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Abstract. We study a model nonlinear, degenerate, advection-diffusion equation having
application in petroleum reservoir and groundwater aquifer simulation. The main difficulty is that
the true solution is typically lacking in regularity; therefore, we consider the problem from the
point of view of optimal approximation. Through time integration, we develop a mixed variational
form that respects the known minimal regularity, and then we develop and analyze two versions of
a mixed finite element approximation, a simpler semidiscrete (time continuous) version and a fully
discrete version. Our error bounds are optimal in the sense that all but one of the bounding terms
reduce to standard approximation error. The exceptional term is a nonstandard approximation
error term. We also consider our new formulation for the nondegenerate problem, showing the usual
optimal Ly-error bounds; moreover, superconvergence is obtained under special circumstances.
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1. Introduction. Let 2 C R%, d = 1, 2, or 3, be a bounded domain with
sufficiently smooth boundary 8f2, and let 0 < T < oo and J = (0,T']. We de-
velop and analyze a mixed finite element approximation to the following nonlinear
advection-diffusion problem in u(z,t):

Ou

(1.1a) 55~V [aVP(u) + B(P(w))] =7(P(v)), (2:%) € 2 xJ,
(1.1b) u=up, (z,t)€ 02 xJ,
(1.1¢) u=ug, (z,t)€ N2 x{0},

where P(u) = P(z,t;u) is strictly monotone increasing in u for each (z,t) € 2 x J,
v(u) = y(z,t;u), up = up(z,t), ue = uo(x), f(u) = B(z,t;u) is a vector, and
a = afz,t) is a d X d symmetric matrix that is uniformly positive definite with
respect to (z,t) € 2 x J. These functions are tacitly assumed to be smooth enough

for our purposes.
We concentrate on the case in which dP(u)/0u = P,(u) may be zero for
some values of u. Since VP(u) = Py(z,t;u)Vu + V. P(z,t;u), (1.1) is degenerate
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parabolic. Let (-,-) denote the Ls({2)-inner product (or sometimes the duality
pairing) and || - || its norm. Our main assumptions are that there is a constant
Co > 0, independent of time, such that

(A1) |IP(¢1) = P(@2)||* < Co(P(p1) — P(p2), 1 — p2), for 1,04 € Ly(2),

and both 3 and « are Lipschitz continuous:

(A2) [1B(e1) = B(@2)ll + (1) = 7(@2)ll < Collpr — @2ll,  for @1, 02 € La(£2).
A sufficient condition for (A1) is
(A1) 0 < Py(z,t;9) < Cy

for (z,t) € 2 x J and ¢ in the range of the true solution

(when considering numerical schemes, this inequality must hold also on the range
of the numerical solution, so extend P in some reasonable way).
To obtain below a mixed formulation, we introduce a new variable

(1.2) $ = —aVP(u) - A(P(u)).

The main difficulty in approximating (1.1) is that the solution is typically lacking
in regularity. According to Alt and Luckhaus [2] (see also [1], [4], and [15]), we have
at least that

(1.3a) u € Leo(J; L1(£2)),
(1.3b) ue € Lo(J; H(R2)),
(1.3¢) ¥ € La(J;5(L2(2))%),
(1.3d) 7(P(u)) € Ly(J; L2(12)),

where H™! is the dual of H}. Furthermore, if we assume that the problem is
physically consistent so that a maximum principle holds (e.g., 8(P(u)) is zero for
two values of u, our initial and boundary conditions stay between these two values,
and the source term v(P(u)) respects the range of u), then u remains bounded. Let
us simply assume that

(A3) U € Loo(J; Loo(2)).

Because of (1.3b)—(1.3c), it is natural to consider conforming finite element
discretizations of (1.1). We mention four such works below.

Rose [28], [29] considered a similar problem for flow through porous media. He
defined a continuous, piecewise linear finite element Galerkin method and derived
rates of convergence based on assumed asymptotic rates of degeneracy. Once such
rates are assumed, the solution can be shown to have more regularity (e.g., u: is a
function, not merely a distribution), which he then exploited.

Magenes, Nochetto, and Verdi [20] considered a class of problems including the
Stephan problem and the porous medium equation; their results apply also to (1.1).
Their scheme is discrete in time only. They relax the strict equality (1.2) by using
the asymptotically correct (as the time step tends to zero) Chernoff formulation.
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Nochetto and Verdi [25] consider a similar degenerate parabolic equation. They
defined a continuous, piecewise linear finite element Galerkin method and proved
its convergence; moreover, they extracted error estimates in measure for the free
boundaries that appear in the solutions.

Barrett and Knabner [7] considered the problem of solute transport (see Sec-
tion 2). They also defined a continuous, piecewise linear finite element Galerkin
method, and they used a regularization of the problem to obtain their results.

In the petroleum industry, equations similar to (1.1) (see Section 2) are most
often discretized by using the cell-centered finite difference method [26]. As shown
in [30], [32], [6], this scheme is actually the lowest order Raviart-Thomas mixed
finite element method on rectangles [27], combined with special quadrature rules.
The mixed method for the nondegenerate problem has been well studied (see, e.g.,
[27], [14], [21]); however, it appears that no convergence theory has been presented
for the fully degenerate problem (1.1).

Let a = a~L. For almost every time, a mixed variational form of (1.1) is

(1.4a) (u,w) + (V- $,w) = (v(P(w),w), Yw € Hy(%2),
(ah,v) — (P(u),V -v) + (aB(P(u)),v)

= —(P(up),v-v), Yve€ H(£2;div),
(1.4¢) (u(-,0),w) = (uo,w), Vw € La({2),

where H(§2;div) = {v € L3(£2) : V- v € Ly(£2)} and (-,-) denotes the usual inner
product in Ly(812), or the duality pairing. Since we can only expect in general that
us € Ly(J; H1(R2)), in the straightforward mixed formulation (1.4), this requires
that the trial functions in (1.4a) belong to H}(§2). To avoid this, we derive below
an alternate variational formulation incorporating an integration in time.

We consider the problem from the point of view of optimal approximation,
regardless of the rate at which P(u) tends to zero. We show that our scheme
approximates the true solution about as well as can be expected for our approxi-
mating spaces. Our error bounds are optimal in the sense that all bounding terms
reduce to approximation error, except one. This latter term involves the difference
of two discrete projections of the integral time average of the total flux. For the
Raviart-Thomas rectangular spaces [27)], these two projections are super-close. We
can recover actual rates of convergence of the scheme as soon as some regularity is
shown for the solution.

The outline of the rest of this paper is as follows. In the next section, we provide
two practical examples of (1.1) that serve to motivate our work. In Section 3 we
present a different mixed variational formulation and two versions of a mixed finite
element method. One is semidiscrete (continuous in time), the other is fully discrete.
The semidiscrete version, though not computable, is easier to understand and gives
some insight into our treatment. It is analyzed in Section 4, and the fully discrete
version is analyzed in Section 5. This appears to be the first proof that the type
of discretization schemes used in the petroleum industry-namely mixed methods—
converge for the fully degenerate problem. In the last two sections, we consider our
new formulation for the nondegenerate problem. The usual optimal L; error bounds

(1.4b)
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are derived in Section 6; moreover, in Section 7, we prove that superconvergence
1s obtained under special circumstances. It appears that we have the first proof
of superconvergence for the vector flux variable in the nonlinear problem, though
superconvergence had been observed experimentally [31].

2. Two applications. Problem (1.1) appears in many applications; we mo-
tivate our work by describing two of them. Petroleum reservoir and groundwater
aquifer simulation often requires the solution of a nonlinear, degenerate, advection-
diffusion problem describing two-phase flow in porous media [1], [4], [8], [13], [26].
We restrict our discussion here to a model equation possessing the degeneracy em-
phasized in the introduction:

9(¢s)

(2'1) T +V- [&(S)KVPC(S) + v/é(s)] = ’3'/(3), (:Z:,t) € 2 x ']7

where 0 < s = s(z,t) < 1 stands for the (normalized) wetting fluid phase saturation,
¢ is the porosity (uniformly positive and bounded), p. is the capillary pressure
function, K is the tensor of absolute permeability, v is the total Darcy fluid velocity,
& and J are related to the phase mobilities, and ¥ models the effect of wells.

For this problem, a(s) = &(z,t;s) > 0 and vanishes if, and only if, s = 0 or
s = 1; thus, (A3) holds. Also p.(s) = pc(z;s) is strictly monotone decreasing. Let
A(s) = a(p;1(s)), and denote by P(s) the modified Kirchhoff transformation

Pe(s)
(2.2) P(s) = /0 A(m)dr.

Since

pe(s)
VP(s) = a(s)Vpe(s) + /0 V. A(m)dr,

setting ©
- PclS
B(P(s)) = vp(s) — K/o V. A(m)dr

and shifting from s to the unknown ¢s casts (2.1) in the form of (1.1).

If 3(P~1(:)) and (P~1(-)) are Lipschitz continuous, and |V A(-)| < CA(-),
then (A2) holds. Although (A2) is somewhat artificial for this problem, we can
demonstrate that (A1’) is physically reasonable.

If Ao(s) and Ay(s) are the oil and water phase mobilities, respectively, then
& = AoAw/(Xo + Aw). By Leverett’s semi-empirical equation, p.(z;s) = «(z)J(s),
and by Burdine’s relationship between relative permeability and capillary pressure,
we can assume that

2 74 2 [1_d¢
/\w(S) ~ S A Jz(C) and AO(S) ~ (1 - -S) /’ -JT(I-:—C-)-

(see, e.g., [8], [13]). If, say, J(s) ~ s%, 0 < & < 1,as s — 0 and J(s) ~ (1 — s)%2,
0<é;<1,as s— 1, then

Py(s) = a(s)

apc(s)—>Oa.s.s—-+00rs—>1,
s

0
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which establishes (A1'). (The quantity P(s) can be considered as a “complemen-
tary” pressure. See Arbogast [4] for a more detailed discussion.)

Another application is a macroscopic model for the transport of a solute with
concentration ¢(z,t) in a porous medium with an equilibrium adsorption reaction,
such as

(2.3) -g—t(@c + pp(c)) = V- (DVe—vc) =0 in 2 xJ,

subject to initial and boundary conditions. Here © = O(z) is a function with
uniformly positive upper and lower bounds, p = p(z) = po > 0, D is the diffu-
sion/dispersion tensor, v is the fluid velocity, and ©(+) is a the sorption isotherm, a
non-decreasing function with ¢(0) = 0 and ¢(c) > 0 for ¢ > 0 (see [15], [18]). With
p(c) = Oc + pp(c), this equation is

oy 29 pva (o) ~ o W@ =0 2 x T,

which is (1.1) for the variable y with P(u) = p~'(p). Easily, (Al'), (A2), and
(A3) hold, since 0 < 8P/du < 1/0, f =vP, v =0, and 0 < ¢ < 1. In fact, the
problem is nondegenerate if the Langmuir isotherm is used, or if the exponent for
the Freundlich isotherm is greater than or equal to one.

3. The mixed finite element method. In this section, we develop first
a semidiscrete (time continuous) mixed finite element method for the degenerate
problem, and then a fully discrete version. Our algorithms are well defined even
when the true solution is minimally regular, as described in the introduction (recall
(1.3)). We begin by deriving an appropriate mixed variational formulation of (1.1).

From (1.3), both u and u; are in Ly(J; H™(£2)); we therefore conclude that
u € C°(J; H-1(R2)) (see Chapter 1 of [19]). This gives us u(-,¢) pointwise for every
t € J, first as a distribution in H~!(£2), but actually in L(£2) by (A3).

We are justified now in integrating (1.1a) in time from 0 to ¢ € J and using
(1.1c) to obtain the equivalent distributional equation

t t

(31a)  w(zt)+V / dr = / V(P(w))dr +uo(z), (2,8) € 2 x J,
0 0

(3.1b) u=up, (z,t)€ 02 xJ.

Note that from (1.3), we can conclude that

/ "y dr € H(J; (La(2))%) 0 La(J; H(2; div));
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thus, we have a variational form for almost every time ¢t € J as

(- t), w) + (V-/Otzbdr,w)

- (/Ot v(P(u)) dr, w) + (uo,w), Vw € Ly(12),

(a,v) — (P(u),V -v) + (aB(P(u)),v)
= —(P(up),v-v), VYve H(2;div).

(3.2a)

(3.2b)

In fact, (3.2a) holds for every t € J, since u is defined for each time; moreover, we
can define 9 for every time by (3.2b).

Let {2 be partitioned into a conforming finite element mesh with maximal
element diameter h. We seek approximate solutions in a mixed finite element space
Wi x Vi C La(82) x H($2;div) defined over the mesh, e.g. the Raviart-Thomas-
Nedelec finite element spaces [27], [23] (or those of [9], [10], [11], [12], or [24]).

A semidiscrete mized finite element method.
For each t € J, let (U(-,t),%¥(-,t)) € Wh X Vj be the approximation of
(u(-,t),9¥(:,t)) such that

- (U(-, 1), W) + (v : /Otwr, W)

- (/ot (P(U)) dr, W) +(uo, W), YW € Wh,

(a¥,V) = (P(U),V-V)+ (aB(P(V)),V)
= —(P(up),V -v), VYV € V.
We turn to our backward Euler, fully discrete scheme. Let tg = 0 < #; <
.-+ < ty = T partition J, and let At" = ¢, —t,—; be the nth time step size. For

any function ¢ of time, let ™ denote ¢(t,); we also abuse the notation by writing
P(o™) in place of P(:,t,; ™).

(3.3b)

A fully discrete mized finite element method.
For each n > 0, let (U™, ¥™) € W}, x V} be the approximation of (u™,%™) such
that

U™, W)+ (V-i\lﬁ Ati,W)

(3.4a) . j=1
= (SR 88 ) + ), W W
1=1
Gapy  @EV) =PV @E(PE)Y)

= —(P(up),V -v), YV E V.
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Note that in practical computation, we would use a more straightforward equiv-
alent form of (3.4a) as follows. Subtract (3.4a) at time level n from that at level
n — 1, and divide by At" to obtain for n > 1 that

5 (L W) +(7 9 W) = (PR W), YW €W,

(3.5b) (U°, W) = (uo, W), VW € Wh.

4. Analysis of the semidiscrete scheme. We begin this section by defining
some projection operators. We need a projection operator II; mapping into V;, with
the property that for any v in the domain of the operator,

(4.1) (V- (Mpv —v),W) =0, YW € Wh.
We explicitly assume that
(A4) V - Vi C W4 and there exists IT; : (H!(£2))? — V satisfying (4.1).

All the usual mixed spaces (see [9], [10], [11], [12], [14], [23], [24], [27]) satisfy (A4);
moreover, II, approximates I (the identity operator) to the optimal order.
Denote by Py, : Ly(2) — Wy, the Ly(2)-projection operator. For any function

@ € Ly(12), ¢ denotes Pre for short. Finally, associated with a(:,t), we introduce
the weighted (L2(£2))?-projection operator Ph(t) : (L3(£2))* — Vi defined, for
v € (L2(£2))? and all V € V4, by

(4.2) (a(-,t)(Pa(t)v — v),V) =0, VYV €V

We need to apply II, to f(f 1 dr, which can be done only if this function is
sufficiently smooth. We assume explicitly that

(A5) /ot Ydr € HI(J; (Lo (2)4) N Lo(J; (H (2))) = (H' (2 x J))*.

Lemma 1. If o(z,t) = a1(t) aa(z), where oy is a scalar, then (A5) holds.

Proof. Recall that (1.2) defines y. Since u € Loo(J; Leo($2)), B(P(u)) €
L(J; Ly(R2)); moreover, (1.3c) implies that in fact P(u) € La(J; H'(R2)), and then
also B(P(u)) € Ly(J; H'(R2)). Time integration only helps matters, so we conclude
from (3.1a) that

V. /c; aVP(u)dr=V- a2V/; a1 P(u)dr € Ly(J; La2(£2)).

We have assumed that 942 is sufficiently smooth, so elliptic regularity implies that
in fact

/t P(u)dr € Ly(J; H*(2)),

yielding the lemma. O

Remark. The tensor a in petroleum flow is a function of z only [8], [13], [26].
For solute transport, at least in the nondegenerate case, (A5) holds. In general,
(A5) can be avoided if one changes (A4) to state that V - Vi = Wy. Then I, :
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H($2;div) — V4 can be defined satisfying (4.1); though, nonuniqueness requires that
a choice be made. We no longer know that II;, approximates I, so define IIyv € V},
such that ||[IIyv — v|| is minimal subject to the constraint that V - v = PV - v.
Theorem 1. Assume (A1)-(A5). Let (u,v) solve problem (1.1) and (U, ¥)
solve 1ts semidiscrete mized finite element approzimation (3.3). There is some con-

stant C > 0 such that for any t € J,
t t t
/(U—u,P(U)—P(u))dr+ / \IJdT—’Ph(t)/ W dr
0 0 0
t t T 2
SC{/O |I’f’hu—u||2d7'+/o (’Ph(T)—I)/(; Ydo|| dr
t T 2
+/O v-(nh-Ph(T))/o ¥ do dT}.

Remark. The form 1/2
t
{ / (U —u, P(U) — P(u)) dr}
0

bounds the size of U — u; for example, it bounds the norm ||P(U) — P(u)|| by (A1).
It is not, however, a norm itself. It may even fail to be a metric.

Proof. Let ® = ¥ — 4, & = [ &dr, and ¥ = [, $dr. By (3.2), (3.3), (4.1),
and the fact that V-V, C W}, we have that

2

U —u, W)+ (V- I, W)

(4.3a) .
= ( /0 [Y(P(U)) — y(P(u))] dr, W), YW € Wh,
(4.3b) (a®,V) = (P(U) = P(u),V - V)

= —(a[B(P(U)) - B(P(w))],V), VV € V.

Take W = P(U) — P(u) € Wy and V = Pp® = I1,® + (Il — Pa)y € Vi above.

Add these two equations together, cancel the two terms (f(_ﬂ — P(u),V - 11,®),
and use (4.2) to obtain

(V- w,PU) - P(4)) + (aP4®, Ps3)
= (P(U) - P(w), V- (Ils — Pa))
+ ([ ey ~ e () n PO - )
— (alB(P(V)) - BP(w))], Pa).

(4.4)
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We integrate this equation in time from 0 to ¢. The first term on the left-hand
side becomes

(4.5) /Ot (U—uf(?)—?(u\)) dr = /Ot(U—u,P(U)—P(u))dr——Tl,
where

T = /0 (it — u, P(U) — P(u))dr.

For the second term on the left-hand side of (4.4), set v = @ in (4.2) and differentiate
in time to obtain

46)  (acl)(Pa(®)® — 8),V) + (a(- )[(Pa(t)®) — 8], V) =0, VYV € Vi,
Taking V = ’Ph<°D and using (4.2) gives

(a'Ph@,'Ph&’) = (G(Ph&’)t,Ph&) + (at('Ph(t)&’ - (E’),Ph&’)

*7 = %[%(amé,m%) - (amhé,mé)] + (ae(Pa(t)@ — ), Prd).
Thus

(4.8) /0 t (aPh@, Pad) dr = L]|a'2(, )(Pad) )| — T,

where

1 t ° ° t ) [°) ]
T, = 3 / (at’Ph@,’PhCI’) dr -I—/ (at(Pryp — P), Prd) dr.
0 0

Collecting (4.4)—(4.8) together, we obtain that

@9 [ (@-uPO)- P+ Ha PO = T

k=1
where
Ty s/o (B(U) - P(w),V - (s — Pa)) dr,
7= [ ([ 0ew) -1 FO) - P ) dr
7o = - [ @BPW)) - AP, Pi) dr.
We estimate each Tk, k= 1,...,5. For any € > 0, we have

t t
Tl <C / 6 — ull? dr + ¢ / |P(U) — P(u)|? dr,
0 0
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where C'is a generic positive constant independent of any discretization parameters.
Easily

1T < c{ /ot IPx|2 dr + /Ot ek dr},

t —— ——— t o
T3] < e / IP@) - P@)|P dr +C / IV - (s = Pa)pl? dr.
0 0

By Assumption (A2),
t t T
— P(w)||?dr — P(w)||*do dr
Ty < e / IP(U) - P(w)|? dr +C / / IP(U) - P(w)|]? do dr,

t t o
ITs| < e/ 1P(U) —P(u)||2dT+C'/ P32 dr.
0 0

Combining these estimates and using (A1) twice, for € sufficiently small, we obtain
t o
| @ = uP@)- Py dr + PO
0
t t o t o
@10)  <o{ [ha-uPar+ [ 1pu-Ddiar+ [19 - - PdIar
0 0 0

+ /0‘ /OT(U—u,P(U)—P(u))dadT+ /0 T df}.

Use of Gronwall’s inequality to remove the last two terms completes the proof. O
Theorem 1 gives a bound for the time integral of |P(U) — P(u)]|, but it does
not give a bound for any norm of U —u. We give now such a bound for the negative

norm, defined by
(' ,(,0)
|- Ne-r1@y= sup —p——.
D7 enio lellma

Theorem 2. Assume (A1)-(A5). Let (u,y) solve problem (1.1) and (U, ¥)
solve 1ts semidiscrete mized finite element approzimation (3.3). There is some con-
stant C > 0 such that for any t € J,

WU t) = u(-, )l a-1(a)
gc{h||73,,u(-,t)—u(-,t)||+H /Ot\IJdT-—Hh/Otipdr +/0t IP(U) = P(u)] dr}.

Proof. Let ¢ € HA(£2) and ¢ = Prp € Wj. By (4.3a) we have that
(U= 4,0) = (U =0 = ) + (U = 1,8) = (& — w9 — ) + (U — 1, 0)

(411) = - up -9~ (7 b ) + ([P - P
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Since V - I[I,® € W;, integration by parts gives

(4.12) —(V-I;2,8) = —(V-Ih®,¢) = (I1&, Vo).

Thus
° t

(U —u,0) = (& —u,0 — @) + (IIn®, Vo) + (/ [y (P(U)) — v(P(u)) dr, 99)
0
(4.13) . .
< c{hna —ll+ Ml + [ 1P@) - Pl dT}I|<P||H1(n),
and the theorem follows. O

Remark. The error ||U — ul|g-1(g) is bounded by Theorems 1 and 2 and (Al) in
terms of approximation theory.

5. Analysis of the fully discrete scheme. Based on our semidiscrete anal-.
ysis, we derive analogous results for the fully discrete scheme. We need to assume
that there is some C; > 1 such that

(A6) At" < C1At™Y, Yn=2,..,N.

Theorem 3. Assume (A1)—(A6). Let (u,v) solve problem (1.1) and (U™, ™)
solve its fully discrete mized finite element approzimation (3.4). There 1s some
constant C > 0 such that if the At are sufficiently small, then for any n between 1
and N,

n

tn
> WA —P,?/ »dr
0

i=1

2

zn:(Uj — !, P(U7) = P(w)) At +

2

2 t;
+”V.(Hh —’P,{)/ b dr
0

2 .
fav.

<03 {ipwt —wip+ | -n [Twar
i=1 0

2 1 tj )
+ +”E ¢d7’—¢1

ti-1

S (P ar - [ yPw)dr

Moreover,

n tn
||U"—u"||H_1(mSC{h||'Phu"—u"||+ Z\I/JAt’—IIh/ b dr

i=1 0

S v (P At - [ (Pw)dr

+ Y IP@Y) - Pl AF +

=1

\
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Proof. Let
n 1 tn 2 2
= — J J
Pt = w . wdr P" Z At : » dr,
" = P" — ", a" Zqﬂm]—zqﬂmf / Y dr.
J=1 j=1

Taking together (3 2 att =1, and (3.4), and replacing W by P(U") P( ") and
V by Pp <I'" = Hh@" + (IIp — P} )1,/)" we obtain the following analogue of (4.4):

(U™ — u", B{U™) ~ P@")) + (a"P}2", Pp&")
= (W) —'P/(\un)yv (Hh _'P;:);zn)

+ ( évf(P(Uf»Atf -/ " A(P())dr, BUT) - ﬁ\))

— (a"[B"(P(U™) = B7(P(u™)), PR&") - (a"(F" - $7), Pp&").
Note that ®"~1 = &" —

(5.1)

®"At"; thus, we have by (4.2) the identity
(52) ((an a~ 1)(Pn 1@11 -1 &)n—l), V)

+ (a™(Ppe™ — PPT1§"1 _ 9" ALY, V) =0, YV € V.
Substitute V = P" ™ to obtain that
(a"@",Pi‘@")At"

= (@ — @ )(PPTIE"T - @771, PRAT) + (a"(PRO” — PRTIENTY), PpE")
(5:3) = L[(a"Ppd", Ppd™) — (a1 Pp-1an=1, Proignt)]
B S e
_ (anp’:z—lén—l,P;:(%n) + ((an _ an_l)(’P’?_lén—l _ 571_1)’?’1:%”')'

If we replace n by j above, multiply (5.1) through by At?, sum on j from 1 to

n, and use (5.3), the first term on the far right-hand side of (5.3) collapses and we
obtain that

n

(5.4) > (U7 =, P(U?) — P(u?)) At + L(a™ P} &" Pran) = ZTk,
j=1 k=1
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where, for any € > 0,

Ty=> (¥ —u,P(U7) P(u?)) A
j=1
< cz |a? — w?|2At + ez |P(U7) — P(u)|2At,
]—l J_.
7, =3 (H@Pi#, P + @ P P )
j=1

(@ PITEI i) 4 (o — o )(PITIBIT — 3971), Pl B}
_Z{ (anpJq)J pJq,J)_I_(aJpJ 1@1 -1 p] 1@1 1y — 2(anpJ—l¢.J—-l 'pJ(I)])]
3 (@ - P B P |
~ (@ =P T R
S5
At ok

+ <a_J_A_:J]___(P] 1¢1 -1 _ j“‘),’P,’;&)}Atj

IN

cS 1P e P + [P |1” + 1P 7T — P A,
-

=3 (B9 - B@),V - (W — PH) A
j=1
< S IP@Y) - PW)IPAE + 0 YV - (s — PWIPAY,

=1 Jj=1

(;7 (P(UY) At — / K v(P(w))dr, ﬁU\i) — p/(uT)> At

|||
i M: o

< Z{ Z'r (P ot - [ (P))ar
+Z||P(U‘)—P<u)||2m"}m"

+e> ||P(U7) - P()|*At,

=1

.
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n

Ty = - 3 (oJ[89(P(U7)) — B7(P(u?)))], Pi 37) At

i=1

< e IPWI) - P)PAE +C 3 |Pidi|2ad,

J=1 J=1
To= - (a(# - /), Pids) A
J=1
< c{ SO — Par + 3 ||7>f;<ifu2mf}.
j=1 =1

An application of the discrete Gronwall inequality gives the first part of the theorem.
The second part of the theorem can be shown as in the proof of Theorem 2. [

6. Analysis of the nondegenerate case. The above results were derived
under the assumption that the nonlinear function P(-) may vanish. In the next
two sections, we consider the nondegenerate case. We assume that there exist two
constants Cy and C3 such that

(A7) 0 < C; £ Pyz,t;0) <C3 < oo for (z,t) € 2 xJand p € R.
Immediately
(6.1) Co|U —u| < |P(U) — P(u)| < C3|U —ul,

and so Theorem 1 gives an error bound for fot |U — u||? dr. With some extra effort,

we can present an error estimate for sup,¢ ; ||U(t) — (%), and bound fot & —|?dr
at the same time. We exploit the fact that (A7) easily implies that

U
(6.2) HoU —u) < [ (Pw) - P(u))du < 3Ca(U = uP

Similar results hold for the fully discrete case as well.
Let us begin with the semidiscrete case. The true solution has the needed
regularity, so we write the semidiscrete scheme as

(6.3a) (U, W)+ (V-¥,W) = (v(PU)),W), YW € Whs,

(6.3b) (a¥,V)—(P(U),V-V)+ (aB(P(U)),V) = —(P(up),V -v), YV EW,
(6.3¢c) U(-,0) = Prug.

Let ® = ¥ — . Together with (1.4), we have the error equation

(6.42) (Up—uy, W)+ (V-3 W) = (v(P(U)) —v(P(u)), W), VW € W,
(alx@,V) = (P(U) ~ P(u), V- V) + (al8(P(U)) ~ B(P(w))], V)

(6.4b)
= (a(z,b — th)),V), YV € V4.
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Letting W = F(?)—IT(?) and V = II,® and adding the two equations together
yields

(Us — up, P(U) = P(u)) + (aIl1 2,111 3)
65) = (1(P(U)) —¥(P(w)), P(U) — P(w)) — (alB(P(V)) = B(P(w))}, 1+ 2)
+ (a(9 — ), T4 ®) + (@ — ue, P(U) — P(w)).

The difficult term is the first one on the left-hand side. We assume explicitly
that there is some positive constant C4 such that

(A8) | Puu()] + |Peu(p)| < Cs for (z,t) € 2 x J and ¢ € R.

We employ an argument used by Wheeler and Dupont [33] and Arbogast [3] (see
also [5; Lemma 2]). By Assumptions (A7)-(A8) and the Mean Value Theorem, for
some Wi(p) and W3 between u and U, we have

(Us - u)(P(V) - P(w))
U U
= 2 [ - Pandu= [ (PG~ P da
+ [(U —u)Py(u) = (P(U) - P(u))]ut
U U
= 2 [ ) - P du = [ PPl )
+ (Pulw) = Pu(W2))(U = whu
U
> 2 [ (P() ~ P)di = O(U P +1(u = W)U — )}

Therefore, with (6.2),

(6.6)

'/o (Uy — ut, P(U) — P(u))dr

67) > /n /uU(P(u)—P(u))dudz- /n /u ZJO(P(,,)_ P(uo)) s do

¢
- C'/ U —ul||® dr
0
t
> 1 —ul? - o{J0° —woll + [ 10— ulPr )
0
Integrating (6.5) from 0 to ¢ and using (6.7), (6.1), and Assumption (A1), we obtain
t t
(6.8) U —ul? +/ I, @)% dr < O’{”U0 — uo|? +/ U — ul|®dr
0 0

t t
+ ] 6 — Mag|2 dr + / s — el dr}.
0 0

By Gronwall’s lemma, we obtain our result.

. .
e oo A o)
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Theorem 4. Assume (A1)-(A5), (AT)-(A8). Let (u,) solve problem (1.1)
and (U, V) solve its semidiscrete mized finite element approzimation (3.3). There
18 some constant C' > 0 such that for any t € J,

V() - u(@®)]? + / 1 — |2 dr

. ~ t t ~
sc{umuo—uol|2+ |- ar + / nmut—utnzczr}.
0 0

Remark. This result gives optimal order approximation if the solution is smooth
enough.
Next we analyze the fully backward Euler discretization. Denoting

_ (Pn _ Son-—l
By = T——,
t(p Atn

the difference of (3.4b), (3.5) and (1.4) gives an error equation within which we

substitute W = P(U") — P(u™) and V = II,®". We then add the two main
equations and, as before, obtain

(8:(U —w)™, P(U™) — P(u™)) + (a"I, ", I[, ")
= (8u(@ — w)", P(U™) — P(u™)) — (™ — uf, P(U™) — P(um))
+(Y(P(U™)) = 4™(P(u™)), BU™) — P(u™))
— (@"[B*(P(U™)) = B™(P(u™))], 11 @") + (a™($" — MHy™), 1 &™).

To handle the first term on the left-hand side, we need a generalization of (6.6)
to the case of discrete time as given in [5; Lemma 2] (see also [4]). The result is

(6.9)

U n
©10) 80 -w (P~ P =8 [ (P - P du) - B

where
(6.11) E"<cCc{|lU™ - u"l2 + IU"_1 - u"_ll2 + (At")Z}.

Replace n by j in (6.9), multiply by At’, and sum from 1 to n. Using (6.1)-
(6.2), (6.10)—(6.11), and noting that the first term on the right-hand side of (6.10)
collapses, we obtain

10" = P+ 8|2 A

7=1

(6.12) < c{uU° —woll? + (A8 + ST — wi|? AP
J=1
+ 30 (186 — I + 180wl + 7~ T ] &',

J=1
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where At is the maximal At/. The second term in the final summation is time
truncation error, boundable by (At)?, while the first such term is bounded as

t; 2
/ (& — u)e dr
tj-1

< Z /t (@ = w)el|® dr = /ot" (& = u)e||? dr-.

We conclude the following theorem by the discrete Gronwall lemma.

Theorem 5. Assume (A1)-(A8). Let (u,) solve problem (1.1) and (U™, ¥™)
solve its fully discrete mized finite element approzimation (3.4). There 1s some
constant C such that if the At? are sufficiently small, then for n between 1 and N,

RS W

J-—

(6.13)

(1% "|l2+2|l\1” ¥I|I* A

g
tn ~ n . . .
< C{HPhuo — uol” + (At)* + / 1Prue — wil|? dr + D lI9? — Mg’ |I” Atf}.
0 =

Remark. Again this result gives optimal order approximation if the solution is
smooth enough.

7. Some superconvergence results. In this section, we present some su-
perconvergence results for the nondegenerate case. Such results are known for linear
elliptic problems under the hypotheses that o is diagonal and the grid is rectangular
[22], [17], [16], or merely that the grid is rectangular [6]. We need to assume that
B8 =0, and that there is a constant Cs = Cs(u) such that

(A9) |[VPru| < Cs(u) for z € E, and E an element of the mesh.

This holds, for instance, if W}, consists of piecewise constants defined over the given
mesh, e.g., the lowest order Raviart-Thomas spaces, or for other spaces that possess
the inverse inequality. We further assume that

(A10) xW € Wy, for W € W, and any piecewise constant x.

This holds for all the usual spaces. We will use the following general lemma.
LEMMA 2. Assume (A9)~(A10). If f(z;u) and g(z,t;u) are functions defined
on 2 x R and 2 x J x R, respectively, for which

IVzfule)l + | fuu(p)| + |Vzgu(0)| + |guu(p)] + IV zguu(p)| + |guuu(®)]
+ |V29ta(9)] + [gruu(@)] < C' for(z,t)€ R xJandp €R

for some constant C', then there ezists a constant C such that for any W € Wh,
(f(Pau) = f(u), W) < Ch|[Pau — ul| [ W],

(-aa—t[g(ﬁhu) - g(u)],W) < Ch{“ Pru — u]

+ [ Pru - un}nwn,
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and, for any n such that1 <n < N,

(Be(g(Pru) — g(u))", W)

1 tn 0 -
onge || ([

Proof. For the first result, let

T P — uu)dt 1wl

(7.1) p= / fultis + (1 - €)u) de,

and introduce pj, as the Ly({2)-projection of p into the finite element space consisting
of the piecewise constant functions defined over the given mesh. We have

(7.2) f(@) = fv) = p(@ —u) = (p— pu)(@ — u) + pu (& — u),
so with (A9)-(A10), on an element E,

1
(7.3) e =il ey < Ch||VpllL.(E) < Ch{” /0 Vo fu(él+ (1 —&)u)dé

Lo (E)

" “ / fun(€+ (1= u)(EVa + (1 - )Vu) d } < Clu)h.

Lo (E)
From (A10),
(7.4) (pr(t —u),W) = (& — u,ppW) = 0.
The first part of the lemma is a combination of (7.2)—(7.4).
For the second result, note that
(9(2))e — (9(w))e = 9:(&) — ge(u) + gu(@)ds — gu(u)u.
= g¢(1) — g¢(u) + [gu (%) — gu(w)]ue + gu(@) (s — us).

The first two differences on the far right-hand side are estimated by the first result

of the lemma (with g¢(-) and u¢gy(-) as our functions). The last term is estimated
for a good choice of the piecewise constant function x as

(9u(@)(e = ue), W) = ((gu(8) — x)(ihe — ue), W)
< Ch|IVgu(@)| Lo (yllde — uel[ WII.

Now the second result follows by noting that Vg, (@) = V9. (%) + guu(@)Vi.
The third result follows from the second, since

d(a(Paw) — 9" = 5w [ la(Pru) —g(ldr. O

(7.5)

Define I'(-) = v(P(+)). To use Lemma 2, we assume that for some constant Cs,

|V Pu(@)| + |Puu(@)| + [V Peu(@)| + | Pruu(p)|
(A].l) + lvatuu(So)I + IPtuuu((P)l + leFu(SD)l + IFuu(SO)l S CG
for (z,t) € 2 x J and ¢ € R.
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Rewrite (6.5) as
(U, — iy, P(U) — P(@)) + (all4 @, 1 @)
= (P(U) - T(@), P(U) - P(&)

7.6 o o o
(70 + (F(U) - T(@), P(d) — P(w)) + (T(@) — T(w), P(U) — P(w))
+ (a(Prtp — M), Mp @) + (Uy — dhs, P(u) — P(4)).
By Lemma 2,
(T(0) - F@), P(3) — P(w)) + (T(&) — T(w), P(U) - P(w))
(7.7) < Cha — ul|[IT) - T@)| + IPO) — P(w)|]

< Chlla—ul|(IU = all + & — ).

For the last term of (7.6), integration by parts and Lemma 2 gives
t
/ (U — s, P(u) — P(8)) dr
0
¢ 0
(7.8) = (U —14,P(u) — P(a)) — / (U -4, b—t-[P(u) — P(ﬁ)]) dr,
0
t
< cnfiw —llfu =il + [ 10 = a2+ = el e |

since U® = 1y, and assuming smoothness of P.

Returning to (7.6), using the above inequalities, and following the argument in
(6.6)—(6.7), we are lead to the following analogue of (6.8):

t t t
(19) WU+ [ ||Hh¢||2drsc{ J - ar+ / [Patp — Ta|]? dr

t t
+h2[||a—u|]2+/ ||ﬁt—ut||2dr+/ ||‘&—u||2d7’]}.
0 0

An application of Gronwall’s lemma gives our first result.

Theorem 6. Assume (A1)-(A5), (AT)-(A11). Let (u,%) solve problem (1.1)
with B =0, and let (U, ¥) solve its semidiscrete mized finite element approzimation
(3.3). There is some constant C > 0 such that for any t € J,

o) - Pl + [ 1 — Ty dr
SC{ /0 (Ph = L)W dr

t t
+ h? [ max ||Pru(r) — u(T)||* + / |Prus — uel|® dr + / |Pru — ul)® d'r] }
0<r<t 0 0

For the fully discrete scheme (3.3), using the techniques employed in the last
two sections, we can give a similar result.
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Theorem 7. Assume (A1)-(A11). Let (u,%) solve problem (1.1) with 3 = 0,
and let (U™, O™) solve its fully discrete mized finite element approzimation (3.4).

There 1s some constant C such that if the At/ are sufficiently small, then for any
n between I and N,

U™ = Prau™|® + 3197 — Pagp?|? AF

=1
< c{(At)2 + ) |1Pap? — Mg’ ||? A
i=1
~ . . tn -~ tn A
+ h2[ max ||Prul —u?|? + / |Prus — ug|? dr + / |Pru — ul|? dT] }
0<;<n 0 0

Remark. These last two results gives optimal order approximation in time and
superconvergent (one power of & better than optimal) approximation in space if the
solution is smooth enough, and if P is superclose to ITn%. The latter is true on
rectangular grids when « is diagonal [22], [16], [17].
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