

N
P O .L
(80) Iz 0,722y + 6l iam(o,mszny + ) Atag* 3, ¢+

=0

=¢ [h"n'yll%Z'}(o,T;L’(an)) + (&) |zes- vl L3075 22(0))
N-1 \? N \?
+ (Z AtuR'u) + (E Atun'n) ]
=0 1=0

N
(81) IR <> arflr)l < o(awy? (n @l miaay + I S lzic, mm)>

=0

Since

by (65) and (66), we have that

= ; ? 3Pu 8*u
(52) (Z AtuR'u) < 08" (152 oo + 1 5t Bromancan ) -

1=0

The a priori bound (53) follows from (80) by using the approximation properties of the projections
and the estimates (78),(82) and (79).

The bound (55) follows from (53) and the triangle inequality.

The estimates for ||(Z — z)*|| and ||0.U™* % — (u;)"*¥|| are derived similarly by choosing the test
functions w = 8;7"*¥ +9,r"~ ¥ and v =0"*% in (60) and (61) directly and using (78), (81) and the
bound

i+l
(83) > allaen™ 3| < C (b llzll como, 7 ey + (A I|zecell 220, 7:23¢ay)

1=0
for the resulting time truncation terms. 0O

6. Implicit Method. The implicit-in-time mized finite element method approzimation to (24)—
(28) is given by a sequence of pairs {U",Z2"} € Wi x Vi, 0 < n < N satisfying

(84) (U° w) = (uo,w), wEWha,

(85) (A71Z%v) = (U°,V-v) = — <uo,v-v>, VEV,,

(86) (%6¢U%,w)+(V'Z%,w)=(f%+zzt-u1,w) w € W,

(87) (B2U™, w) + (V-Z™%,w) = (f*%,w), weWr n>1,
(88) (A718. 2™ % v) = (U™ 3, Vov) + €aZ™HE vy

‘n+l
=—</ g(t)dt,v-v>, veEVy n>0.
t

n

The existence and uniqueness of the solution to the resulting linear system follows from the uni-
solvancy of the mixed formulation of the following elliptic problem with Robin boundary conditions:

(At)¢ V-AVé¢ =0 inQ,
¢+ alt(AVe)-v =0 on Q.

9



The following two theorems provide a priori error estimates for the implicit-in-time scheme.
THEOREM 6.1. If

z € L=(0,T; H™(Q)), %—:%‘- € L'(0,T; L*(Q)), m < 4, zee-v € L*(0,T; L (892)),
then for {U™,Z™} defined by (84)-(88), there exists a constant C such that
(89) IU = PrullLeso,m;L3) < C(AF +R7).
If additionally-
2. € L°(0, T; H™(Q)),  zeee € L'(0,T; L*()),
then there erists a constant C such that

(90) .U = Pau)l +1Z = Thzligs o 7,12 < CAL +17).

L33 (0,T;L3)
THEOREM 6.2. Assume that (89) holds and u € L®(0,T; H™(Q)), then {U™,Z"} defined by (84)-

(88), there exists a constant C such that

(1) IU = wllLsgo,mszay < C(A + 1),

Moreover, if (90) holds and u, € L*(0,T; H"(R)), z € L=(0, T; HT(Q)), then there exists a constant
C such that

(92) 1960 = wellzg 07,2y *+ 12 = g o 1,00y S OO +7).

Proof. The proof is very similar to Theorem 5.1; hence, we comment only on the key differences.
The error = and o satisfy (57),(58),(61) and

(93) (%atr%’w)+(v'”%7w) = (2T°’w)’ w € Wh,
(94) (32", w) + (V-a""*',w) =("w), n>1, weWs,
with 7° defined as in Section 5 and
n _ n; 2 n 1 a 2 347‘ n
T = (u“) ‘4 - a' U = E (Itl - At)(3 - 2(1 - Itl/At) )-3_4(t +t)dt.
—At t

Define

n—1 )

#° =0, ¢H=NZU'+%, n>1.

=0
Summing (94) and using (93), we find that
(95) @™, w) + (Vo™ w) = (& w) = (R w), n20.

1=0

Averaging (70) at time level n + 1 and n and using (58), we have
96)  (A'0™tE v) = (FHE Vv) + <ad™ v
= (A3, v) + <aE™E,v>, VEVA n20.

The estimate on ||U — Phul| follows by adding (95) and (96) with w = #**+% and v = ¢"*% and
using the argument in the proof of Theorem 5.1. Likewise, (90) is derived similarly by using the test

functions w = 8"t ¥ + 9,7 % and v = o™ % in (94) and (61) directly. Theorem 6.2 follows exactly
the same argument as Theorem 5.2. 0O
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