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CHOOSING THE FORCING TERMS IN AN INEXACT NEWTON
METHOD =«

STANLEY C. EISENSTATt AND HOMER F. WALKER{

Abstract. An inexact Newton method is a generalization of Newton’s method for solving
F(z) =0, F: R® — R", in which, at the kth iteration, the step sx from the current approximate
solution zi is required to satisfy a condition ||F(zk) + F'(z«) sk]| < nx||F(z+)|| for a “forcing term”
nx € [0,1). In typical applications, the choice of the forcing terms is critical to the efficiency of the
method and can affect robustness as well. Promising choices of the forcing terms are given, their local
convergence properties are analyzed, and their practical performance is shown on a representative set
of test problems.
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1. Introduction. Suppose that F: R* — R"™ is continuously differentiable in a
neighborhood of z, € R™ for which F(z.) = 0 and F’(z.) is nonsingular. Suppose
further that F' is Lipschitz continuous at z. with constant A, i.e.,

(1.1) |1F'(z) = F'(z)ll < Alle — 2.l

for z near ., where || - || denotes some norm on R" and the induced norm on R™*".
An inezact Newton method (Dembo, Eisenstat, and Steihaug [4]) is an extension
of classical Newton’s method for approximating z. formulated as follows:

Algorithm IN: Inexact Newton Method [4]

LET zo BE GIVEN.
FOorR k=0 STEP 1 UNTIL “CONVERGENCE” DO:
FIND some 7 € [0,1) AND s; THAT SATISFY

(1.2) | F(zk) + F'(zk) skl < nell F(z)ll-
SET Tg41 = Tk + Sk-

Note that (1.2) expresses both a certain reduction in the norm of F(zx)+ F'(zx) s,
the local linear model of F, and a certain accuracy in solving the Newton equation
F'(zi)s = —F(z), the exact solution of which is the Newton step. In many applica-
tions, notably Newton iterative or truncated Newton methods?, each 7 is specified
first, and then an s is determined so that (1.2) holds. The role of 7 is, then, to force
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|F(zk) + F'(zk) sk|| to be small in a particular way; accordingly, 7 is often called a
forcing term.

The local convergence of an inexact Newton method is controlled by the forcing
terms. Some specific illustrative results are the following (see Dembo, Eisenstat, and
Steihaug [4]): Under the present assumptions, if zo is sufficiently close to z. and
0 < Mk < Mmax < 1 for each k, then {zx} converges to z, g-linearly in the norm || - ||,
defined by |[v||« = ||F'(z«)v|| for v € R™, with asymptotic rate constant no greater
than 7max. Furthermore, if limg—.o 7% = 0, then the convergence is g-superlinear, and
if ne = O(||F(zk)||), then the convergence is ¢g-quadratic.

In addition to controlling local convergence, there is another important issue as-
sociated with the forcing terms. Away from a solution, F' and its local linear model
may disagree considerably at a step that closely approximates the Newton step. Thus
choosing 7 too small may lead to oversolving the Newton equation, by which we
mean imposing an accuracy on an approximation of the Newton step that leads to
significant disagreement between F' and its local linear model. Oversolving may result
in little or no decrease in || F|| and, therefore, little or no progress toward a solution.
Moreover, in applications such as Newton iterative or truncated Newton methods, in
which additional accuracy in solving the Newton equation requires additional expense,
it may entail pointless costs; a less accurate approximation of the Newton step may
be both cheaper and more effective.

Our purpose is to propose choices of the forcing terms that achieve desirably
fast local convergence and also tend to avoid oversolving. All of the proposed choices
incorporate information about F' but are scale independent in that they do not change
if F is multiplied by a constant.

In §2, we outline the proposed choices and analyze the local convergence of Algo-
rithm IN that results from them; we also note some practical safeguards that improve
performance. In §3, we discuss numerical experiments. The algorithm used in the ex-
periments is a special case of Algorithm IN and is outlined in §3.1. The test problems
are described in §3.2. An example of oversolving is given in §3.3, with additional ob-
servations and examples in §3.4. Summary test results are shown in §3.5. Conclusions
are given in §4.

Preliminaries. We define some useful constants and formulate several elementary
results. Set M = max {||F'(z.)||, || F'(z.«)7}||}. For é > 0, define

Ns(z) = {z € B*: ||z — . < 8},

and let §. > 0 be sufficiently small that
1. F is continuously differentiable and F’ is nonsingular on Ns,(z.),
2. ||F'(z)7Y| < 2M for z € N5, (z.),
3. inequality (1.1) holds for z € Nj,(z.),
4. 6. < 2/(AM).
LEMMA 1.1. Ifz € Ns,(z.) and if s is such that z4 = z + s € Ns,(z.), then

1F() = F@) = F(a)oll < A (2lls = 2l + L20) o).



Proof. Setting z(t) =z + ts for 0 <t <1, we have

1) = F@) = Fa)sll = | [ Plae)sdt~ F(a)s]

IA

I [ [Fa®) - o] - [re) - Fa)]l o]
(U Al = et e+ 31— ) oy

= A (2l =z L) g

IN

0
LEMMA 1.2. There is a # > 0 such that

Zlle = 2. < [ F(@)] < e - o..
whenever z € Ns,(z.).
Proof. With Lemma 1.1, we have
IF@I < 1F(20)(z - )| + | F(z) F(z.) = F'(z.)(z ~ z.)||

< Mile =)+ Jlo - 2 < <M + %) Iz = o]

and
IF@I > I1F(z)(z - )| - 1F(z) - F(z.) - F'(z.)(z - z.)||

2 gylle el = Gl oz (-2 oy

The lemma follows with 4 = max {M + A6./2,(1/M - /\6*/2)-1}. a
LEMMA 1.3. Ifz ¢ Ns.(z.) and ||F(z) + F'(z)s]) < nllF(z)|| for some s and

n€[0,1), then ||s|| < 4M||F(z)|.
Proof. We have
sl < 1I1F' (@) 1)1 F(<) s
S 2M(IF (@) + | F(z) + F'(z) ]|)
S 2M(1+n)|F(z)|| < 4aM || F(z)]].

0
LEMMA 1.4. Thereisa B > ( such that if z € Ns,(z.) and if s and n € [0,1) are
such that ||F(z) + F'(z) sl <nllF(z)|| and x4 =z + s € Ns,(z.), then

I < (0 + BIF@IDIFE)).
Proof. With Lemmas 1.1-1.3, we have that
IFEON < IF @)+ F@)sl+1F(es) - Fz) - Fa)s]
ME@I+3 (2l = o+ L) o
TE@+ AP + 21| F(@)]) - b1 F )]

(n + BIIF ()l F(z)|),
where B = 8AM (i + M). O

IA

IN
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2. The proposed choices. In the analysis in this section, we use the Lipschitz
constant A in (1.1) and the constants M, 4., u, and B introduced in the preliminaries
in §1. We also let 6 be such that 0 < § < 6,/(1+4uM) and note that, by Lemmas 1.2
and 1.3,if z € Ns(z.) and ||F(z) + F'(z) s|| < n||F(z)|| for some s and 5 € [0,1), then
T + s € Ns,(z.). We assume for convenience that Algorithm IN continues indefinitely
without termination and that F(zi) # 0 for all k. Note that if zx € Ns,(z.), then
F'(z() is nonsingular and suitable s and zx4; exist for any 7% € [0,1). Our standing
assumptions on F' and z, are those made in the first paragraph of §1.

Our first choice is the following:

Choice 1: Given 7 € [0, 1), choose

_ IE(zk) = F(zk-1) = F'(@k-1) skl

(2.1) Nk TF(zrl , k=1,2,...,
02 mee IF @ = @) + Flann) sesll] L

|1 F(zx-1) ’

Note that nx given by either (2.1) or (2.2) directly reflects the agreement between
F and its local linear model at the previous step. The choice (2.2) may be more
convenient to evaluate than (2.1) in some circumstances. Since it is at least as small,
local convergence will be at least as fast as with (2.1); however, if it is significantly
smaller, then it may be more difficult to find a suitable step in some applications and
perhaps risk greater oversolving as well.

THEOREM 2.1. Under the standing assumptions on F and z., if zo is sufficiently
near z., then {zx} produced by Algorithm IN with {n} given by Choice 1 remains in
Ns,(z.) and converges to z, with

(23) lzkt1 = 2ull < Bllzk — zullllor— - 2all,  k=1,2,...,

for a constant § independent of k.

Remark: It follows immediately from (2.3) that the convergence is g-superlinear
and two-step g-quadratic. As in the case of the classical secant method, it also follows
that the convergence is of r-order (1 + v/5)/2; see, e.g., [13, p. 293] for the argument.

Proof. Tt suffices to prove the theorem with {n} given by (2.1).

Suppose that 79 € [0,1) is given. Let 7 be such that 7o < 7 < 1, and let € > 0 be
sufficiently small that 7o + Be < 7, [8BAM(u+ M) + Ble < 7, and € < §/u. Note that
if z € Ns,(z.) and ||F(z)|| < ¢, then z € Ns(z.) by Lemma, 1.2.

Let zo € Ns(z.) be sufficiently near z. that ||F(zo)|| < €. Since zo € Ns(z.), we
have z; € Ns,(z.). Also, by Lemma 1.4,

IF(z)ll < (0 + Bl F(z0)IDIIF(o)ll < (m0 + Be)l|F(zo)ll
T[|F(zo)ll < [IF(zo)ll < ¢,

(2.4)

IN

and, hence, z1 € Ng(z.).



As an inductive hypothesis, suppose that, for some k& > 1, we have z; € Nj(z.),
Tr-1 € Ng(zu), | F(zr)|| < €, and ||F(zg-1)|| < €. Lemmas 1.1-1.3 give

| F(zx) = F(2k-1) = F'(2k-1) Sp1l

T = (i)l
M2llze=1 = 2l + lse-1ll/2) sk
= IF(zr_1)l
o ACHIF(-D + 2M || F(ze)I]) - 4M|| F(zk-)]
= IF(zr)l]
< 8AM(k+ M)||F(zp-a)|-

Then Lemma 1.4 implies

PGl < (me+ BIF@)DIF(L))

[BAM (i + M)\ F(zi-)l| + BIF @)l 1F 20l
[BAM (i + M) + Blel| F(zi)|| < | F(z)]
1Pl < e

IN

(2.5)

IN

IN

Thus ||F(zk4+1)|| < € and, hence, zx+1 € Ns(z.)-

It follows from this induction that {zx} C Ns(z.) C Ns,(z.). Furthermore, (2.4)
and (2.5) give [|F(zx41)|| < 7||F(zk)|| for each & > 0; hence, F(zx) — 0 and, by
Lemma 1.2, z, — z. as well.

To show (2.3), we note that (2.4) and (2.5) give, for k > 1, ||F(zk)|| < ||F(zk-1)||
and

IF@es)l < [8AM(s+ M)|F(zen)ll + BIF )] 1 F(z)
< [BAM(u+ M) + Bl Flax-)l|| Flz)l

With Lemma 1.2, this implies (2.3) with 8 = u3[8AM(p+ M)+ B]. O

A possible way to obtain faster local convergence while retaining the potential
advantages of (2.1) and (2.2) is to raise those expressions to powers greater than
one. A particular possibility that we considered in our numerical experiments is the
following:

Choice 12: Given ng € [0,1), choose

(2.6) e = (”F(zk) — F(z-1) — F’(Zk—l)sk—1”>2, o

TF(zel
IF@I = IF@e-0) + P sl
(27)  me= ( TF@el ) ,  k=1,2,....

This choice was not as successful in our experiments as other choices proposed
here; see §3. For completeness, we state without proof the following local convergence
theorem.
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THEOREM 2.2. Under the standing assumptions on F and z.., if zo is sufficiently
near ., then {z;} produced by Algorithm IN with {nx} given by Choice 1?> remains
in Ns,(z«) and converges to z, with

(2.8) llzker — 2/l < Amax {|lzxor — 2all?, llox — 2all Pl — 2all, k=1,2,..,

for a constant (3 independent of k.
Remark: 1t follows from (2.8) that the convergence is r-quadratic.
Our second choice is the following:
Choice 2: Given v € [0,1] and 7o € [0, 1), choose

L (AEEIN
(2.9) nk_7<||F($k-—1)||) , k=1,2,....

The choice (2.9) does not directly reflect the agreement between F' and its local
linear model, as does Choice 1. However, the experiments in §3 show that it results
in little oversolving in practice, and the following theorem shows that it gives faster
guaranteed local convergence than Choice 1.

THEOREM 2.3. Under the standing assumptions on F and z., if ¢ is sufficiently
near ., then {zy} produced by Algorithm IN with {nx} given by Choice 2 remains in
Ns.(z.) and converges to z.. If ¥ < 1, then the convergence is q-quadratic. If v =1,
then the convergence is T-quadratic and of g-order p for every p € [1,2).

Proof. Suppose that no € [0,1) is given and let € > 0 be sufficiently small that
No+ Be < /Mo and € < §/p. Note that if z € Ns,(z.) and || F(z)|| < ¢, then z € Nj(z.)
by Lemma 1.2.

Let zo € Ns(z.) be sufficiently near z. that ||F(zo)|| < e. As an inductive
hypothesis, suppose that, for some k > 0, we have zx € Ns(z.), |F(zk)|| < €, and
Nk < Mo. Since zx € Ns(z.), we have zx41 € Ns,(z«). Also, by Lemma 1.4,

IF(zes)ll < (e + Bl F(z)IDIF (i)l

(2.10) < (m0+ Bo)||F(zk)ll < v/no || F(zk)
< IF(ee)ll < e
Then ||F(zk+1)|| < ¢, and it follows that x4+ € Ns(z«). Furthermore, (2.10) gives

M1 = Y| F(@ee)l/ I F(z)l1)* < o < 0.

It follows from this induction that {zx} C Ns(z«) C Ns,(z.). Furthermore, (2.10)
gives ||F(zk+1)|| < /70 ||F(zk)|| for each k > 0; hence, F(zx) — 0 and, by Lemma
1.2, 2 — z, as well.

It remains to show the desired rates of convergence. Note that, for k¥ > 0, (2.10)
and (2.9) give

2
@) el < |y () s sea] 1eeon

First, suppose that ¥ < 1 and set px = ||F(z¢)||/||F(zk-1)||* for & > 0. From
(2.11), we have pgy1 < vpr + B for k£ > 0, and it follows inductively that

k-1
; B
Pk+1 < 7kP1 + (Z 7]) B<p+ m

=0
6



Thus {px} is uniformly bounded. Consequently, F(z;) — 0 g-quadratically, and it
follows from Lemma 1.2 that z; — z. ¢-quadratically as well.

Now, suppose that 7y = 1. We first show that the convergence is of g-order p for
p € [1,2). For k > 0, (2.11) gives

[EAED]RY
[(HF(xk_l)”) + B”F(xk)ll} IF (o)l

IFEI \*™ _IF ()l . z_p] -
[(“F(mk—l)”> Faep T 2@ IEF @I

For each k > 0, set o¢ = ||F(zk)||/||F(zk-1)||P and recall that (2.10) gives || F(zk)| <
V0 || F(zk=1)||, whence ||F(zx)|| < (110)*/?||F(zo)||- Then for k > 0, (2.12) implies

| F (k)
(2.12)

IN

okar M "ok + Brg P || F(zo)[[*7P = €ox + €¥C,
where £ = né"p/z and C = B||F(z0)||*>~?. It follows inductively that
k41 < €5 (01 +KC),
and, hence,
IF(zes1)ll < €° (o1 + KC) | F(zi)IP-

Since £ (01 + kC) — 0 as k — oo, we conclude that F(z;) — 0 with g-order p and,
by Lemma 1.2, z — z, with g-order p as well.

Still assuming vy = 1, we now show that z; — z. r-quadratically. By Lemma 1.2,
it suffices to show that ||F(z¢)|| — 0 r-quadratically; we shall prove the somewhat
stronger result that ax = ||F(zk)||/||F(zk-1)|| = 0 r-quadratically.

It follows from the results above that ay — 0. Then there is a kg such that
20ak,+1 + 2B||F(zk, )|| < 1. For convenience, we re-index if necessary so that kg = 0.
Then 2a; + 2B||F(zo)|| £ 1, which implies D = 1/(2a;) > 1. Set S = Day for k > 0.
Note that 8; = 1/2. It suffices to show that S — 0 r-quadratically.

We claim that B < ﬂfk-l for k =1, 2, ..., from which it follows that Sy — 0
r-quadratically. The claim clearly holds for ¥ = 1. Suppose that it holds up to some
k > 1. Then Lemma 1.4 implies

1Pzl < (o + BIF(20I) |1 F ()]
whence

ars1 < al + Bag...oq||F(zo)|-

From this we obtain

1 B||F
Br+r < 5ﬂZ+—”T,g19mﬂk...ﬂ1
1 k—1\2 2k=14 41
< = (87 + BIF (o)A )

= 5o+ BIFGIE" ™ = (5 + BIFGo)I/8 ) 7

= (201 + 2B||F(zo)|)) 8% < 67,
T



and the proof is complete. 0O

Practical safeguards. Although the forcing term choices given above are usually
effective in avoiding oversolving, we have observed in experiments that they occasion-
ally become too small far away from a solution. There is a particular danger of the
Choice 1 and 12 forcing terms becoming too small. Indeed, an 7 given by (2.1), (2.2),
(2.6), or (2.7) can be undesirably small because of either a very small step or coinci-
dental very good agreement between F' and its local linear model. We have found the
following safeguard to be practically effective for Choice 1:

Choice 1 safeguard: Modify nx by m — max{nk,n?_,}.

The stringency of this safeguard depends on the size of 7¢_1, which reflects previ-
ous agreement between F' and its local linear model. Note that, with this safeguard,
we have n; > n?_, for all £ > 0. It is possible for this safeguard to remain active and
modify 7 given by (2.1) or (2.2) for arbitrarily large k, and so the convergence of (2.3)
may no longer hold. (Indeed, if F is linear, then this safeguard gives mx = nZ_, for
all k.) However, in almost all of our experiments, this safeguard eventually became
inactive. Furthermore, the following lemma shows that the convergence will still be
fast, even if the safeguard remains active for all k. (For perspective, recall from the
remark after Theorem 2.1 that the convergence of (2.3) implies convergence of r-order
(1++5)/2.)

LEMMA 2.4. Suppose that {z;} is produced by Algorithm IN with nx = n?_, for
all k > 0. Under the standing assumptions on F and z., if o is sufficiently near z.,
then z — z. r-quadratically.

Proof. If g = 0, then the local convergence is ¢g-quadratic, so assume 7o € (0,1).
Let ko be such that 7 = 2, < 1. Set fx = B||F(z)|| for each k. By the results
of Dembo, Eisenstat, and Steihaug [4] mentioned in §1, we can assume that z¢ is
sufficiently near z. that zx — z. and that 7,8k, + (ﬂk°)2 < 27],30. For convenience,
we re-index if necessary so that ko = 0; then

(2.13) T=2n0<1 and 7B+ B2 < 272
We claim that, for k£ > 0,

1 o1
B < 5 (2m)" = 57,

from which it follows that ||F(z¢)|| — 0 r-quadratically and, with Lemma 1.2, that
T — z. r-quadratically as well. From Lemma 1.4, we have

I F(zk4)ll < (e + BIIF(zi)I)) 1 F(z )l

whence

(2.14) Brsr < meBr + BF = nd Be + BE.
It follows from (2.13) and (2.14) that
1
B1 < mofo + B3 < 2mg = 5(2770)2,
and the claim holds for k¥ = 1. If the claim holds for some k& > 1, then (2.14) implies

2k+1

2
Be+1 < ngﬂk + 62 < n} [22k”1 + (22k'1) ]

2k+1 2k _1 2 _ ;1_ 2k+1
o [2'(2 ) ] =5 (2m)" ",

8
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and the claim follows. O

For Choice 1%, the safeguard below was effective in the experiments reported in
§3. This safeguard is the same as that for Choice 1 when n,_; is large but is more
relaxed when 7;_; is small, which is appropriate in view of the faster convergence of
Choice 12.

Choice 12 safeguard: Modify 77k by mx — max{nk,n_,} whenever nZ_, > .1 and
by mx — max{nk, nz:>;} whenever n?_, < .1.

In our experiments, we observed fewer occasions on which the Choice 2 forcing
terms became undesirably small. However, the following safeguard resulted in im-
proved performance.

Choice 2 safeguard: Modify 7x by mi — max{nk,yn?_,} whenever yn?_, > .1.

This safeguard results in no modification of 7y whenever 717,%_1 < .1. Conse-
quently, it eventually becomes inactive and does not alter the local convergence results
given by Theorem 2.3.

Finally, we note that, away from a solution, it may be possible for each of the
proposed choices to be greater than one. Accordingly, it may be necessary in practice
to impose an additional safeguard, as in the algorithm in §3.1 below, to make sure
that 7 € [0, 1) for each k.

3. Numerical experiments. In this section, we report on numerical experi-
ments with the forcing term choices outlined in §2, modified with the given safeguards.
(For computational convenience, we always used 7 given by (2.2) for Choice 1 and
(2.7) for Choice 12.) For a broader comparison, we also include the following repre-
sentative choices that have appeared in the literature: (1) The choice 7y = 10™* used
by Cai, Gropp, Keyes, and Tidriri [3]. This choice requires uniformly close approxi-
mations of Newton steps for all £ and results in fast local linear convergence in the
norm || - ||«. (2) The choice 7z = 1/2¥*! of Brown and Saad [2]. This choice results
in local g-superlinear convergence and allows relatively inaccurate approximations of
Newton steps for small k£, when z; may not be near z.; however, it incorporates no
information about F. (3) The choice 7x = min{1/(k + 2),||F(zk)||} of Dembo and
Steihaug [5]. This choice results in g-quadratic local convergence and also may al-
low relatively inaccurate approximations of Newton steps for small k. It incorporates
some information about F'; however, it does not reflect the agreement of F' and its
local linear model and, in addition, depends on the scale of F.

3.1. The algorithm. A globalized inexact Newton algorithm was necessary be-
cause initial approximate solutions were not always near a solution. We used Al-
gorithm INB of Eisenstat and Walker [6, §6]. This is an inexact Newton method
globalized by backtracking, which we write here as follows:

Algorithm INB: Inexact Newton Backtracking Method [6]
LET %o, Tmax € [0,1),t € (0,1), AND 0 < Omin < Omax < 1 BE GIVEN.
For k=0 sTEP 1 UNTIL “CONVERGENCE” DO:
CHOOSE AN initial 7 € [0, Jmax] AND Sk SUCH THAT

I1F(zk) + F' (k) skll < mill F(zi)ll-

WHILE ||F(zk + si)l| > [1 = (1 — m)][| F(z)l| DO:
CHOOSE 8 € [Omin, Omax)-
UPDATE s¢ «— Osg AND 7y «— 1 —6(1 — ).
SET Zk41 = Zk + k.



Note that Algorithm INB requires 7 € [0, max) for each initial nx. For the safe-
guarded choices in §2, this necessitates the additional safeguard nx « min{7k, Jmax}-

Theorem 6.1 of Eisenstat and Walker [6] states that if {zx} generated by Algorithm
INB has a limit point z. such that F'(z.) is invertible, then F(z.) = 0 and zx — z..
Furthermore, in this case, the initial 7 and s; are accepted without modification for
all sufficiently large k; it follows in particular that the asymptotic convergence to z.
is determined by the initial 7’s.

In implementing Algorithm INB, we first chose each initial 7; and then deter-
mined an initial s; by approximately solving the Newton equation using GMRES(m),
the restarted GMRES method of Saad and Schultz [11], with restart value m = 20.
Products of F'(z;) with vectors were evaluated analytically in some cases and ap-
proximated by finite differences of F-values in others; see §3.2. When finite-difference
approximations were used, a second-order central difference was used to evaluate the
initial residual at the beginning of each cycle of 20 GMRES steps, and subsequently
first-order forward differences were used within the cycle. This selective second-order
differencing gave essentially the same accuracy as if central differences had been used
throughout (see Turner and Walker [15]).

The parameters used were fmax = 1—107%, ¢ = 107, Omin = 1/10, and bpax = 1/2.
The norm was the Euclidean norm || - ||2. In the while-loop, each # was chosen to
minimize over [6min, fmax] the quadratic p(8) for which p(0) = ¢(0), ’'(0) = ¢'(0), and
p(1) = g(1), where g(8) = ||F(zk + 0sk)||3. Convergence was declared when either
| F(zx)|lz € 107 2||F(zo)|l2 or ||skll2 < 10712, These tight stopping tolerances allowed
asymptotic convergence behavior to become evident. Failure was declared when one
of the following occurred: (1) k reached 200 without convergence, (2) an initial s; was
not found in 1000 GMRES(20) iterations, or (3) ten iterations of the while-loop failed
to produce an acceptable step. All computing was done in double precision on Sun
Microsystems workstations using the Sun Fortran compiler.

3.2. The test problems. The test set consists of four PDE problems and two
integral equation problems. The PDE problems are all elliptic boundary value prob-
lems posed on Q = [0,1] x [0,1] € R2.

3.2.1. A PDE problem. The problem is
Au+ud=0in Q, u = 0 on 99Q.

This problem has multiple solutions, but only one that is positive everywhere (McKenna
[9], Schaaf [12]). These properties appear to be shared by the discretized problem, and
finding the everywhere-positive solution can be difficult without a good initial approx-
imate solution. Discretization was by the usual centered differences on a 100 x 100
uniform grid, so that n = 10%. The discretized problem was preconditioned on the right
using a fast Poisson solver from FISHPACK (Swartztrauber and Sweet [14]). Products
of F' with vectors were evaluated analytically. The initial approximate solution was a
discretization of ug(z) = az;(1 — z1)z2(1 — z2), which should lead to the everywhere-
positive solution for large a. Two test cases were considered: a = 100 and a = 1000.
For the latter value, the initial approximate solution is farther from the solution and
the problem is harder.
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3.2.2. The (modified) Bratu problem. The problem is

Au+a£1i+/\e"=0inﬂ, u = 0 on 9.
82)1

The actual Bratu (or Gelfand) problem has a = 0; see, e.g., Glowinski, Keller, and
Reinhart [7] or the description by Glowinski and Keller in the collection of nonlinear
model problems assembled by Moré [10, pp. 733-737]. As a and A grow, solving
the Newton equations for the discretized problem becomes harder for GMRES(20).
Discretization and preconditioning were as in §3.2.1. Products of F’ with vectors were
evaluated analytically. The initial approximate solution was zero. Two test cases were
considered: a = A = 10 and a = A = 20.

3.2.3. The driven cavity problem. The problem is

oy 0 oy 0 .
2 ~ — ———— =
(1/Re)A*y + B2, B2, Ay 925 92, A 0 in Q,
— 9% _
=0 and I = g on 0Q,

where g(z1,z2) = 1 if 22 = 1 and g(z1,22) = 0if 0 < z5 < 1. This is a widely
used test problem; see, e.g., Brown and Saad [2] or Glowinski, Keller, and Reinhart
[7). The numerical problem becomes harder as the Reynolds number Re increases.
Discretization was by piecewise-linear finite elements on a uniform 63 x 63 grid?, so
that n = 3969. The discretized problem was preconditioned on the right using a fast
biharmonic solver of Bjgrstad [1]. Products of F’ with vectors were approximated
with finite differences. The initial approximate solution was zero. Two test cases were
considered: Re = 100 and Re = 500.

3.2.4. The porous medium equation. The problem considered here is
0
2 3 —=0;
A(u)+dazl(u )+ f=0in Q,

with v = 1 on the bottom and left sides of 2 and u = 0 on the top and right sides.
This is more or less a steady-state special case of a general problem considered by
van Duijn and de Graaf [16]. Discretization was by the usual centered differences on
64 x 64 uniform grid, so that n = 4096. The discretized problem was preconditioned
on the right using the tridiagonal part of the Jacobian. Products of F’ with vectors
were evaluated analytically. The function f was a point source of magnitude 50 at
the lower left grid point. The initial approximate solution was a discretization of
uo(z) = 1 — z1z2, which tended to require more backtracking for negative d and to

cause more oversolving for positive d. Two test cases were considered: d = 50 and
d = -50.

3.2.5. An integral equation. The problem, from Kelley and Northrup [8], is
, 1t 1.
cu(z)® — 3 cos(yu(z))u(y) dy + 5 sin l1-¢=0, ze€[0,1]
0
? We thank P. N. Brown for providing the code for this.
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Clearly, u(z) = 1 is always a solution, and there exist other solutions for at least some
values of c. The discretized problem was determined by approximating integrals using
20-point Gaussian quadrature over 20 subintervals of [0,1]%, so that n = 400. No
preconditioning was necessary. Products of F' with vectors were approximated with
finite differences. The initial approximate solution was a discretization of uo(z) =
14 acos9rz. One test case was considered: ¢ = oo = 1.25.

3.2.6. The Chandrasekhar H-equation. The problem is

1

u(x)—mZ(_ES:O’ T € [071]’

where

- w(&)
Lu(z) = 2/ :c+§

This problem arises in radiative transfer problems; see, e.g., the description by Kelley
in the Moré problem collection [10, pp. 737-739]. The continuous problem is singular
at ¢ = 1, and so is the discretized problem considered here with discretization as in
§3.2.5. The discretized problem becomes more difficult to solve as ¢ — 1 but is still
tractable at ¢ = 1. Asin §3.2.5, no preconditioning was necessary. Products of F’ with
vectors were approximated with finite differences. The initial approximate solution
was zero. Three test cases were considered: ¢ = .5, ¢ = .999, and ¢ = 1.

3.3. An example of oversolving. Algorithm INB with the Dembo—Steihaug [5]
choice nx = min{1/(k + 2), || F(zk)||2} was applied to the driven cavity problem with
Re = 500. The results are shown in Figure 3.1, in which the (base 10) logarithms
of the norms of F and its local linear model are plotted as dotted and solid curves,
respectively, versus the numbers of GMRES(20) iterations. Triangles indicate the
start of new inexact Newton steps. In this example, 7% = ||F(zt)||2 for each & > 0;
the safeguard value nmx = 1/(k + 2) was never chosen for k£ > 0.

In Figure 3.1, gaps between the solid and dotted curves indicate oversolving. Note
that once oversolving begins, there is virtually no further reduction in ||F||2 until
the beginning of the next inexact Newton step; thus further GMRES(20) iterations
represent wasted effort. Note also the vertical discontinuity in the dotted curve at the
end of the fourth inexact Newton step (after 45 GMRES(20) iterations); this indicates
a reduction of the initial inexact Newton step through backtracking.

To show the benefits gained by reducing oversolving, we applied Algorithm INB
with 7 given by the safeguarded Choice 1 to the driven cavity problem with Re =
500. The results are shown in Figure 3.2. Note that oversolving is almost eliminated
and there are no step reductions through backtracking. Also, the total number of
GMRES(20) iterations is 221, compared to 327 in the previous case. However, the
number of inexact Newton steps is 12, compared to 10 previously.

3.4. Additional observations and examples. In an algorithm such as the
implementation of Algorithm INB used here, choosing a very small forcing term may
risk more than needless expense in obtaining an unnecessarily accurate solution of the
Newton equation. First, if oversolving results, then disagreement between F' and its

3 We thank C. T. Kelley fqr providing the code for this.
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F16. 3.1. Nlustration of oversolving with nx = min{1/(k + 2),||F(zk)||2} on the driven cavity problem
with Re = 500. The horizontal azis indicates the number of GMRES(20) iterations. The solid curve
islogq ||F + F'sl||2; the dotted curve is log,o || F||l2- Triangles indicate new inezact Newton steps.
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F1G. 3.2. Ilustration of reduction of oversolving with the safeguarded Choice 1 forcing terms on
the driven cavity problem with Re = 500. The horizontal azis indicates the number of GMRES(20)
iterations. The solid curve is log,q || F + F's||2; the dotted curve is log,, || F|l2. Triangles indicate new
inezact Newton steps: “A” indicates i given by Choice 1; “V” indicates qx = n?_,.

13



local linear model may require significant work from the globalization procedure or
even cause it to fail. In the example in §3.3, the choice 7 = min{1/(k+2), ||F(z&)||2}
required one backtracking, while the safeguarded Choice 1 did not. We observed a
more dramatic example involving the PDE problem of §3.2.1 with « = 1000. With the
safeguarded Choice 1, the iterates from Algorithm INB converged to the everywhere-
positive solution in 40 GMRES(20) iterations; two backtracks were required. With the
choice nx = min{1/(k + 2),||F(zk)||2}, 164 GMRES(20) iterations and 11 backtracks
were necessary; furthermore, convergence was to a solution other than the everywhere-
positive solution. Such convergence to a “wrong” solution may or may not be undesir-
able per se, but it does indicate the potentially serious effects of disagreement between
F and its local linear model.

Second, unless special care is taken, a very small forcing term may risk inaccu-
racy in an iterative linear solver such as GMRES, especially when products of F' with
vectors are approximated with finite differences. Recall from §3.1 that our implemen-
tation of Algorithm INB uses selective second-order differencing to obtain essentially
the same accuracy as if second-order differences were used throughout. Using the
safeguarded Choice 2 forcing terms with v = .9, we applied this implementation to
the driven cavity problem with Re = 500; the results are shown in Figure 3.3. There
is no evidence of inaccuracy in GMRES(20), and 218 iterations were required for
successful termination. However, when the implementation was changed to use only
first-order forward differences throughout, we obtained the results in Figure 3.4. Note
the increase in the linear residual norm curve (the solid curve) just after iteration
200. The linear residual norm values used for this curve were evaluated directly at the
beginning of each GMRES(20) cycle and then maintained recursively within the cycle;
the observed increase occurs after the direct evaluation at iteration 200 and indicates
that the recursively maintained values have become inaccurate. We note also that the
number of GMRES(20) iterations required for termination has increased to 232.

3.5. Summary test results. In Table 3.1, we summarize the results of applying
Algorithm INB to all test problem cases described in §3.2. In Table 3.2, we summarize
the results over the PDE problem cases only. The results for the PDE problems
are broken out in a separate table not only because these problems constitute an
important problem class but also because the characteristic performance of Algorithm
INB on these problems differed from that on the integral equations. On the integral
equations, and on the H-equation in particular, GMRES(20) was so effective that the
effects of different forcing term choices tended to be obscured. In most cases, only
1-3 GMRES(20) iterations were required for each inexact Newton step, and the linear
residual norm was often reduced by several orders of magnitude in a single iteration.
On the PDE problems, many more GMRES(20) iterations were typically required
for each inexact Newton step, with only modest linear residual norm reduction per
GMRES(20) iteration. Thus the PDE problems were better suited for showing the
effects of different forcing term choices.

The first three columns of Tables 3.1 and 3.2 give geometric means of the numbers
of linear iterations (GMRES(20) iterations), inexact Newton steps, and “function
evaluation equivalents”, where, for each test case, we define the number of “function
evaluation equivalents” to be the sum of the numbers of linear iterations, backtracks,
and inexact Newton steps. The number of linear iterations is the same as the number
of products of F' with vectors; if these products were always approximated by first-
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F1G6. 3.3. [lustration of the performance of Algorithm INB with selective second-order differencing
and safeguarded Choice 2 forcing terms, v = .9, on the driven cavity problem with Re = 500. The
horizontal azis indicates the number of GMRES(20) iterations. The solid curve is log,q ||F + F's|2;
the dotted curve islog,, || F|l2. Triangles indicate new inezact Newton steps: “A” indicates nx given
by Choice 2; “V” indicates nx = n2_,.
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F1G. 3.4. Ilustration of the performance of Algorithm INB with first-order differencing throughout
and safeguarded Choice 2 forcing terms, v = .9, on the driven cavity problem with Re = 500. The
horizontal azis indicates the number of GMRES(20) iterations. The solid curve is log, || F + F's||2;
the dotted curve is log , || F||2. Triangles indicate new inezact Newton steps: “A” indicates nx given
by Choice 2; “V” indicates nx = n7_,.
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order forward differences, then the number of “function evaluation equivalents” would
be just the number of function evaluations. This number provides a rough relative
measure of overall work for these test problems. It would be a less suitable measure,
e.g., if there were additional costs associated with beginning a new inexact Newton
step, such as initializing a new preconditioner. The fourth column gives numbers
of backtracks over all test cases, i.e., numbers of step-reductions in the while-loop
in Algorithm INB. The fifth column gives numbers of instances of convergence to a
“wrong” solution, i.e., convergence to a solution other than the everywhere-positive
solution in the PDE problem of §3.2.1 or to a solution other than u = 1 in the integral
equation problem of §3.2.5. As noted previously, convergence to a “wrong” solution
illustrates the potentially serious effects of disagreement between F and its local linear
model. The sixth column gives the number of failures over all test cases. If failure
occurred in a test case, then that case was not included in the statistics for columns
1-5.
TaBLE 3.1

Summary test results over all problems. GMLI, GMINS, and GMFEE are geometric means of the
numbers of linear iterations, inezact Newton steps, and “function evaluation equivalents”, respectively.

NB, NW, and NFAIL are the total numbers of backtracks, instances of convergence to a “wrong”
solution, and failures, respectively. Results marked “*” were over succesful runs only.

Tk choice GMLI | GMINS | GMFEE | NB | NW | NFAIL
10—¢ 90.2* | 7.21* | 103.3* | 1* | o* 2
1/2k+1 70.3* | 9.24* 85.4* | 6* | 1* 1
min{1/(k + 2), || F(zs)|l2} | 72.3 8.72 86.6 18 | 2 0
Choice 1 53.5 9.33 67.1 510 0
Choice 12 55.1 8.90 69.7 13 0 0
Choice 2,y = 1 52.4 8.82 65.9 8| 0 0
Choice 2,y = .9 52.5 7.89 64.7 8 0 0
Choice 2,7 = .5 66.8 7.93 79.4 13 | 1 0
TABLE 3.2

Summary test results over the PDE problems. GMLI, GMINS, and GMFEE are geometric means
of the numbers of linear iterations, inezact Newton steps, and “function evaluation equivalents”, re-
spectively. NB, NW, and NFAIL are the total numbers of backtracks, instances of convergence to a
“wrong” solution, and failures, respectively. Results marked “*” were over succesful runs only.

Tk choice GMLI | GMINS | GMFEE | NB [ NW | NFAIL
10—* 152.4* | 6.68* 163.7 | 1 | o~ 1
1/2k+1 104.2* | 8.95* 118.4* | 3* | 0* 1
min{1/(k + 2), ||F(zr)|2} | 117.9 | 8.22 130.5 | 15 | 1 0
Choice 1 82.5 8.87 95.3 3 0 0
Choice 12 89.1 8.48 103.8 [ 11| 0 0
Choice 2,y =1 82.7 8.60 96.3 6 0 0
Choice 2, v = .9 83.3 7.57 95.2 6 | 0 0
Choice 2, 7y = .5 98.4 7.57 1104 |10 | © 0

One sees from Table 3.1 that, in terms of “function evaluation equivalents”, the
best performances over all problem cases were from, in order, Choice 2 with v = .9,

16



Choice 2 with v = 1, and Choice 1. Choice 2 with v = .9 also gave the smallest mean
number of inexact Newton steps and essentially tied Choice 2 with ¥ = 1 for the small-
est mean number of linear iterations. Thus, in terms of overall effort, Choice 2 with
¥ = .9 seems to be the winner, followed closely by Choice 2 with ¥ = 1 and Choice 1.
However, note that Choice 1 required significantly fewer backtracks, although at the
expense of more inexact Newton steps. Requiring fewer backtracks indicates that bet-
ter agreement was maintained between F and its local linear model and, therefore,
suggests greater robustness.

Table 3.2 shows that, over the PDE problem cases, Choice 2 with v = .9 and
Choice 1 were essentially tied for the lowest mean number of “function evaluation
equivalents”, followed closely by Choice 2 with ¥ = 1. Choice 1 and Choice 2 with
7 = 1 were essentially tied for the lowest mean number of linear iterations, followed
very closely by Choice 2 with ¥ = .9. Choice 2 with ¥ = .9 also tied with Choice 2
with 7 = .5 for the smallest mean number of inexact Newton steps. Choice 2 with
¥ = .9 could be judged a very slight winner over Choice 1 and Choice 2 with v = 1
in terms of overall effort, but note that Choice 1 again required significantly fewer
backtracks, which suggests greater robustness.

In summary, the best performances were from Choice 2 with y = .9 and vy = 1
and from Choice 1. In terms of overall effort, Choice 2 with v = .9 seemed best by a
small margin; however, Choice 1 required significantly fewer backtracks and, therefore,
seems likely to result in greater robustness, albeit at the probable cost of more inexact
Newton steps.

Choice 12 and Choice 2 with ¥ = .5 were notably less efficient. In addition,
they required much larger numbers of backtracks and, therefore, seem likely to reduce
robustness. The representative choices from the literature that were included in the
tests were significantly less effective than the choices proposed here.

4. Conclusions. We have outlined forcing term choices that result in desirably
fast local convergence and also tend to avoid oversolving the Newton equation, i.e.,
imposing an accuracy on an approximation of the Newton step that leads to signif-
icant disagreement between F' and its local linear model. The choices, along with
theoretical support and practical safeguards, are given in §2. Practical performance
on a representative set of test problems is discussed in §3.

Choice 1 directly reflects the agreement between F' and its local linear model
at the previous step. It results in fast, although not g-quadratic, local convergence;
see Theorem 2.1 for the precise statement. Choice 2 does not directly reflect the
agreement between F' and its local linear model; however, it has faster (up to g¢-
quadratic) guaranteed local convergence (see Theorem 2.3) and was effective in our
tests.

The best performances in our tests were from Choice 2 with y = .9 and v =1
and from Choice 1. Choice 2 with v = .9 seemed the most efficient overall by a slight
margin and also gave the smallest mean numbers of inexact Newton steps. However,
Choice 1 was almost as efficient and resulted in significantly fewer backtracks, which
suggests greater robustness.

The numerical experiments and theoretical results suggest that Choice 1 might
be preferred for good efficiency and superior robustness in general use, while Choice 2
with ¥ = .9 might offer more efficiency with good robustness on many problems,
especially mildly nonlinear problems for which there is significant cost associated with
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beginning a new inexact Newton step.

In conclusion, we recall from §3.4 that, in a globalized Newton iterative or trun-

cated Newton method such as the implementation of Algorithm INB used here, over-
solving resulting from a small forcing term may place significant demands on the
globalization and even cause it to fail, as well as incurring unnecessary expense in
solving the Newton equation. In addition, unless special care is taken, a very small
forcing term may risk inaccuracy in the iterative linear solver, especially when finite
differences are used to approximate products of F’ with vectors.
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