Fourier Mode Analysis of the
Multigrid Waveform Relaxation
and Time-Parallel Multigrid
Methods

Stefan Vandewalle
Graham Horton

CRPC-TR94448
May 1994

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892






FOURIER MODE ANALYSIS OF THE MULTIGRID WAVEFORM
RELAXATION AND TIME-PARALLEL MULTIGRID METHODS

STEFAN VANDEWALLE* AND GRAHAM HORTON?

Abstract. The advent of parallel computers has led to the development of new solution algorithms
for time-dependent partial differential equations. Two recently developed methods, the multigrid
waveform relaxation method and the time-parallel multigrid method, have been designed to solve
parabolic partial differential equations on many time-levels simultaneously. This paper compares the
convergence properties of these methods, based on the results of an exponential Fourier mode analysis
for a model problem.
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1. Introduction. Time-dependent partial differential equations (PDEs) are usu-
ally solved as a sequence of boundary value problems defined on successive time-levels.
The sequential nature of this procedure imposes serious limitations on the obtainable
performance of implementations of time-stepping methods on parallel processors or
multicomputers. No matter how many time-steps are to be computed, the obtainable
degree of parallelism is restricted by the parallelism in the method used to compute the
solution in one single time-step. This observation has led to the development of new
algorithms that compute the solution on many time-levels, possibly hundreds or thou-
sands, simultaneously. Two such algorithms for solving parabolic partial differential
equations have appeared recently in the literature: the multigrid waveform relaxation
method, and the time-parallel multigrid method.

The multigrid waveform relaxation method, also called multigrid dynamic iteration
method, was developed by Lubich and Ostermann in [13]. It is based on waveform
relaxation, a continuous-in-time iterative method for solving large systems of ordinary
differential equations. When applied to the system of ordinary differential equations de-
rived by spatial semi-discretization of a parabolic problem, waveform relaxation results
in an iterative method that is slowly convergent. Lubich and Ostermann showed that
the basic waveform relaxation process can be accelerated by using the multigrid idea,
in a very similar way as standard iterative solvers for elliptic problems are accelerated
by using multigrid. In [13] they illustrate their theoretical results by computations with
a model problem, the heat equation. Later on, the method has been applied success-
fully to a variety of more complex parabolic problems, like a nonlinear heat-conduction
and a chemical reaction-diffusion problem ([17]), and the incompressible Navier-Stokes
equations ([14]). The extension of the method to time-periodic differential equations
was the subject of [19]. The multigrid waveform relaxation method has been analyzed
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for its parallel performance, and timing results obtained on various multicomputers are
reported in [18, 20]. Its use on a massively parallel machine of SIMD type is discussed
in [12].

The time-parallel multigrid method was developed in a paper by Hackbusch, [6],
where it is called parabolic multigrid method with parallel smoothing. An analysis of
the method for the one-dimensional heat equation appeared in [4]. The method has
been applied to various time-dependent problems, among which are the incompressible
Navier-Stokes equations ([5, 8, 9]). Results with a parallel implementation were first
reported in [1]. Later on the method was combined with extrapolation which led to a
further increase in both accuracy and parallelism ([10]). The results of experiments on
multicomputers with large numbers of processors appeared in [8, 9].

It can be shown that both methods, although having been developed independently,
are intimately related as multigrid methods on space-time grids ([16, §3.7]). As will be
explained in §2, they basically differ only in the choice of the smoother. The inter-
grid transfer operators (restriction and prolongation) and the definition of the coarse
grid problem are identical. In this paper we will compare the convergence properties of
both algorithms, based on an exponential Fourier mode analysis for the one-dimensional
heat equation. We refer to the above references for a description of their parallel im-
plementation and for a discussion of their parallel complexity. The Fourier results are
presented in §3. They will allow us to investigate the robustness of the methods with
respect to the following mesh aspect ratio: At/(Az)?, with At the time-increment and
Az the spatial mesh size. The analysis will assist in understanding some observations
reported in earlier papers. In particular, we shall demonstrate that the use of the time-
parallel method is restricted to meshes with a large aspect ratio; we shall elucidate
the dependence of the multigrid waveform convergence factor on the mesh size, and we
shall explain the dependence of the convergence of both methods on the choice of the
time-discretization method. We will end in §4 with some concluding remarks, and we
will point out a recent research direction, which is based on the insights obtained in the
current study.

2. Multigrid methods on space-time grids.

2.1. The model problem and its discretization. We shall concentrate on the
problem of numerically computing the solution to the one-dimensional heat equation,

(1) u — Au = f(z,t) z€(0,1),0<t<T,
subject to given initial and boundary values

(2) u(z,0) = p(z), =z€(0,1),
(3) w(0,8) = q(t), u(l,t)=r(t), 0<t<T.

We discretize this problem on a rectangular space-time grid, with spatial mesh size Az,

and constant time-increment At. The discretization leads to a large linear system of

equations in the unknowns ug;, k=1,...,n, — 1 (n; = 1/Az)and I =1,...,n¢ (n; =
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T/At), that approximate the PDE solution at the grid points (zx,t;) with zx = k- Az
and t; = [ - At. The grid will be denoted further by Qp, with A standing for the pair
(Az, At) characterizing the size of the grid.

We shall use standard central differences to discretize the spatial operator, and we
shall apply various formulae for the time-discretization: the backward Euler or first
order backward differentiation method (BDF1), the second order backward differentia-
tion method (BDF2), and the trapezoidal rule or Crank-Nicolson method (CN). With
the parameter )\, defined as At/(Axz)?, we arrive at following formulae. For the BDF1
method:

(4) — A tp—1g + (2An + 1) ugg — A ukgr, ) — ugi—1 = At fzg, tr)

for the BDF2 method:

(5)  — Anuk—10+ (2An + 3/2) uky — Ap Ukg1,0 — 2upg—1 + 1/2up -2 = At f(zk, ) ,
and, finally, for the CN method:

(6) —An/2uk—10 + (A + 1) ukg — An/2ukgr,0 — An/2Up—1,0-1 +
(A = D ugi—1 — An/2ukg1,-1 = At (f(zk, t) + Tk, t-1))/2 .

Note that parameter A, can be considered as a measure of the degree of anisotropy
of the discrete operator. In the case of very small \;, the sets of equations are almost
decoupled in space. When )\, equals zero, they correspond to sets of linear recurrences,
one per spatial grid point. In the case of a very large A, the sets of BDF1 and BDF2
equations are essentially decoupled in time, and correspond to sets of (almost) indepen-
dent discrete boundary value problems.

2.2. The multigrid methods. The multigrid waveform relaxation method (in
its discrete-time version, [13, p. 227]) and the time-parallel multigrid method can both
be considered as multigrid methods operating on 4, a grid extending in space and
time. For a given fine grid, both methods solve the same set of equations at the same
set of grid points. Both are multigrid algorithms that determine the discrete solution
on the entire space-time grid, i.e. on all time-levels, simultaneously. They both use the
natural discretization corresponding to (4), (5) and (6) on each level in the multigrid grid
hierarchy. Note that, of course, the value of )\, differs from one grid level to the next.
The methods employ a semi-coarsening strategy, with coarsening only in the spatial
dimension. The intergrid transfer operators are the standard ones used in combination
with semi-coarsening. The linear prolongation (I}) and full weighting (If?) formulae,
for example, have stencils whose non-zero values extend in the spatial dimension only,

(7) Ih: 3121 and IF: L1 21].

The methods differ in the choice of the smoothing operator. The standard smoother
in the multigrid waveform relaxation method is a zebra Gauss-Seidel method, more
precisely, a red/black line-relaxation method with lines parallel to the time-axis. (The
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Fig. 1. Smoothing sirategy of multigrid waveform relazation and time-parallel multigrid methods;
values used when updating a ’black’ grid point.

Waveformn
Relaxation

implementation of this time-line solver is particularly simple as it only involves the
forward evaluation of first or second order recurrence relations.) The time-parallel
multigrid method applies a standard spatial smoother replicated on each time-level.
Non-smoothed old values are used whenever values at grid points on previous time-
levels are referenced. The time-parallel red/black smoother, for example, consists of
one point-wise relaxation step on all red grid points at all time-levels concurrently,
followed by a similar operation on all black points. Note that coloring is only w.r.t. the
spatial dimension.

The implementation of the different red/black smoothers is illustrated in Fig. 1.
Depicted are the discretization molecules of the BDF1, BDF2, and CN methods. The
pictures show what values are used at neighboring grid points when updating the ap-
proximation at a 'black’ grid point. A “O” indicates a non-smoothed value. The symbol
“®@” corresponds to a value calculated in the 'red’-step. Finally, a “ ®” indicates a value
that is to be updated in the current 'black’ phase. Note that two different strategies
exist when using the Crank-Nicolson formula. They depend on whether the updated
red values are communicated between time-levels only after the combined ’red/black’
step (strategy A: left picture), or immediately after the ’red’ step (strategy B: right
picture).

Further inspection reveals an interesting relation between the smoothers of both
multigrid methods. While the red/black waveform smoother solves the system of equa-
tions at a time-line exactly, the time-parallel red/black smoother solves them approxi-
mately, by doing one Jacobi relaxation step.

3. Two-grid Fourier mode analysis.

3.1. Introduction. In this section we shall analyze the two-grid variants of the
multigrid methods presented in the previous section. The two-grid method makes use
of one additional grid, Qy, derived from 2, by doubling the mesh size in the space
dimension (H = (2Az,At)). The convergence of the method is characterized by the
so-called two-grid iteration matrix. This matrix is given by

(8) M =Sp (In— Iy L IF L) Sy

where S, is the smoothing operator on §;; v, and v, are the numbers of pre- and

post-smoothing iterations; I, I%, I are the identity, prolongation, and restriction

operators. Ly and Lj are discretized differential operators on Qy and 2. It can be
4



shown that the entries of M} depend on ), only, and not on the particular values of
the discretization parameters Az and At.

The properties of the two-grid iteration matrix are often determined in the fre-
quency domain, by an ezponential Fourier mode analysis ([2]). This analysis can be
regarded as an analysis for special model problems, namely those with periodic bound-
ary conditions or those on infinite domains. This analysis shows that multiplication
with matrix M}’ leaves certain linear spaces of exponential Fourier modes invariant.
More precisely, it can be shown that, in the case of semi-coarsening with coarsening in
a single dimension only, M} is equivalent to a block-diagonal matrix, whose diagonal
blocks are matrices of rank at most two. The general expression for the diagonal blocks
is called the Fourier mode symbol of the two-grid operator. It is known to be

9) ME(0) = 572(0) (1 — I} (6) L7 (0) IF () Lu(9) ) $3:(6)

where 54(0), I, 1H(0), 1k(6), L4(6), and Ly(0) denote the symbols of the smoothing
operator, identity operator, restriction operator, prolongation operator, fine grid PDE
operator, and coarse grid PDE operator. The formulae of the symbols will be given in
§3.2.

The quality of a smoother is expressed by its smoothing factor, defined in reference
[22, p. 149] as

(10) p = max{x(Q(8)34(0)) : 6 € O3} .

Here, x(-) stands for the matrix spectral radius. Matrix Q(6) is a projection matrix,
expressing projection onto the space of 'high’ frequencies. Set Oj is a set of frequencies;
it will be made more specific in §3.2. The convergence of the entire two-grid cycle,
consisting of smoothing and coarse grid correction, is characterized by the Fourier
mode spectral radius and spectral norm,

(11) p = max{k(MF(0)):0 € ©;}, o =max{||MF(9)|:6 € 05} .

[| . ||z stands for the Euclidean matrix norm. The value of p usually shows very good
agreement with actual convergence factors obtained on 2. It corresponds to the asymp-
totic value of the convergence factor. The spectral norm is a non-asymptotic bound for
the convergence factor.

3.2. Fourier analysis formulae. Our Fourier analysis will follow a slightly dif-
ferent track than the classical mode analysis explained in [2, 3, 15]. Rather than using
the classical definitions (for ©; in particular), which aim at the limit of small mesh
size, we follow the guidelines laid out in [22, Ch. 7]. The latter gives ezact results for
model problems with periodic boundaries, and, more importantly, it clearly brings out
the dependence of the convergence on the values of Az and At. Most Fourier analysis
formulae used in our study are well-known. However, the precise formulae are not al-
ways easily located in the literature, or their formulation is sometimes different from the
one required for our purposes. For the reader’s convenience, we shall therefore quickly
overview the formulae used to obtain the results reported in this paper.
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The exponential Fourier mode ¥4(0) with frequency 8 is given by () = €'’
where “.” denotes the usual IR? inner-product; ¢ is the imaginary unit, and

(12) ] = (jz,jt), ja=0,1,°"7na_1 (CYZIB,t),
(13) 6€0, = {(0:,0:): 04 =2mka/Na, ko = —1a/2+ 1, —na/2+2,...,n,/2} .

In the case of semi-coarsening in the spatial dimension, the set of ’low’ frequencies,
©,, corresponding to ’smooth’ Fourier modes, and the set of 'high’ frequencies, ©,,
corresponding to 'rough’ Fourier modes, are given by

(14) 0,=0,N((-7/2,7/2) x (—m,7]) and ©,=0,\0,.

We do not include (7/2,6;) and (—7/2,6;) in the set of low frequencies, following [22,
p-109] and the rationale given in [21, p.107]. The closely related set O is defined as
0; = OxN([—7/2,7/2) x (—m,7]). To any frequency 6 € O; there corresponds a unique
€ O\ O; given by § = 6 — (sign(f;)7,0). It can be verified that the space spanned
by ¥(8) and %(9) is left invariant by any of the multigrid operators. The associated
two by two transformation matrices are the Fourier mode symbols of these operators.
In order to derive the the symbol of the smoother, we rewrite (4), (5) and (6) as

(15) Yomel SmU(kl)+m = At fi1 .

Set I is a set of pairs of integers, corresponding to the non-zero coefficients in the
equations. Let I be partitioned into three sets: Io, I /2 and I;. o is the subset of
indices corresponding to the “O”-values in Fig. 1; I /; and I; correspond to the “®”-
values and “ ® ”-values respectively. For the time-parallel BDF1-method, for example,
we find that Ip = {(0,-1)}, f2={(-1,0),(1,0)} , and I; ={(0,0)} . It is readily
verified that the red/black operators map function ¥4(8) into a(0)yr(6) at the 'red’
grid points, and into 3(8)yn(0) at the 'black’ grid points, with

t m-0 im0 -
(16) ofs) = —ZmEmtn T gy Zmeh €T F Emcty dlf)ome ™
Cmer Sme'™? Lmel, Sme'™?

Note that 8(8) = ?(6), in the case of the waveform relaxation method. A short
calculation leads to the smoother symbol,

(20400 050
a(f) — B(8) o(6) + B(9)
Matrix Q(8), in (10), is a two by two matrix of the form diag(6(8),1) with §(8) =1
if § = —7/2, and 6(0) = 0 otherwise.

It can be shown that any ,(6) is an eigenvector of L;, whose symbol is given by

(18) Lu(0) = diag (Ln(0), Ln(0)) with Lx(8) = Spmersme'™? .

(17) S'h(a) =

(S

The symbol of the coarse grid operator Ly is a scalar, similar to ih(é’), but with A
replaced by Ay, and with § = (6., 0;) replaced by (20, 6;). Finally, the symbols of the
full weighting restriction operator and of the linear interpolation operator are given by

(19) [H(6) = 1(1+cos(8.) 1—cos(8,)) and I4(6) = (17(9))" .
6



3.3. Results. We have calculated the Fourier mode smoothing factor, and the two-
grid Fourier mode spectral radius and spectral norm of the waveform relaxation method
and of the time-parallel method. (Spectral radius and spectral norm are calculated for
v1 = v = 1.) The results are graphically depicted as functions of the parameter A,
in Fig. 2. Throughout the calculations we have used n, = n; = 128. Qualitatively,
the form of the curves can be understood as explained below. We will start with the
time-parallel method.

3.3.1. The time-parallel two-grid method. For large values of A, the equa-
tions derived with the BDF1 method and with the BDF2 method are almost decoupled
in time. They represent a set of discrete elliptic problems, one on each time-level.
Hence, y, p and o reflect well-known values for the one-dimensional Poisson equation.
In particular, the smoothing factor is 0.125, and both p and o are zero since the multi-
grid method is, in this case, an exact solver. This argument, however, does not hold
for the Crank-Nicolson method. Instead, it can be shown that any Fourier mode 4, (6)
with §; = m becomes an eigenfunction of the red/black smoother, with eigenvalue 1,
when A, goes to infinity. Moreover, in strategy A of the smoother a maximum of 5/4 is
obtained for k( Q(8)S4(8)) at § = (x/3,0), when A\ = co. As a result, the algorithm
with the Crank-Nicolson discretization converges very slowly or it may even diverge.

The time-parallel smoother fails completely for small values of A;. In the case of
the BDF1 or CN discretization the equations satisfied by the error ex; = ug; — Uk,
with ug, the exact discrete solution and @, the current approximation, are of the form

ekl =¢eri—1+ A (0),

where the expression inside the brackets involves the errors at nearby grid points. There-
fore, for very small )\, the smoother merely shifts any error forward in time by one
time-step. This leads to a value of at least 1 for p. It can be verified in a similar
way that any 1,(0) with § = (6, 7) is an eigenfunction of the BDF2 smoother, with
eigenvalue —5/3, when A, = 0.

3.3.2. The two-grid waveform relaxation method. The waveform relaxation
diagrams in Fig. 2 can be understood by relating the Fourier analysis results to conver-
gence results for waveform relaxation methods, published in [13, 16, 19]. The Fourier
analysis is an approximate analysis for initial boundary value problem (1). It becomes
an exact analysis when the boundary conditions and the initial condition are replaced
by a spatial periodicity and a time-periodicity condition. Hence, the Fourier results
should match the convergence formulae presented for the discrete-time time-periodic
multigrid waveform relaxation method in [19]. We recall that the spectral radius of the
waveform relaxation operator is given by
(20) p=max £( M(z) ).

2€X
M (z) is a matrix function of a complex variable z. It vanishes at infinity. For z = 0,
it is the multigrid iteration matrix for the elliptic part of the parabolic equation. Set
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Fi1G. 2. Smoothing factor (u), two-grid spectral radius (p), and two-grid spectral norm (o) of
multigrid waveform relazation method (left) and time-parallel multigrid method (right). Solid line:
backward Euler method, dotted line: second order backward differentiation method, dashed line: Crank-
Nicolson method (time-parallel method: strategy A: short dashed line, strategy B: long dashed line).
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FIG. 3. Smoothing factor (u) and spectral radius (p) of the multigrid waveform relazation method
with BDF1 discretization (left) or Crank-Nicolson discretization (right). Dependence on (ng,n:); solid
line: (128,128), dotted line: (256,256), short dashed line: (512,512), long dashed line: (1024,1024).

¥ is a subset of the complex plane. For a linear multi-step time-discretization method
defined by characteristic polynomials a(¢) and b(€), it is given by (see [19, (4.13)])

(21) T = {x%(¢™) with £ =€) m=0,1,...,n,— 1} .

It is a set of points on the boundary of the method’s stability region, scaled by 1/At.
¥ always includes the complex origin. (Note that expressions similar to (20) hold for
the waveform relaxation smoothing factor and spectral norm.)

Consider a problem on a grid of fixed size n, by n;. With increasing At, the set ¥ is
contracted towards the origin. With decreasing At, all points of £ move towards infinity,
except for the point {0}. Consequently, both for very large A, and for very small A,
formula (20) simplifies to p ~ k(M(0)), with equality when Ay = 0 or Ay = co. Thus,
at the extremal values of )\, the spectral radius of the multigrid waveform relaxation
method approaches the spectral radius of the multigrid iteration matrix. This explains
the (almost) zero values found for p in Fig. 2 for large and small Ax. An identical
argument explains the value zero found for o, and the value 0.125 for u.

It is shown for x4 and p in Fig. 3 that the curves depend on the values of n, and
n:. (The diagrams for o are similar to the ones for p.) This is due to the nature of
the functions that are maximized in formulae (10) and (11). For the Crank-Nicolson
method for instance, x(Q(8)54(8)) has a maximum of 1/4 at § = (0,£2arctan(\s).
The maximum is smooth as a function of 8., but very sharp as a function of ;. For
small and large values of A\, the maximum is very close to §; = 0 or §; = £, and
therefore 'missed’ on grids with a moderate value of n;. A similar maximum is found
very close to 8; = 0 for small \;-values in the BDF1 and the BDF2 methods. (There is
no similar maximum for large A, though.)

A more intuitive and qualitative understanding of the results in Fig. 3 is again
possible by relating the Fourier analysis results to the waveform convergence theory

9



outlined above. For a fixed A, and increasing n;, the set of points ¥ becomes more
and more dense, ultimately equaling the (continuous) scaled boundary of the stability
region. As such, p determined by the Fourier analysis approaches a limiting value.
This limit is the spectral radius of the discrete-time initial value waveform relaxation
operator, [13, p. 20]. For the Crank-Nicolson method, set £ becomes the imaginary axis,
and the limit is independent of A,. The height of the plateau observed in the p-curves
for the Crank-Nicolson method is given by 0.1624, which is, indeed, exactly the value
found by the initial value waveform relaxation model problem analysis in [13]. For the
BDF1 and BDF2 methods, the limiting continuous ¥ depends on the particular value
of At, or, equivalenty, when n, is fixed, on the value of A;. This shows up clearly in
Fig. 3. For very small At, the scaled stability region boundary of the BDF methods
expands and approaches the imaginary axis. As a result, for small A, the Fourier mode
spectral radius of the BDF1 and the BDF2 methods will resemble the values obtained
for the Crank-Nicolson method.

4. Concluding remarks. Obviously, the small difference in the algorithms — the
use of an exact time-line smoother versus the use of an approximate time-line smoother
- has a dramatic effect on their convergence properties. In particular, robustness with
respect to A is strongly affected. This robustness is important, since the value of Ay
changes considerably over the multigrid levels. More precisely, A, is divided by four
from one grid to the next coarser grid. Within a multigrid iteration on a sufficiently
large number of grid levels, very small values of A\;, may therefore be encountered.

The waveform relaxation two-grid cycle is robust for the three discretization schemes
considered. The smoothing factor, spectral radius and spectral norm are bounded well
below one, for every value of A\,. Their actual values depend in a non-trivial way on the
mesh-size. This was already observed in numerical experiments reported in [16, §3.5].
The time-parallel two-grid method, on the contrary, is not robust for any of the methods
considered. Its convergence is satisfactory only with the BDF1 and BDF2 methods, and
even then only in the case of large A,. This is consistent with numerical experiments
reported in the literature, see e.g. [16, p.229], [9], and with a theoretical analysis for
the BDF1 method in [6]. There it was already pointed out that the time-parallel BDF1
method should work well only for large Aj.

The time-parallel method was introduced for reason of its superior parallel complex-
ity, enabling a very efficient parallelization across time. For this, numerical robustness
was sacrificed. Based on the insights obtained in the current study, different strategies
could be put forward to address the problem of poor convergence of the time-parallel
method for small values of \;. These methods may be based on the use of more efficient
smoothers, different coarsening strategies, or the use of other discretization methods.
The possible combinations are numerous, and most remain to be investigated. The anal-
ysis has already led the authors to develop another space-time multigrid method for
parabolic problems ([11]). The algorithm uses a pointwise red/black smoother, and it
coarsens the grid in both space and time. It retains the superior parallel efficiency of the
time-parallel multigrid method, and partially recovers the robustness of the waveform
relaxation method.
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