A Proposal for a User-Level,
Message-Passing Interface in a
Distributed Memory Environment

Jack J. Dongarra
Rolf Hempel
Anthony J.G. Hey
David W. Walker

CRPC-TR93437
January, 1993

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

This work was supported in part by the Applied Mathe-
matical Science Research Program of the Office of Energy
Research, U.S. Department of Energy, DARPA, and the
CRPC.

ORNL/TM-12231

Engineering Physics and Mathematics Division

Mathematical Sciences Section

A PROPOSAL FOR A USER-LEVEL, MESSAGE-PASSING INTERFACE

IN A DISTRIBUTED MEMORY ENVIRONMENT

Jack J. Dongarra 15
Rolf Hempel
Anthony J. G. Hey t
David W. Walker §

! Department of Computer Science
107 Ayres Hall
Knoxville, TN 37996-1301

t Department of Electronics and Computer Sciences
University of Southampton
Southampton, SO9 5NH
United Kingdom

Y Gesellschaft fiir Mathematik und Datenverarbeitung mbH
P. O. Box 1316
D-5205 Sankt Augustin 1
Germany

§ Mathematical Sciences Section
Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

Date Published: January 1993

Research was supported by the Applied Mathematical Sciences
Research Program of the Office of Energy Research, U.S. De-
partment of Energy, by the Defense Advanced Research Projects
Agency under contract DAAL03-91-C-0047, administered by the
Army Research Office, and by the Center for Research on Parallel
Computing.

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
. managed by
Martin Marietta Energy Systems, Inc.
for the
U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

A PROPOSAL FOR A USER-LEVEL, MESSAGE-PASSING INTERFACE
IN A DISTRIBUTED MEMORY ENVIRONMENT

Jack J. Dongarra 15
Rolf Hempel
Anthony J. G. Hey
David W. Walker

Abstract

This paper describes Message Passing Interface 1 (MPI1), a proposed library interface
standard for supporting point-to-point message passing. The intended standard will be
provided with Fortran 77 and C interfaces, and will form the basis of a standard high
level communication environment featuring collective communication and data distribution
transformations. The standard proposed here provides blocking and nonblocking message
passing between pairs of processes, with message selectivity by source process and message
type. Provision is made for noncontiguous messages. Context control provides a convenient
means of avoiding message selectivity conflicts between different phases of an application.
The ability to form and manipulate process groups permits task parallelism to be exploited,
and is a useful abstraction in controlling certain types of collective communication.

- il -

1. Introduction

This paper documents a proposal, initially made in November 1992, for a standard for perform-
ing point-to-point message passing between pairs of processes in a MIMD distributed memory
computing system. Some modifications were made in January 1993, particularly in the ap-
proach to process groups, following input from a number of colleagues. An effort is currently
underway to develop a more comprehensive standard for message-passing on distributed mem-
ory systems by July 1993. This effort involves a team of about 60 people made up of hardware
and software vendors, and researchers from universities and government laboratories.

A small set of typed message passing routines form the core of the standard, and are aug-
mented by support for features such as noncontiguous messages, communication contexts, and
process groups. The proposed standard, called Message Passing Interface 1 (MPI1), includes
only message passing between distinct pairs of processes, and thus does not address collective
communication of any type, including broadcasts and reduction operations. We expect these
types of communication will be included in a higher level standard to be defined subsequently.
Other important standardization issues not addressed in detail include support for virtual
communication channels, active messages, heterogeneous computing, performance tracing, and
parallel I/0O. Thus, while MPI1 does not at this stage provide the flexibility and range of func-
tionality that one would expect from a complete message passing environment, we regard it as
forming the core of such an environment. In designing MPI1 we have tried to avoid imposing
constraints that would hinder the future extensions necessary to address the issues mentioned
above.

The main advantages of establishing a message passing standard are portability and ease-
of-use. In a distributed memory communication environment in which the higher level routines
and/or abstractions are built upon lower level message passing routines the benefits of standard-
ization are particularly apparent. Furthermore, the definition of a message passing standard,
such as that proposed here, provides vendors with a clearly defined base set of routines that they
can implement efficiently, or in some cases provide hardware support for, thereby enhancing
scalability.

In designing MPI1 we have sought to make use of the most attractive features of a number
of existing message passing systems, rather than selecting one of them and adopting it as the
standard. Thus, MPI1 has been strongly influenced by work at the IBM T. J. Watson Research
Center by Bala, Kipnis, Snir and colleagues [2, 3], Intel’s NX/2 [18], Express [17], nCUBE’s
Vertex [15], and PARMACS [11, 13]. Other important contributions have come from Zipcode
[19, 20], Chimp [6, 7], PVM (8, 21}, and PICL [9].

One of the objectives of this paper is to promote a discussion within the concurrent com-
puting research community of the issues that must be addressed in establishing a practical,
portable, and flexible standard for message passing. This cooperative process began with a

workshop on standards for message passing held in April 1992 [22], and continued with a sec-

-92-

ond meeting in November 1992 when an organizational structure for developing a standard
message passing interface was created. We believe the draft of MPI1 proposed here provides
a good, concrete basis for continued discussion, and that it will contribute over the next few
months to the development of an intermediate level message passing standard.

In Section 2 the rationale for an intermediate level standard is given. Section 3 presents the
programming model assumed, and describes the main features of MPI1. Section 4 discusses the
main decisions and compromises made in designing MPI1. Some important unresolved issues
that must be addressed before MPI1 can be regarded as complete are presented in Section
5. These include support for application topologies and heterogeneous computing, and a more
general approach to process groups. Finally, Section 6 presents concluding remarks, and solicits
involvement from the research community in the development of a standard for a comprehensive
message passing interface. Detailed specifications of the MPI1 routines are given in Appendix

A in the form of manual pages.

2. General Overview

It is possible to consider defining a message passing standard at a number of levels. At the
lowest level, closest to the hardware, might be syntactically simple routines for moving pack-
ets along wires. Above this channel-addressed level might be a process-addressed level (where
there may be more than one process on each physical processor), such as that defined by NX or
Vertex on the iPSC and nCUBE machines, the commercially-available Express communication
environment, or the PARMACS message passing macros. Higher-level abstractions, for exam-
ple, Linda [4, 10}, MetaMP [16], or Shared Objects [1, 14], would lie above this level. Each level
could be built using the level beneath, provided that the overhead in doing this was sufficiently
low that the cumulative overhead incurred at the higher levels was small. These successive
software levels form a series of layers, that with some stretch of the imagination resemble the
multiple skins of an onion, with the hardware being at the center. We, therefore, call this the
“Onion Skin Model” of the distributed communication environment. In deciding at which level
to try to impose a standard it should be noted that different people might favor different types
of standard. For example, a non-expert user would prefer to use high-level abstractions, such
as virtual shared memory, so that details of the message passing are hidden. On the other
hand, a compiler writer would like to produce a portable parallel compiler, and would like to
use small, fast messages such as might be provided by a low-level standard. Finally, an ex-
pert application developer might be prepared to sacrifice some ease-of-use for additional speed,
and so would prefer a intermediate level standard that provides a set of efficient primitives for
point-to-point message passing. The standard proposed here is intended for use by such an
application developer.

If the Onion Skin model is valid, then it makes sense to impose a standard that is also layered.

However, the hardware of different distributed memory computing systems is sufficiently varied

-3-

that it is difficult to impose a low-level standard that is efficient on all machines. Therefore,
it is more appropriate to define a standard at an intermediate level, and to implement this
as efficiently as possible on each machine. There is still the possibility of defining higher-level
standards on top of this intermediate level. Thus, the intermediate-level standard will be open
and extendable. It is the standardization of this intermediate level of point-to-point message

passing between pairs of processes that is the focus of this paper.

3. Features of the Standard

Our programming model assumes some set of processes that communicate by point-to-point
message passing. With each process is associated some memory directly accessible only by
that process — there is no shared memory. In MPI1 it is assumed that processes are single
threaded, though we expect the final MPI standard to permit multithreaded processes. Al-
though the message passing paradigm is usually associated with distributed memory systems,
it is not necessary to make any strong assumptions about the underlying hardware. The pro-
posed message passing standard could also be implemented on shared memory machines and
uniprocessor workstations. Note that the standard does not address the issue of how the pro-
cesses are assigned to physical processing nodes. In general, this issue requires the development
of machine-dependent static and dynamic load balancers, and lies outside the scope of the
proposed standard.

MPI1 provides some support for task parallelism. To this end each process is assumed to
be a member of one or more process groups, each of which is identified by a unique process
Group ID number, or GID. The processes in a group can cooperate to perform tasks com-
pletely independently of other processes, and in this sense each group can behave like a distinct
virtual machine. The concept of process groups is also important when designing collective

communication routines.

3.1. Basic Message Passing Routines

We now introduce the basic message passing routines that form the core of the proposed stan-
dard. These routines .permit point-to-point message passing between pairs of processes, with
message selectivity based explicitly on message type and source process, and implicitly on
communication context. Communication contexts are explained in more detail in Section 3.3.

MPI1 provides three modes for sending and receiving messages: blocking, nonblocking, and
synchronized. These different communication modes are explained below. The mode is passed
as an argument to the send or receive routine. A nonblocking or blocking send routine may
be matched by a nonblocking or blocking receive routine in any combination. However, a
synchronized send must be matched by a synchronized receive.

Noncontiguous messages are handled by providing three variants of the send and receive

routines. The first variant assumes contiguous messages, and MPI1 provides the routines

-4-

MPI_CSEND and MPI_.CRECYV for such messages. The second deals with messages that are
gathered from, or scattered to, a buffer with constant stride. This type of routine may be used
when communicating rows of a distributed matrix that is stored by columns. The routines
MPI_SSEND and MPI.SRECYV are used in this case. The third variant deals with messages
that are gathered from, or scattered to, a buffer in an arbitrary way. MPI1 provides the
routines MPI_.GSEND and MPI_.GRECY for this purpose. This last case provides a mechanism
for doing point-to-point scatter/gather operations between pairs of processes. The data blocks
comprising the message may be of differing sizes and lie at arbitrary locations in the buffer
gathered from or scattered to. The scatter/gather operations are controlled by a pair of arrays.
The first of these arrays contains pointers into a buffer that indicates where the data for the
message is coming from, or going to. The second array indicates how many data items are
to be extracted from, or stored to, each location pointed to. For example, suppose in some
spatially decomposed particle simulation we build a list of the particles that must be migrated to
another process in each time step. This list is a set of indices into the data structure containing
the particle information. The Fortran language requires that the scatter/gather locations be
specified by an indirection vector that applies to a specific buffer. The C language permits
pointer manipulation, so the memory location from which data are gathered, or to which data
are scattered, can be more naturally expressed as an array of pointers. This is one of the few

significant syntactic differences between the C and Fortran versions of MPI1.

3.1.1. Receiving messages

The receipt of a message is said to be blocking if the receiving process suspends execution until
all of the message has been received, i.e., until it has been placed in an application buffer on
the receiving process. If a process attempts to perform a blocking receive that is not matched
by a corresponding loosely synchronous send, execution will be suspended indefinitely on that
process, resulting in full or partial deadlock.

A nonblocking receive takes place in two phases. First, a receive is posted on the receiving
process, that is, the application provides a buffer that is to be used to store a specified incoming
message. After this the receiving process can then continue to do useful work. However,
at this stage receipt of the message is not guaranteed, and the data in the message should
not yet be used by the receiving process. The nonblocking receive must be completed in a
second phase that either calls the routine MPI_WAIT that blocks until the message is received,
or periodically calls the routine MPI_.STATS that checks on whether the message has been
received into an application buffer. Between these periodic checks useful work can continue to
be done by the receiving process, and once receipt is confirmed the message may be processed.
Using the blocking mechanism (MPI_WAIT) to complete a nonblocking receive is usually done
immediately before the message is to be used on the receivi_ng process, thereby allowing the

maximum potential for overlap of computation and communication. This approach is common

-5-

when the amount of work that could be done between posting the receive and actually using
the received data can be quantified at compile time. In more dynamic situations there may
be an almost arbitrary amount of work that a process could do until an anticipated message
arrives. In such cases it is common to periodically check for message receipt using MPI_STATS.
At the application level, a blocking receive is conceptually the same as a nonblocking receive
in which no useful work is done between the two phases, i.e., a call to an MPI1 receive routine
in nonblocking mode immediately followed by a call to MPI.WAIT.

When a message is received in synchronized mode, the receiving process sends an acknowl-
edgment to the sending process once the message has been completely received and placed in
an application buffer. In the absence of hardware failures, and provided valid arguments are

passed to the send and receive routines, message receipt is guaranteed.

3.1.2. Sending messages

The sending of a message is said to be blocking if the sending process suspends execution until
all of the message has been sent, i.e., until the application buffer containing the message on
the sending process is available for reuse. When this has occurred we say that “the message
has cleared the buffer.” It is not guaranteed that the message will actually be delivered to
the destination process, and unless the application performs some additional handshaking, the
sending process cannot know if the message was delivered.

A nonblocking send takes place in two phases. In the first phase the user calls an MPI1
send routine in nonblocking mode which initiates transmission of a specified message buffer to
the destination process, and then returns. The sending process can then continue to do useful
work, but during this time it is not guaranteed that the message has cleared the buffer, and
it is a programming error to change it in any way. The nonblocking send must be completed
in a second phase that either calls the routine MPI_WAIT that blocks until the message has
been sent, or periodically calls the routine MPI_STATS that checks on whether the message
has been sent or not. Between these periodic checks useful work can continue to be done by
the sending process, and once the message has been sent the message buffer may then be safely
modified. The routine MPI_.STATS may be used to check for completion of a nonblocking send
when there is an arbitrary amount of work that can be done between initiating and completing
the send operation. A blocking send is conceptually the same as a nonblocking send in which no
useful work is done between the two phases, i.e., a call to an MPI1 send routine in nonblocking
mode immediately followed by a call to MPI_WAIT.

When a message is sent in synchronized mode, execution is suspended on the sending process
until an acknowledgment has been received from the destination process indicating that message
receipt has completed. For a message sent in synchronized mode the message is not buffered
by‘ the system, and upon delivery to the the destination process it is placed directly into the

supplied application buffer.

3.1.3. Other message passing utilities

On systems that provide buffering for messages (see Section 3.1.4) it is sometimes necessary
for a process to check whether it has any pending messages satisfying given selection criteria.
MPI1 provides the routine MPI.PROBE for this purpose. A pending message is one that
was sent in blocking or nonblocking mode, but for which a corresponding receive has not yet
been posted on the destination process. Such messages may be buffered by the system on
the destination process, thus MPI_.PROBE queries the contents of the system message buffers.
Note that MPL.LPROBE differs from MPL.STATS which checks for delivery of a message into
an application buffer.

Either, or both, of the type and source message selection criteria specified in an MPI1 receive
routine, or the routine MPI.PROBE can have wildcard values. A wildcard value for the type
or source indicates that this criterion is to be ignored in selecting messages on a destination
process, so it is possible to select messages regardless of type and/or source. After it has been
ascertained by a process that it has received a wildcarded message, or that it has such a message
pending, the actual length, type, and/or source of the message can be determined by calling
MPIINFOL, MPLINFOT, and MPLINFOS, respectively.

The routine MPI.CANCEL can be used to cancel a specified nonblocking send or receive
operation initiated previously. After returning from MPI_CANCEL the nonblocking operation

is no longer active, and the status of the nonblocking operation is left indeterminate.

3.1.4. Buffering of messages by the system

In describing MPI1’s message passing routines, we have tried to avoid making any unnecessary
assumptions about the underlying communication mechanism. In this section we will touch on
some implementation issues that affect application portability, and whether message delivery
is guaranteed.

In general, a communication system has some buffering capacity, as would usually be the case
if the underlying communication mechanism was asynchronous. In such cases, when a message
sent in blocking or nonblocking mode arrives at a destination process it is placed directly in an
application buffer if a corresponding receive has already been posted; otherwise, it is placed in
a system buffer. Messages in a system buffer are referred to as “pending messages,” and remain
in a system buffer until a corresponding receive is posted, at which point they are moved to an
application buffer, and effectively deleted from the system buffer. Since the system can only
provide a finite amount of buffer space for pending messages, an asynchronous communication
mechanism must deal with the possibility that an incoming message would cause a system
buffer to overflow. A simple recourse in such a situation is to discard the message, and flag an
error condition on the receiving process. It should be noted that this would not be detected as
an error by the sending process.

MPI can also be implemented on top of a synchronous communication system with no

-7-

buffering capacity. In this case there are no system buffers, so the possibility of one overflowing
does not arise. On such systems, a message buffer remains volatile on the sending process
until a corresponding receive is posted on the destination process, at which point the message
is delivered. Since messages are not buffered, the routine MPI_PROBE always indicates that
there no pending messages.

To write applications that are portable between machines with different underlying com-
munication mechanisms, and between machines whose communication systems have differing
(and usually unknown) buffering capacities, reliance on system buffering should be avoided [5].

Although a synchronous communication system can guarantee message delivery (in the
absence of hardware failures and software bugs), it is more difficult for an asynchronous system
to do so. Thus, requiring guaranteed message delivery as part of a message passing standard

may not be appropriate.

3.2. Process Groups
3.2.1. Creating and Managing Process Groups

Process groups provide a means of handling task parallelism, as well as controlling which pro-
cesses cooperate in collective communication tasks, such as broadcast and reduction operations.
MPI1 does not include collective communication routines, however, the support provided for
process groups in MPI1 is intended to be fully consistent with the use of process groups in
collective communications, a standard for which we expect to be defined subsequently. Thus,
within the context of MPI1 process groups are provided solely as a means of supporting task
parallelism, in which different process groups work on different tasks.

A process group is identified by a unique process group ID, or GID, which is an integer
greater than zero. When a parallel program starts up, the processes allocated to an application
belong to the predefined group with GID = ALL, where ALL is some integer assigned by the
system. MPI1 provides two basic methods for creating a new group or groups. A new group can
be created by each process in the group synchronously calling the routine MPI_.DEFNG, which
takes as its arguments the number of processes in the new group, and a list of the processes
making up the group. A second routine, MPI_.PARTG, is provided that allows a group to be
partitioned into distinct subgroups based on the value of a specified key.

Information about group membership can be obtained using the routines MPI_.GETID and
MPLINFOG. Given a process group with n members, the processes in the group are uniquely
labeled 0,1, ...,n—1. These labels may be regarded as process ID numbers that are specific to a
particular group, and will be referred to as Group Context Process ID numbers, or GCPIDs. A
process has a different GCPID for each group of which it is a member. The routine MPI_.GETID
returns the GCPID of the calling process in a given group, or —1 if the process in not in the
group. The routine MPI_INFOG can be used to determine which processes belong to a specified

group of which the calling process is a member.

-8-

System memory is required to store information about the configuration of all currently
defined groups. In order to make efficient use of this memory groups that are no longer needed
by an application can be discarded, thereby freeing some memory for reuse. MPI provides the
routine MPI.FREEG to discard a specified group. The routine MPI.LFREEG must be called
synchronously by all processes in the discarded group.

All processes that are involved in an operation to produce or discard a group or groups must
perform the operation loosely synchronously, or full or partial deadlock may result.

Finally, the routine MPI.SYNCG imposes a barrier synchronization on a specified group of
processes.

3.2.2. Task parallelism

All the routines discussed in Section 3.2.1 are concerned with creating and inquiring about pro-
cess groups. The use of groups to manage task parallelism will now be discussed. We consider
three types of task parallelism, corresponding to the SIMD, SPMD, and MIMD programming
models, each of which subsumes the former. In SIMD task parallelism each group of processes
executes the same instructions on different data. For example, suppose we have two groups of
processes of the same size, and want to find the fast Fourier transform (FFT) of two vectors of
the same length. Then, one FFT can be done by one group and the other FFT by the second
group, and processes in each group with the same GCPIDs will execute the same instructions.
In SPMD task parallelism each process executes the same code, but different groups may ex-
ecute different instructions. The groups are not required to be of the same size, but must
be distinct. Finally, in MIMD task parallelism different executable programs are loaded into
each group. It should be noted that MIMD task parallelism can be mimicked by SPMD task
parallelism by having each group execute different branches of a conditional statement within
a single executable program. As currently defined MPI1 supports SPMD task parallelism, but
not MIMD task parallelism.

Two routines specifically for using groups to manage the SPMD style of task parallelism
will now be introduced. MPI_PUSHG establishes an environment in which a specified group of
processes is treated as if it were the only processes in use by the application, i.e., it establishes
a process group contezt. MPI_POPG re-establishes the process group context in effect prior to
the corresponding preceding call to MPI_PUSHG. The use of these routines is, perhaps, best
demonstrated with an example. Suppose we have a piece of software that performs some task in
parallel on n processes, where n is an input parameter passed to the software. In executing the
parallel software, communication between the processes is based on the assumption that they
are numbered 0,1, ...,n — 1. However, the actual PIDs of the processes in the group executing
the software, in general, will not be labeled in this way since we are able to construct groups
with arbitrary membership. However, the GCPIDs of the processes do run from 0 to n — 1, so

whenever the software refers to a source or destination process in the range 0 to n—1 this must

-9-

PID GID GCPID
1

N OV W =D
BN BN DD DD = i
LN = OWN~O

Table 1: Mapping of group context PIDs to PIDs

be interpreted as a GCPID, which is then mapped to the corresponding PID. Thus, between a
call to MPI.PUSHG and the corresponding subsequent call to MPI.POPG any reference to a
process ID number is interpreted as a GCPID and is automatically mapped to the appropriate
process ID number. For example, suppose the ALL group consists of 8 processes with process
ID numbers 0, 1,...,7. Now suppose further that these processes have been partitioned so that
the first four form one group with GID=1, and the others form a second group with GID=2,
and that the contexts for these groups have been established by calls to MPI_PUSHG. Then
the GCPID associated with each process is as given in Table 1. Now, for example, if in the
second group process 1 is required to send a message to process 3, the process ID numbers are
interpreted so the communication actually takes place between processes 5 and 7. In this way
a piece of software designed to execute on n processes with PIDs (through n — 1 will perform
correctly within any group context.

After a call to MPI.PUSHG the predefined group ALL refers to the group whose con-
text has just been established, and not to the original set of processes. The group can then
be partitioned, and subgroups can be used to form new root groups, by calling the routines
MPLPARTG and MPI.DEFNG. No reference may be made to any process or group outside
the current group context. Group contexts may be nested.

A process must not be involved in any outstanding nonblocking communications within the
current communication context (see Section 3.3) when calling MPI.PUSHG or MPI_POPG. All
processes that are involved in an operation that changes the group context must perform the

operation loosely synchronously, or full or partial deadlock may result.

3.2.3. Examples of the use of subgroups

To further clarify the use of subgroups in managing task parallelism we shall consider now some
specific examples that use the MPI routines introduced in Sections 3.2.1 and 3.2.2. The first
example is the solution of the shallow water equations on a sphere by the spectral transform
method [25, 23]. An important computational kernel of this application is the the spectral
transformation of a state variable defined on a rectangular longit.ude/lat.it..nde grid into a set of
spectral coefficients. The spectral transform is evaluated in two phases. In the first phase a fast

Fourier transform (FFT) is performed along each line of constant latitude in the grid. In the

-10 -

"

ROWGRP
COLGRP

MPI_PARTG (ALL, MY_ROW)
MPI_PARTG (ALL, MY_COL)

Figure 1: Creation of row and column groups. Here MPI_ROW and MY_COL are the position of a
process in the logical P x QQ process mesh.

INFO = MPI_PUSHG (ROWGRP)

do 1D FFTs over longitude

INFO = MPI_POPG ()

INFO = MPI_PUSHG (COLGRP)

do summation over latitude
INFO = MPI_POPG ()

Figure 2: Pseudocode outline showing the use of process groups in the shallow water equation
application. '

second phase the spectral transform is completed by taking a weighted integral over latitude of
the Fourier coefficients. Numerically this is performed by weighted summation.

Suppose that the longitude/latitude grid is distributed in blocks over a two-dimensional,
logical mesh of P x Q processes. Currently MPI1 does not provide a mechanism for establishing
process topologies of this type, however, a proposal for extending MPI1 to do this has been
suggested by Hempel [12]. The processes in each row of the process mesh cooperate to evaluate
the FFTs along a set of latitude lines. Then, the processes in each column cooperate to evaluate
the spectral coefficients for a set of wavenumbers. The two phases of the spectral transform
algorithm can be managed by partitioning the processes into row groups and column groups
by making two calls to the routine MPI.LPARTG, as shown in Figure 1.

The calls to MPI_LPARTG are made once at the start of the application. Thereafter, the
spectral transform of a state variable can be found by first establishing a process group context
for the rows, and doing the FFTs over longitude for each latitude using a generic parallel
FFT routine that assumes processes are numbered 0,1,...,Q — 1. Then, a process group
context for the columns is established, and the summation over latitude for each wavenumber
is performed using a parallel routine that assumes processes are numbered 0,1, ..., P—1. Thus,
the pseudocode for the spectral transform algorithm is as as shown in Figure 2.

A second example of an application that might make use of process groups is an event-
based circuit simulation code [24]. We are grateful to K. Yelick of the University of California,
Berkeley, for suggesting this example. The circuit is decomposed into loosely coupled subcircuits
with different computational loads. Each subcircuit is assigned to a process group, where the
appropriate size of each group is determined by the computational load associated with the
subcircuit. Thus, the groups are of different sizes. The subcircuits communicate whenever

there is a significant change in voltage, however, once the input voltages for a time step are

-11 -

known the linear system associated with each subcircuit can be solved independently using
LU factorization. Suppose, for example, the circuit may be split into three subcircuits with
computational loads for the LU factorization in the ratio 1:9:16. Then, we might assign one
process to the first subcircuit, 9 processes to the second, and 16 processes to the third, as shown
schematically in Figure 3. In the parallel LU solver each group of processes needs to be arranged
as a two-dimensional mesh, so as in the shallow water equation example, it is necessary to be
able to specify a topology for a group of processes. Given an initial set of processes, these can
be divided into process groups by calling MPI.PARTG or MPI.LDEFNG. Each process then
establishes a group context prior to performing the LU solve phase in order to determine with
which processes it must cooperate to solve the linear system for the subcircuit to which it is
assigned. Each group calls the same parallel LU solve routine, which in its simplest form has as
its arguments the coefficient matrix, the righthand side vector, the size of the matrix, and the
number of processes, P and @, in each direction of the logical process mesh. Thus, the code

would look something like the following,

LUGRP = MPI_PARTG (ALL, KEY)

INFO = MPI_PUSHG (LUGRP)
CALL LU_SOLVE (COEFFS, RHS, M, P, Q)
INFO = MPI_POPG ()

Note that the parallel LU solver may itself use row and column oriented subgroups. These

would be set up within the parallel LU solve routine.

3.3. Communication Contexts

It is sometimes necessary to ensure that different streams of communication do not interfere
with one another. For example, in an application with two distinct phases, each involving
nonblocking communication, there is the possibility that one phase may intercept messages in-
tended for the other phase. This situation can arise if the message selectivity criteria of the two
phases overlap, as may be the case when using a “canned” concurrent software library in which
the selectivity criteria, in general, are unknown. Communication contexts, first used in the
Zipcode message passing system [19, 20], provide a means of disambiguating such situations.
In effect, a communication context provides a third selectivity criterion, in addition to type
and source process, that may be used to control the receipt of messages. A communication
context is uniquely labeled by a strictly positive integer called the Communication Context ID,
or CCID. In MPI1 a communication context may be created by a call to MPI.NEWC, and a
list of the current valid contexts may be obtained by calling MPILINFOC. After invoking a pre-

viously created communication context by calling MPI_LPUSHC, all messages subsequently sent A

are tagged with that context, and only those messages so tagged may be received. The current

-12 -

oo o o - -

LU | < >

1
'
1
. ------
1
]
i
]
]
1

Eaatatalale LT

Figure 3: The division of processes into three groups of 1 x 1, 3 x 3, and 4 x 4 processes. Each
group is assigned to a subcircuit, and independently performs a parallel LU solve. The arrows
indicate the need for intermittent communication between the groups.

communication context is terminated by a call to MPI_POPC, which restores the communica-
tion context in effect prior to the preceding call to MPI.PUSHC. Communication contexts may
be nested.

As an example, suppose we want to evaluate D = AB + CT , where A, B, C, and D are all
matrices. Then we might proceed as follows:

1. Initiate a nonblocking transpose of C

2. Call a concurrent library routine to find AB
3. Block until transpose of C is complete

4. Add CT to AB to form D

Here the task of transposing matrix C, which requires interprocess communication, is over-
lapped with the distinct task of evaluating the matrix product AB, which also requires com-
munication. If the message selectivity criteria within the two tasks are not unique there is
the possibility that one task will receive messages intended for the other task. Note that this
example assumes a sophisticated communication processor that not only knows what messages
need to be sent for the transpose, but also interleaves them with those of the matrix commu-
nication. Potential message conflicts can be avoided by establishing different contexts for the
matrix multiplication and matrix transpose tasks. The MPI1 code fragment for this example
would be as shown in Figure 4.

In the above example, the communication context ICC is first created by calling MPLLNEWC.

The transposition of matrix C is then initiated, with the communication context for this op-

-13 -

ICC = MPINEWC ()
BEGIN_TRANSPOSE (C)
I0K = MPI_PUSHC (ICC)
CALL MATMUL (D, A, B)
10K = MPI_POPC ()
END_TRANSPOSE (C)
D=D+C

Figure 4: Code fragment illustrating the use of communication contexts

eration being the default context. Next, the routine MPI_PUSHC is called to establish the
communication context with CCID number ICC. When MATMUL is then called only messages
labeled with this communication context will be visible to the application, thereby, insulating
the messages associated with the matrix multiplication from those of the matrix transposition.
When MATMUL returns, the routine MPI_POPC is called to restore the default communica-
tion context. The routine END_.TRANSPOSE blocks, if necessary, until the transposition is
completed. If the communication associated with the transpose has already completed follow-
ing the return from MPI_.POPC, then END_.TRANSPOSE just copies C from a system to an
application buffer.

Upon entering a program, or establishing a process group context by a call to MPI.PUSHG
(see Section 3.2.2), a unique default communication context is established. A default commu-
nication context cannot be discarded, so a call to MPI_POPC when the current communica-
tion context is the default has no effect. When exiting a process group context by a call to
MPI_POPG the communication context in effect prior to the preceding call to MPI_PUSHG is

restored. Communication and process group contexts may be nested, but not misaligned.

3.4. Noncontiguous Messages

As discussed in Section 3.1, point-to-point scatter/gather types of communication, in which
data are gathered from a message buffer on the sending process, and subsequently scattered
into a buffer on the receiving process, may be performed using different variants of the send
and receive routines. Sometimes it may be necessary to gather/scatter data between multiple
buffers that may be of differing data types. In the Fortran language this cannot be done by a
single call to the MPI1 send/receive routines.

In this section we introduce routines that (1) gather data from a buffer and pack it con-
tiguously into another buffer, and (2) scatter data into a buffer from a contiguous buffer. In all
cases the buffers are on the same process, and no interprocess communication is required. These
routines allow complex messages to be packed into a contiguous buffer on the sending process.
This message can then be sent to the destination process using the routines MPI_.CSEND and
MPI_.CRECYV, where it can then be unpacked.

Two sets of pack/unpack routines are provided, and their syntax is very similar to that of

-14 -

the corresponding noncontiguous send/receive routines. The first pair of routines, MPI_SPACK
and MPI_SUNPACK, handles the case in which data blocks of constant size are respectively
gathered from, or scattered to, a buffer with constant stride. The second pair of routines,
MPI_GPACK and MPI_.GUNPACK, handles the case in which the data blocks may be of

differing sizes and lie at arbitrary locations in the buffer gathered from, or scattered to.

3.5. Utilities

This section outlines a set of utility routines. The routine MPI_MACHINE returns a string
giving the machine name, type, Internet address, and other pertinent information about the
machine that the calling process is running on. More detailed information can be obtained
with the routine MPIINFOMN which returns an integer array whose entries contains things
like the number of processors in use, the maximum number of processors available, the number
of the processor that the calling process is running on, the amount of memory per process and
per processor, and other similar information. A complete list of the items included in the array
returned by MPI_INFOMN has not yet been agreed on.

The routines MPI_DATE and MPI_TIME return the the date and time, respectively, as
strings. User CPU time and elapsed wallclock time are returned as double precision seconds
by the routines MPI.CPU and MPI_.WALL, respectively.

Most of the routines in MPI1 return a value of -1 to indicate that an error has occurred.
The nature and/or cause of the error can be determined by calling the routine MPI_LERROR.
This returns an integer that indicates the error type applying to the most recent call to an
MPI1 routine. Among the types of error that would be indicated by a call to MPI_LERROR are
the use of an invalid PID, GCPID, CCID, or MSGID; the loss of a message on a process due
to a system buffer overflow; the use of an invalid block length or stride in one of the message
packing routines; and so on. If the integer returned by MPI_LERROR is passed to the routine
MPI_ETEXT, a string is returned giving a short description of the error which can then be
output by the application. This way of handling errors is essentially the same as that used by
PARMACS [13].

4. Discussion and Rationale

In this section we discuss the reasoning behind some of the decisions made in designing MPI1.
In the design of this interface, one of the main concerns was to keep both the calling sequences
simple and the range of options limited, while at the same time maintaining sufficient function-
ality. This clearly implies a compromise, and a good decision is vital if MPI1 is to be accepted
as a useful standard.

In order to avoid potential programming errors, values of scalar variables are not returned
through argument lists. In MPI1, routines are written as function calls rather than subroutine

calls, which provides a mechanism for returning scalars. One consequence of this is that in order

-15-

to determine the source, length, and/or type when a wildcarded message has been received in
nonblocking mode, or is known to be pending following a call to MPI.PROBE, it is necessary
to call the information routines MPILINF, MPILINFOL, and/or MPI_INFOT.

It is not assumed in MPI1 that messages sent from one process to another are received
in the order in which they were sent since some systems may use a non-deterministic routing
scheme to avoid contention for communication links. Of course, even in such cases the correct
order of messages could be recovered by the receiving process if each message was labeled by
the sending process with a sequence number. Whether or not messages from one process to
another arrive in the correct order has no impact on the definition of a standard, though clearly
the assumption is vital to the correct functioning of many parallel algorithms.

MPI1 defines three modes for send and receiving messages, namely the blocking, nonblock-
ing, and synchronized modes. We believe that these are the most widely used types of point-
to-point communication operations, and in order to avoid too many varieties of send routine,
some potentially useful functionality has been excluded from MPI1. For example, MPI1 does
not include forced communication of the sort provided in Intel’s NX/2 through the use of “force
types.” In forced communication, if a message sent in nonblocking mode is delivered to a pro-
cess, and an application buffer has not already been made available for it by previously posting
a receive, then the message is simply discarded, rather than being placed in a system buffer on
the destination process. This functionality could be provided in MPI1 by reserving a certain
range of types for forced communication, just as in NX/2. The justification for using forced
communication is that it avoids some overhead, and thus is often faster. The main disadvantage
is that it is the responsibility of the application to ensure that a receive is always posted prior
to delivery of a forced message, otherwise the message will be lost.

In handling communication contexts MPI1 uses an approach that is independent of the
message type selectivity mechanism. A different approach would be for each phase of an
application to initially register the range of types it will use, and for a central message type
registry to check for overlaps between the ranges claimed by different phases. An overlap
would indicate to the application the potential for communication conflicts. The best approach
is unclear. The first option would be more natural to the user, while for the second option
communication context control functions would be easier to port onto most current parallel
systems without major changes to the runtime systems. Thus, the question is how much MPI1

should be influenced by the presently available systems.

5. Outstanding Issues

In this section we outline a few of the issues that need to be addressed by MPI1, and some
features that should be considered for inclusion in future versions of MPI1.
A number.of extensions to the support provided by MPI1 for process groups are possible. For

example, currently in MPI1 the union of groups cannot be formed, nor is it possible for single

- 16 -

processes to join or leave a group. Abstractions for permitting process groups to communicate
with each other are another possible extension. MPI1 does not allow processes to be created
or destroyed, or for different executable codes to be loaded into different processes, as would be
required in order to support the MIMD style of task parallelism. The need for all these possible
enhancements must be given careful consideration.

In MPI1 no explicit mechanism is provided to allow a process to inquire about the existence
and membership of groups of which it is not a member. In a more general system it would be
possible for a process to access information about any group. One way of doing this would be to
have some processes dedicated to storing data about the current valid groups, and responding
to requests for this information. Whenever, a group is created, discarded, or modified the
processes involved must synchronize with one or more of the “group database” processes and
inform them of the changes. Clearly, if there are too few such processes bottlenecks may develop
in accessing their data; if there are too many then memory and compute power are wasted.

In the current version of MPI1 a process group is formed by a collection of processes without
any additional structure. As one consequence, new root groups can only be defined by listing
the identifiers of the participating processes. Typical applications, on the other hand, have
much more internal structure. For example, the solution of a partial differential equation on a
3D grid is usually performed by processes which are arranged in a corresponding structure. If
the programming interface does not provide functions for defining that structure, the user must
program the relationship of the logical position of a process and its identifier himself. Also,
this information is not available for automatic tools which map neighboring processes onto
neighboring hardware processors. Therefore, a mechanism such as that suggested by Hempel
[12] for defining, and inquiring about, logical process topologies would be a useful addition to
the message passing standard.

Another important consideration when extending MPI1 to handle heterogeneous distributed
computing is the fact that different machines not only have different data formats, but also
prefer different packet sizes. It would therefore appear that a table is needed that not only
maps a PID number to an Internet address and process ID on the destination machine, but

which also includes the target machine’s preferred packet size.

6. Conclusions

We do not claim to provide the definitive answer to everyone’s communication needs. Indeed,
our insistence on simplicity precludes that. However, we believe the MPI1 routines proposed
here will be useful as a basis for further discussion in the development of a standard for message
passing in distributed memory environments. An MPI standards committee was formally insti-
tuted in November 1992, with the objective of providing a forum for discussion and of defining
a standard message passing interface by July 1993. This committee is similar in structure and

organization to that which developed the High Performance Fortran standard. Members of the

217 -

distributed memory computing community who wish to become involved in the standardization

process should send email to walker@msr.epm.ornl.gov by May 1, 1993.

Acknowledgments

This work was partially supported by the ESPRIT programme and the PPPE project. We
gratefully acknowledge the participants of the First CRPC Workshop on Standards for Message
Passing in a Distributed Memory Environment, and are grateful to the Center for Research
on Parallel Computing for sponsoring this workshop. It is also a pleasure to acknowledge the
helpful comments and suggestions of Vas Bala, Mark Debbage, Al Geist, William Gropp, Cherri
Pancake, Paul Pierce, Peter Rigsbee, Anthony Skjellum, Marc Snir, and Joel Williamson.

7. References

[1] H. E. Bal. Programming Distributed Sysiems. Prentice Hall International, Hemel Hemp-
stead, England, 1991.

[2] V. Bala and S. Kipnis. Process groups: a mechanism for the coordination of and commu-
nication among processes in the Venus collective communication library. Technical report,
IBM T. J. Watson Research Center, October 1992. Preprint.

[3] V. Bala, S. Kipnis, L. Rudolph, and Marc Snir. Designing efficient, scalable, and portable
collective communication libraries. Technical report, IBM T. J. Watson Research Center,

October 1992. Preprint.

[4] N. Carriero and D. Gelernter. How to write parallel programs. ACM Computing Surveys,
21(3):323, September 1989.

[5] M. Debbage and M. Hill. Draft messaging ideas, revision 0.3. Technical report, Southamp-
ton University, UK, 1992. Preprint.

[6] Edinburgh Parallel Computing Centre, University of Edinburgh. CHIMP Concepts, June
1991.

[7] Edinburgh Parallel Computing Centre, University of Edinburgh. CHIMP Version 1.0
Interface, May 1992.

[8] G. Geist and V. Sunderam. Network based concurrent computing on the PVM system.
Technical Report TM-11760, Oak Ridge National Laboratory, June 1991.

[9] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. A user’s guide to PICL: a
portable instrumented communication library. Technical Report TM-11616, Oak Ridge
National Laboratory, October 1990.

- 18 -

(10] D. Gelernter. Generative communication in Linda. ACM Trans. Prog. Lang. Sys., 7(1):80-
112, 1985.

(11] R. Hempel. The ANL/GMD macros (PARMACS) in fortran for portable parallel program-
ming using the message passing programming model - users’ guide and reference manual.
Technical report, GMD, Postfach 1316, D-5205 Sankt Augustin 1, Germany, November
1991.

(12] R. Hempel. A proposal for virtual topologies in MPI1. Technical report, GMD, Postfach
1316, D-5205 Sankt Augustin 1, Germany, November 1992.

(13] R. Hempel, H.-C. Hoppe, and A. Supalov. A proposal for a PARMACS library interface.
Technical report, GMD, Postfach 1316, D-5205 Sankt Augustin 1, Germany, October 1992.

(14] D. Mallon, J. Nash, and P. Dew. Shared objects and its role in standardization. Technical
report, Leeds University, UK, 1992. Preprint.

(15] nCUBE Corporation. nCUBE 2 Programmers Guide, r2. 0, December 1990.

[16] S. Otto. MetaMP: a higher level abstraction for message passing programming. Technical

report, Oregon Graduate Institute, Department of Computer Science, January 1991.

[17] Parasoft Corporation. Ezpress Version 1.0: A Communication Environment for Parallel
Computers, 1988.

(18] Paul Pierce. The NX/2 operating system. In Proceedings of the Third Conference on
Hypercube Concurrent Computers and Applications, pages 384-390. ACM Press, 1988.

[19] A. Skjellum and A. Leung. Zipcode: a portable multicomputer communication library
atop the reactive kernel. In D. W. Walker and Q. F. Stout, editors, Proceedings of the
Fifth Distributed Memory Concurrent Computing Conference, pages 767-776. IEEE Press,
1990.

[20] A. Skjellum, S. Smith, C. Still, A. Leung, and M. Morari. The Zipcode message passing

system. Technical report, Lawrence Livermore National Laboratory, September 1992.

[21] V. Sunderam. PVM: a framework for parallel distributed computing. Concurrency: Prac-
tice and Ezperience, 2(4):315-339, 1990.

[22] D. Walker. Standards for message passing in a distributed memory environment. Technical

Report TM-12147, Oak Ridge National Laboratory, August 1992.

[23] D. W. Walker, P. H. Worley, and J. B. Drake. Parallelizing the spectral transform method
- part II. Concurrency: Practice and Ezperience, 4:509-531, 1992.

[24] Chih-Po Wen. Timing simulation on a distributed memory multiprocessor. Master’s thesis,
University of California, Berkeley, CA, 1992.

-19 -

[25] P. H. Worley and J. B. Drake. Parallelizing the spectral transform method - part I.
Concurrency: Practice and Ezperience, 4:269-291, 1992.

- 90 -

Appendix A

In this appendix we give Fortran specifications for the MPI1 routines. The C language specifica-
tions are not given explicitly, but are very similar, except for the routines dealing with arbitrary
scatter/gather operations (MPI.GSEND, MPI.GRECV, MPI.GPACK and MPI.GUNPACK).
In the synopses of the Fortran specifications of some of the routines, message buffers are referred
to as integer arrays; however, real arrays can also be passed to these routines.

The appendix is consists of the following five sections.
1. Point-to-point message passing routines,

2. Support for process groups,

3. Support for buffer copying,

4. Support for communication contexts,

5. Utilities.

-91-

A.1 Point-to-Point Message Passing Routines

In this section we provide specifications for the following point-to-point message passing and

related routines.

e MPI_CANCEL

e MPI_CRECV
e MPI_CSEND
¢ MPLGRECV
e MPI_GSEND
e MPIINFOL
e MPIINFOS
e MPIINFOT
e MPI_PROBE
e MPI_.SRECV
e MPI_SSEND
e MPISTATS
e MPI_WAIT

Cancel nonblocking send or receive
Receive contiguous message

Send contiguous message

Receive into buffer with arbitrary scatter
Send from buffer with arbitrary gather
Get length of pending or received message
Get source of pending or received message
Get type of pending or received message
Check pending messages

Receive into buffer with constant stride
Send from buffer with constant stride
Check status of nonblocking send or receive

Block until send or receive has completed

Message selectivity (within a communication context) is by source process and message

type, either of which may have the “wildcard” value of -1, indicating that any source and/or

type is acceptable.

Nonblocking sends and receives return a message ID that is unique within the current group

context. All other sends and receives return the number of bytes actually sent or received, or

-1 if an error occurred.

-99-

NAME
MPI_CANCEL Cancel a previously initiated nonblocking send or receive

SYNOPSIS
integer function MPI.CANCEL (msgid)

integer msgid

INPUT ARGUMENTS

msgid _ message identifier returned by a call to a nonblocking send or receive

DESCRIPTION
MPI_CANCEL cancels a previously issued nonblocking send or receive specified by the
message identifier, msgid. Upon return the nonblocking send or receive is no longer active,

and may or may not have completed.

RETURN VALUE
MPI_CANCEL returns 0, or -1 if an error occurs.

- 93 -

NAME
MPI_CRECV Receive a message contiguously into a buffer.

SYNOPSIS
integer function MPI.CRECV (mode, buf, source, type, maxlen)
character mode
integer buf(«)
integer source
integer type

integer maxlen

INPUT ARGUMENTS

mode the mode of the receive (“blocking”, “nonblocking”, or “synchro-
nized”)

source the ID number of the process sending the message

type the message type, or type mask

maxlen the maximum length of the message in bytes

OUTPUT ARGUMENTS

buf the application buffer into which the message is received.

DESCRIPTION
If mode has the value “blocking” then the calling process blocks until a message of a
specified type is received from a specified source into the application buffer buf. Deadlock
will occur if no corresponding message is sent loosely synchronously by the source process.
If mode has the value “nonblocking” then the calling process posts a receive for a message
of a specified type from a specified source, and immediately returns.
If mode has the value “synchronized” then the calling process blocks until the specified
message has been received into the application buffer, buf, and then sends an acknowl-
edgment to the source process before returning. The receive must be matched by a
corresponding send, also done in synchronized mode.
For all modes, if source is -1 then selectivity by source is ignored. Similarly, if type is
-1 then selectivity by type is ignored. Messages longer than maxlen bytes are truncated
to maxlen bytes.

For all modes, the message received is stored contiguously in the buffer buf.

RETURN VALUE
Upon successful completion, if mode is “blocking” or “synchronized” then MPI_.CRECV
returns the length of the message received in bytes. This will exceed maxlen bytes if the
message was truncated. If mode is “nonblocking” then MPI_CRECY returns the mes-

sage ID number associated with the receive operation. A value of -1 is returned if an

-24 -

€ITOor occurs.

-25 -

NAME
MPI_CSEND Send a message contiguously from a buffer.

SYNOPSIS
integer function MPI_.CSEND (mode, buf, dest, type, len)
character mode
integer buf(*)
integer dest
integer type

integer len

INPUT ARGUMENTS

mode the mode of the send operation
buf the buffer containing the message to be sent
dest the ID number of the process to which the message is sent
type the message type
len the length of the message in bytes
DESCRIPTION

If mode has the value “blocking” then MPI_CSEND sends a message of type type to
process dest, and blocks until the message buffer, buf, is available for reuse.

If mode has the value “nonblocking” then MPI_CSEND initiates transmission of a
message of type type to process dest, and immediately returns. The message buffer, buf,
should not be changed until the message is guaranteed to have been sent, i.e., to have
“cleared the buffer”, by a call to MPI_WAIT, or by a call to MPI_STATS returning a
nonnegative integer.

If mode has the value “synchronized” then MPI_CSEND sends a message of type type
to process dest, and blocks until an acknowledgment is received from the destination
process to indicate that message receipt has completed. The send must be matched by a
corresponding receive, also done in synchronized mode.

For all modes, the message consists of the 1en contiguous bytes in the buffer buf.

RETURN VALUE
If mode is “blocking” or “synchronized” then MPI_CSEND returns the number of
bytes sent. If mode is “nonblocking” MPI_CSEND returns the message ID number

associated with the send operation. A value of -1 is returned if an error occurs.

- 96 -

NAME
MPI.GRECV Receive a message and scatter it arbitrarily into a buffer.

SYNOPSIS
integer function MPL.GRECV (mode, buf, source, type, nlist, ilist, nblks)
character mode
integer buf(*)
integer source
integer type
integer nlist(*)
integer ilist(x)

integer nblks

INPUT ARGUMENTS

the mode of the receive (“blocking”, “nonblocking”, or “synchro-

mode
nized”)
source the ID number of the process sending the message
type the message type, or type mask
nlist list of the number of bytes in each data block
ilist list of the location in buf at which each data block starts
nblks maximum number of data blocks to be scattered

OUTPUT ARGUMENTS

buf the application buffer into which the message is scattered

DESCRIPTION
If mode has the value “blocking” then the calling process blocks until a message of a

specified type is received from a specified source into the application buffer buf. Deadlock

will occur if no corresponding message is sent loosely synchronously by the source process.
If mode has the value “nonblocking” then the calling process posts a receive for a message

of a specified type from a specified source, and immediately returns.

If mode has the value “synchronized” then the calling process blocks until the specified

message has been received into the application buffer, but, and then sends an acknowl-

edgment to the source process before returning. The receive must be matched by a

corresponding send, also done in synchronized mode.

For all modes, if source is -1 then selectivity by source is ignored. Similarly, if type is

-1 then selectivity by type is ignored. Messages longer than maxlen bytes are truncated

to maxlen bytes.

For all modes, the way in which the d
1ist. The data received are treated as a succession of data

ata received are stored in the buffer but is controlled

by the arrays nlist and i

- 27 -

blocks, with the ith block being of size nlist (i) bytes. This is stored in the buffer but
so that the start of the block is at ilist(i) bytes from the start of but. The maximum
number of data blocks received is nblks. It is assumed that all indices and numbering
of data items begin at 0. It is the responsibility of the user to ensure that buf is large

enough to hold the data scattered into it.

RETURN VALUE
Upon successful completion, if mode is “blocking” or “synchronized” then MPI.GRECV

returns the total number of bytes received. If mode is “nonblocking” then MPI.GRECV
returns the message ID number associated with the receive operation. A value of -1 is

returned if an error occurs.

- 28 -

NAME
MPI_GSEND Send a message gathered arbitrarily from a buffer.

SYNOPSIS
integer function MPI.GSEND (mode, buf, dest, type, nlist, ilist, nblks)
character mode
integer buf(x)
integer dest
integer type
integer nlist(*)
integer ilist(*)

integer nblks

INPUT ARGUMENTS

mode the mode of the send (“blocking”, “nonblocking”, or “synchro-
nized”)
buf the buffer containing the message to be sent
dest the ID number of the process to which the message is sent
type the message type
nlist list of the number of bytes in each data block
ilist list of the location in buf at which each data block starts
nblks number of data blocks to be gathered
DESCRIPTION

If mode has the value “blocking” then MPI_GSEND sends a message of type type to
process dest, and blocks until the message buffer, but, is available for reuse.

If mode has the value “nonblocking” then MPI_GSEND initiates transmission of a
message of type type to process dest, and immediately returns. The message buffer, buf,
should not be changed until the message is guaranteed to have been sent, i.e., to have
“cleared the buffer”, by a call to MPI_WAIT, or by a call to MPI_STATS returning a
nonnegative integer.

If mode has the value “synchronized” then MPI_GSEND sends a message of type type
to process dest, and blocks until an acknowledgment is received from the destination
process to indicate that message receipt has completed.

For all modes, the way in which the message sent is gathered from the buffer buf is
controlled by the arrays nlist and ilist. The data are gathered in blocks, with the ith
block being of size n1ist (i) bytes. This is gathered from the buffer but starting at the
location ilist (i) bytes from the start of buf. The total number of data blocks gathered

is nblks. It is assumed that all indices and numbering of data items begin at 0.

-29 -

RETURN VALUE

If mode is “blocking” or “synchronized” then MPI_GSEND returns the number of

» then MPI_GSEND returns the message ID number

bytes sent. If mode is “nonblocking
f -1 is returned if an error occurs.

associated with the send operation. A valueo

-30 -

NAME
MPILINFOL Determine the length of a pending or received message.

SYNOPSIS
integer function MPILINFOL ()

ARGUMENTS

None

DESCRIPTION
MPIINFOL determines the length in bytes of a pending or received message. It only
returns a valid result if used directly after a call to a receive routine in blocking or
synchronized mode, or directly after a call to MPI_STATS or MPI_PROBE that has

returned a nonnegative integer.

RETURN VALUE
Directly after a call to a receive routine in blocking or synchronized mode, a call to
MPI_WAIT, or a call to to MPI_STATS that returns a nonnegative integer, the rou-
tine MPI_INFOL returns the length in bytes of the message just received. If called
directly after MPI_PROBE has returned a nonnegative number, MPI_INFOL returns
the length in bytes of the pending message. If there are no pending messages -1 is re-

turned.

-31-

NAME
MPIINFOS Determine the source process of a pending or received message.

SYNOPSIS
integer function MPILINFOS ()

ARGUMENTS

None

DESCRIPTION
MPLINFOS determines the source process of a pending or received message. It only

returns a valid result if used directly after a call to a receive routine in blocking or

synchronized mode, or directly after a call to MPI_STATS or MPI_PROBE that has

returned a nonnegative integer.

RETURN VALUE
Directly after a call to a receive routine in blocking or synchronized mode, a call to

MPI_WAIT, or a call to to MPI_.STATS that returns a nonnegative integer, the routine
MPIINFOS returns the ID number of the process that sent the message just received. If
called directly after MPI_PROBE has returned a nonnegative number, MPIINFOS
returns the ID number of the process that sent the pending message. If there are no

pending messages -1 is returned.

-32-

NAME
MPIINFOT Determine the type of a pending or received message.

SYNOPSIS
integer function MPILINFOT ()

ARGUMENTS

None

DESCRIPTION
MPIINFOT determines the type of a pending or received message. MPI_INFOT
only returns a valid result if used directly after a call to a receive routine in blocking
or synchronized mode, or MPI_WAIT, or directly after a call to MPI_.PROBE or
MPI_STATS that has returned a nonnegative integer.

RETURN VALUE
Directly after a call to a receive routine in blocking or synchronized mode, MPI_WAIT,
or a call to MPI_STATS that returns a nonnegative integer, MPI_INFOT returns the
type of the message just received. If called directly after MPI_PROBE has returned a
nonnegative number, MPI_INFOT returns the type of the pending message. If there

are no pending messages -1 is returned.

-33-

NAME
MPI_PROBE Check for pending messages.

SYNOPSIS
integer function MPI_LPROBE (source, type)

integer source

integer type

INPUT ARGUMENTS

source the ID number of the process sending the message.
type the message type, or type mask.
DESCRIPTION

MPI_PROBE checks if there is a message from a specified source and of a specified type
awaiting receipt. That is, if there is a such a message stored in a system buffer for which a
receive has not yet been posted. If source is -1 then this argument is ignored. Similarly,
if type is -1 then this argument is ignored. Only messages sent using the routines sent in
blocking or nonblocking mode may be buffered by the system on the receiving process,

so it only makes sense to use MPI_PROBE to probe such messages.

RETURN VALUE
If a message satisfying the selectivity criteria is awaiting receipt MPI_PROBE returns

the length of the message in bytes. Otherwise, -1 is returned.

-34 -

NAME
MPI_SRECV Receive a message and scatter it with constant stride into a buffer.

SYNOPSIS
integer function MPI_.SRECV (mode, buf, source, type, lenblk, stride, nblks)
character mode
integer buf(*)
integer source
integer type
integer lenblk
integer stride

integer nblks

INPUT ARGUMENTS

mode the mode of the receive (“blocking”, “nonblocking”, or “synchro-
nized”)

source the ID number of the process sending the message

type the message type, or type mask

lenblk the size in bytes of each data block

stride the number of bytes between the start of each data block

nblks maximum number of data blocks to be scattered

OUTPUT ARGUMENTS
buf the application buffer into which the message is scattered

DESCRIPTION
If mode has the value “blocking” then the calling process blocks until a message of a
specified type is received from a specified source into the application buffer buf. Deadlock
will occur if no corresponding message is sent loosely synchronously by the source process.
If mode has the value “nonblocking” then the calling process posts a receive for a message
of a specified type from a specified source, and immediately returns.
If mode has the value “synchronized” then the calling process blocks until the specified
message has been received into the application buffer, buf, and then sends an acknowl-
edgment to the source process before returning. The receive must be matched by a
corresponding send, also done in synchronized mode.
For all modes, if source is -1 then selectivity by source is ignored. Similarly, if type is
-1 then selectivity by type is ignored. Messages longer than maxlen bytes are truncated
to maxlen bytes.
For all modes, the data received are treated as a succession of data blocks, each of length

lenblk bytes. Data blocks are placed in the buffer buf so that the start of successive

-35-

blocks are separated by stride bytes. The maximum number of data blocks received is

nblks. It is the responsibility of the user to ensure that buf is large enough to hold the

data scattered into it.

RETURN VALUE
Upon successful completion, if mode is “blocking” or “synchronized” then MPI_SRECV

returns the length of the message received in bytes. If mode is “nonblocking” then
MPLSRECYV returns the message ID number associated with the receive operation. A

value of -1 is returned if an error occurs.

- 36 -

NAME
MPI_SSEND Send a message gathered with constant stride from a buffer.

SYNOPSIS
integer function MPI.SSEND (mode, buf, dest, type, lenblk, stride, nblks)
character mode
integer buf(x)
integer dest
integer type
integer lenblk
integer stride

integer nblks

INPUT ARGUMENTS

mode the mode of the send (“blocking”, “nonblocking”, or “synchro-
nized”)
buf the buffer containing the message to be sent
dest the ID number of the process to which the message is sent
type the message type
lenblk the size in bytes of each data block
stride the number of bytes between the start of each data block
nblks number of data blocks to be gathered
DESCRIPTION

If mode has the value “blocking” then MPI_SSEND sends a message of type type to
process dest, and blocks until the message buffer, but, is available for reuse.

If mode has the value “nonblocking” then MPI_SSEND initiates transmission of a
message of type type to process dest, and immediately returns. The message buffer, buf,
should not be changed until the message is guaranteed to have been sent, i.e., to have
“cleared the buffer”, by a call to MPI_.WAIT, or by a call to MPI_STATS returning a
nonnegative integer.

If mode has the value “synchronized” then MPI_SSEND sends a message of type type
to process dest, and blocks until an acknowledgment is received from the destination
process to indicate that message receipt has completed.

For all modes, the data sent are gathered from the buffer but in blocks, each of length
lenblk bytes. The start of successive data blocks are separated by stride bytes in the
buffer buf. The total number of data blocks gathered is nblks.

RETURN VALUE
If mode is “blocking” or “synchronized” then MPI_SSEND returns the number of

- 37 -

bytes sent. If mode is “nonblocking” MPI_SSEND returns the message ID number

associated with the send operation. A value of -1 is returned if an error occurs.

- 38 -

NAME
MPI_STATS Check the status of a nonblocking send or receive operation.

SYNOPSIS
integer function MPI_STATS (msgid)

integer msgid

INPUT ARGUMENTS

msgid message identifier returned by a call to a nonblocking send or receive

DESCRIPTION
If the message identifier, msgid, refers to a message being sent in nonblocking mode,
then MPI_STATS checks if the message has cleared the message buffer yet. If it has,
then the message buffer is available for reuse. If the message identifier, msgid, refers to a
message being received in nonblocking mode, then MPI_STATS checks if message receipt
has been completed yet, i.e., if the incoming message has been placed in an application

buffer. If it has, then the data received into the buffer is available for use.

RETURN VALUE
MPI_STATS returns the number of bytes sent or received if the nonblocking send or

receive operation has completed. Otherwise, -1 is returned.

-39 -

NAME
MPILWAIT Block until a nonblocking send or receive operation has completed.

SYNOPSIS
integer function MPL.WAIT (msgid)

integer msgid

INPUT ARGUMENTS

msgid message identifier returned by a call to a nonblocking send or receive

DESCRIPTION
If the message identifier, msgid, refers to a message being sent in nonblocking mode, then

MPLWAIT blocks until the message has cleared the message buffer. Upon return from
such a call to MPI_WAIT the message buffer is available for reuse, but receipt of the
message by the destination process is not guaranteed. If the message identifier, msgid,
refers to a message being received in nonblocking mode, then MPI_WAIT blocks until

message receipt has been completed. The data received into the message buffer is then

available for use.

RETURN VALUE
On successful completion MPI_WAIT returns the number of bytes sent or received.

Otherwise, -1 is returned.

- 40 -

A.2 Support for Process Groups

In this section specifications for the following routines for supporting process groups are given.

e MPI.DEFNG
e MPI.FREEG
e MPI_.GETID
e MPIINFOG
e MPI PARTG
« MPI POPG

e MPI PUSHG
e MPISYNCG

Create a group from a list of processes

Discard a group

Determine GCPID of calling process in a group
Determine processes in a group

Partition a group

Restore previous group context

Establish new group context

Synchronize a group of processes

-41 -

NAME
MPIDEFNG Define a group of processes.

SYNOPSIS
integer function MPI_DEFNG (nprocs, plist)
integer nprocs

integer plist(*)

INPUT ARGUMENTS

nprocs the number of processes in the new group
plist a list of nprocs process ID numbers
DESCRIPTION

MPI_DEFNG creates a new group consisting of the nprocs processes whose ID numbers
are listed in the array plist. The new group can subsequently be partitioned by calls to
MPI_PARTG. MPI_DEFNG must be called synchronously by all the processes listed

in plist.

RETURN VALUE
On successful completion MPI.DEFNG returns the unique group ID number of the

newly formed group. If an error occurs a value of —1 is returned.

-42 -

NAME
MPIFREEG Discard a specified group.

SYNOPSIS
integer function MPI.FREEG (gid)

integer gid

INPUT ARGUMENTS
gid the group ID number of the group to be discarded

DESCRIPTION
MPI_FREEG may be used to free memory that stores information about groups that are

no longer needed. The group gid is discarded, and may not be referred to subsequently.

MPI_FREEG must be called synchronously by all processes in the group gid.

RETURN VALUE
On successful completion MPI_FREEG returns 0. Otherwise -1 is returned.

- 43 -

NAME
Determine the group context PID of the calling process for a spec-

MPI_GETID
ified group ID number.

SYNOPSIS
integer function MPI.GETID (gid)
integer gid
INPUT ARGUMENTS
gid the group ID for which the group context PID is required
DESCRIPTION
MPI_GETID determines the group context PID of the calling process within the group

gid. A value of -1 is returned if the calling process is not in the group gid.

RETURN VALUE
MPI_GETID returns the group context PID of the calling process within the group gid

A value of -1 is returned if the calling process is not in the group gid.

-44 -

NAME
MPIINFOG Determine the number of processes in a group, and return a list of
the PID numbers of the group members.
SYNOPSIS

integer function MPILINFOG (gid, maxlis, plist)
integer gid
integer maxlis

integer plist(*)

INPUT ARGUMENTS
gid a group ID number

maxlis the maximum size of the array plist

OUTPUT ARGUMENTS
plist a list of the PID numbers of the processes in group gid

DESCRIPTION
MPIINFOG determines the number of processes the group gid, and returns a list of
the PID numbers of the group members in the array plist. The calling process must be
a member of the group gid. If there are more than maxlis processes in group gid, only

the PID numbers of maxlis of them are returned in plist.

RETURN VALUE
On successful completion MPIINFOG returns the number of processes in the group

gid, or -1 if an error occurs.

- 45 -

NAME
MPI_PARTG Partition a group into subgroups.

SYNOPSIS
integer function MPI_PARTG (gid, key)
integer gid
integer key

INPUT ARGUMENTS

gid the ID number of the group to be partitioned
key the key whose value determines the partitioning
DESCRIPTION

MPI_PARTG partitions the group gid into subgroups according to the value of key.
All processes for which key has the same value form a distinct subgroup. MPI_PARTG

must be called synchronously by all processes in the group gid.

RETURN VALUE
On successful completion MPI_PARTG returns the unique GID number of the subgroup

to which the calling process belongs. Otherwise, -1 is returned.

- 46 -

NAME
MPI_POPG Re-establish former process group context.

SYNOPSIS
integer function MPI_POPG ()

ARGUMENTS

None

DESCRIPTION
MPI_POPG re-establishes the process group context that wasin effect before the preced-
ing call to MPI_ PUSHG. MPI_POPG must be called synchronously by all processes
in the group whose context was established by the preceding call to MPI_PUSHG. The
calling process must not be involved in any nonblocking communication within the current

communication context when calling MPI_POPG.

RETURN VALUE
On successful completion MPI_POPG returns the process group ID number of the group

whose context is re-established. Otherwise, -1 is returned.

- 47 -

NAME
MPI_PUSHG Establish a new group context.

SYNOPSIS
integer function MPI_PUSHG (gid)
integer gid

INPUT ARGUMENTS
gid the group ID number of the context to be established

DESCRIPTION

A call to MPI_PUSHG establishes an environment in which it appears to the processes
in the group gid that they are the only processes in use by the application. This environ-
ment is called the process group context of gid. The effect of a call to MPI.PUSHG
is nullified by the next subsequent call to MPI_.POPG, which re-establishes the pro-
cess group context that was in effect before the call to MPI. PUSHG. If the group gid
contains n processes, then within the group context of gid each process is labeled by a
unique integer between 0 and n — 1, referred to as its group context PID. Processes may
only be referenced by their group context PIDs, which are automatically mapped to the
corresponding process ID numbers by the system. It is an error to refer to any process ID
number outside the range 0 to n — 1, and the processes in group gid may not communi-
cate with processes outside the group. Groups created outside the current group context
by calls to MPI.DEFNG, or MPI_.PARTG may not be referenced. Groups created
within the current group context may not be referenced after exiting the context by call-
ing MPI_POPG. Within a group context the group ALL refers to just the processes
in the current group context. Group contexts may be nested. MPI_PUSHG must be
called synchronously by all processes in the group gid. The calling process must not be
involved in any nonblocking communication within the current communication context
when calling MPI_PUSHG.

RETURN VALUE
On successful completion MPI_PUSHG returns the number of processes in the group

gid. Otherwise -1 is returned.

- 48 -

NAME
MPISYNCG Synchronize processes.

SYNOPSIS
integer function MPI.SYNCG (gid)
integer gid

ARGUMENTS
gid a process group ID

DESCRIPTION
MPI_SYNCG performs a barrier synchronization involving all processes in the group

gid, of which the calling process must be a member.

RETURN VALUE
On successful completion MPI_.SYNCG returns 0. Otherwise, -1 is returned.

- 49 -

A.3 Support for Buffer Copying

In this section specifications for the following routines for packing data into and out of message

buffers are given.

e MPLSPACK
e MPI.SUNPACK
e MPI_.GPACK
e MPI.GUNPACK

Gather data with constant stride
Scatter data with constant stride
General-purpose gather routine

General-purpose scatter routine

-50 -

NAME
MPI_SPACK Pack data blocks into a buffer with constant stride.

SYNOPSIS
integer function MPI.SPACK (buf, lenblk, stride, nblk, msg)
integer buf(*)
integer lenblk
integer stride
integer nblk

integer msg(*)

INPUT ARGUMENTS

buf buffer from which data are to be gathered

lenblk size of each data block in bytes

stride number of bytes between successive blocks in buffer buf
nblk number of data blocks to be gathered

OUTPUT ARGUMENTS
msg buffer in which the gathered data is packed

DESCRIPTION
MPI_SPACK gathers data from the buffer buf and packs it contiguously into the buffer
msg. In buf the data blocks consist of 1lenblk bytes, with the starts of successive blocks
being separated by a constant stride bytes. The number of blocks gathered in nblk.
The most common use of MPI_SPACK is to fill a message buffer for subsequent com-

munication.

RETURN VALUE
Upon successful completion MPI_SPACK returns the total length of the message in

bytes. Otherwise, -1 is returned.

-51-

NAME
MPI_SUNPACK Unpack data blocks from a buffer with constant stride.

SYNOPSIS
integer function MPI.SUNPACK (buf, lenblk, stride, nblk, msg)
integer buf(*)
integer lenblk
integer stride
integer nblk

integer msg(*)

INPUT ARGUMENTS

buf buffer to which data are to be scattered

lenblk size of each data block in bytes

stride number of bytes between successive blocks in buffer but
nblk number of data blocks to be scattered

OUTPUT ARGUMENTS

msg buffer in which the data to be scattered are packed

DESCRIPTION
MPI_SUNPACK unpacks contiguous data from the buffer msg and scatters it with
constant stride into the buffer buf. Successive contiguous blocks of 1lenblk bytes are
extracted from msg and copied to buf so that the first such block is aligned with the start
of buf, and the start of successive blocks is separated by stride bytes. A total of nblk
data blocks are unpacked. The most common use of MPI_SUNPACK is to unpack data
received from another process. It is the responsibility of the user to ensure that buf is

large enough to hold the data unpacked into it.

RETURN VALUE
Upon successful completion MPI_SUNPACK returns the total length of the message

in bytes. Otherwise, -1 is returned.

-52-

NAME
MPI_GPACK General routine for packing data blocks into a buffer.

SYNOPSIS
integer function MPI.GPACK (buf, nlist, ilist, nblk, msg)
integer buf(x)
integer nlist(*)
integer ilist(*)
integer nblk

integer msg(*)

INPUT ARGUMENTS

buf buffer from which data are to be gathered

nlist list of the number of bytes in each block

ilist list of the location in buf at which each data block starts
nblk number of data blocks to be gathered

OUTPUT ARGUMENTS
msg buffer into which the gathered data are packed

DESCRIPTION
MPI_GPACK extracts nblk data blocks from the buffer but and packs them contigu-
ously into the buffer msg according to the information in the arrays nlist and ilist.
The ith data block extracted consists of the contiguous nlist(i) bytes starting at the
location ilist (i) bytes from the start of buf. It is assumed that all indices and number-
ing of data items begin at 0. The most common use of MPI_GPACK is to fill a message

buffer for subsequent communication.

RETURN VALUE
Upon successful completion MPI_GPACK returns the total length of the message in

bytes. Otherwise, -1 is returned.

-53 -

NAME
MPI_GUNPACK General routine for unpacking data blocks from a buffer.

SYNOPSIS
integer function MPI_.GUNPACK (buf, nlist, ilist, nblk, msg)
integer buf(*)
integer nlist(%)
integer ilist(x)
integer nblk

integer msg(*)

INPUT ARGUMENTS

buf buffer into which data are to be scattered

nlist list of the number of bytes in each block

ilist list of the location in buf at which each data block starts
nblk number of data blocks to be scattered

OUTPUT ARGUMENTS

msg buffer from which the data to be scattered are unpacked

DESCRIPTION
MPI_GUNPACK takes nblk successive contiguous data blocks from the buffer msg and
unpacks them into the buffer but according to the information in the arrays nlist and
ilist. The ith data block unpacked consists of n1ist (i) contiguous bytes, and is copied
to the buf so that the start of the block is aligned with the location ilist (i) bytes from
the start of buf. It is assumed that all indices and numbering of data items begin at
0. The most common use of MPI_.GUNPACK is to unpack a message received from
another process. It is the responsibility of the user to ensure that but is large enough to

hold the data unpacked into it.

RETURN VALUE
Upon successful completion MPI_GUNPACK returns the total length of the message

in bytes. Otherwise, -1 is returned.

-54 -

A.4 Support for Communication Contexts

In this section specifications for the following routines for managing communication contexts

are given,

e MPIINFOC
e MPI.NEWC
e MPI_POPC
e MPI_ PUSHC

Get information on valid communication contexts
Create a new communication context
Restore a communication context

Establish a new communication context

-55 -

NAME
MPIINFOC Get information about valid communication contexts

SYNOPSIS
integer function MPLINFOC (maxlis, ilist)
integer maxlis

integer ilist(*)

INPUT ARGUMENTS
maxlis maximum number of communication context ID numbers in the

array ilist

OUTPUT ARGUMENTS

ilist a list of communication context ID numbers

DESCRIPTION
MPLINFOC determines the number of communication contexts that have been created

for the current process group context, and returns a list of the corresponding communi-
cation context ID numbers in the array ilist. The first entry in ilist is always the
ID number of the default communication context. If the number of ID numbers exceeds

maxlis, then only maxlis are returned in the array ilist.

RETURN VALUE

On successful completion MPI_INFOC returns the number of communication contexts.

Otherwise, -1 is returned.

- 56 -

NAME
MPI_NEWC Create a new communication context.

SYNOPSIS
integer function MPI.NEWC ()

ARGUMENTS

None

DESCRIPTION
MPI_NEWC creates a new communication context within the scope of the current

process group context.

RETURN VALUE
On successful completion MPI_NEWC returns the unique ID number of the new com-

munication context. Otherwise -1 is returned.

- 57 -

NAME
MPI_POPC Re-establish former communication context.

SYNOPSIS
integer function MPI.LPOPC ()

ARGUMENTS

None

DESCRIPTION
MPI_POPC re-establishes the communication context that was in effect before the pre-

ceding call to MPI_PUSHC.

RETURN VALUE
On successful completion MPI_POPC returns the ID number of the communication

context that is re-established. Otherwise, -1 is returned.

- 58 -

NAME
MPI_PUSHC Establish a new communication context.

SYNOPSIS
integer function MPI_.PUSHC (ccid)

integer ccid

INPUT ARGUMENTS

ccid the ID number of the communication context to be established

DESCRIPTION
MPI_PUSHC sets the current communication context to that given by the communi-
cation context ID number, ccid. This communication context stays in effect until the
subsequent corresponding call to MPI_POPC, or until the next call to MPI_.POPG,
which destroys all the communication contexts of the process group context being exited.

MPI_PUSHC must be called by all processes in the current process group context.

RETURN VALUE
On successful completion MPI_PUSHC returns 0. Otherwise -1 is returned.

A.5 Utilities

-59 -

In this section specifications for the following utility routines are given,

e MPI_CPU

e MPI_DATE

« MPI.LERROR

e MPILETEXT

e MPI_ MACHINE
e MPIINFOMN
e MPI_TIME

e MPI_WALL

Get user CPU time in seconds

Get today’s date as a character string
Determine the current MPI error status

Get text string corresponding to error status
Get text string describing machine

Get process and machine characteristics

Get current time as a character string

Get elapsed wallclock time in seconds

- 60 -

NAME
MPI_CPU Determine CPU time used.

SYNOPSIS
double precision function MPI_.CPU ()

ARGUMENTS

None

DESCRIPTION
MPI_CPU determines the CPU time in seconds used by the calling process since the

process was created.

RETURN VALUE
MPI_CPU returns the CPU time used in seconds by the calling process since the process

was created.

-61-

NAME
MPI_.DATE Determine today’s date.

SYNOPSIS
character*8 function MPI_LDATE ()

ARGUMENTS

None

DESCRIPTION
MPI_DATE gives the date as an eight character string of the form “MM/DD/YY.” If

the two-digit integer, YY, giving the year is > 90, then the actual year is obtained by
adding 1900 to YY. Otherwise, 2000 is added to YY to calculate the actual year. Thus, for
example, “06/30/90” signifies June 30, 1990, and “01/01/01” signifies January 1, 2001.

RETURN VALUE
MPI_DATE gives the date as an eight character string of the form “MM/DD/YY.”

-62-

NAME
MPI_ERROR Determine error status following a call to MPI1

SYNOPSIS
integer function MPI_LERROR ()

ARGUMENTS

None

DESCRIPTION
MPI_ERROR returns an integer giving the error status of the preceding call to an MPI1

routine.

RETURN VALUE
The meaning of the error status returned by MPI.LERROR is given in the table below.

Additional entries may be added later.

Error status | Meaning

No error

Invalid PID used

Invalid GID used

Invalid MSGID used

Invalid CCID used

Invalid GCPID used

Invalid message buffer size

Invalid stride in MPI.SPACK/MPI.SUNPACK
Invalid block size in pack/unpack routine
Invalid data item size in pack/unpack routine
System buffer overflow

Too many communication contexts

Too many group contexts

—
MHO!D@RIOSU\#MMHO

- 63 -

NAME
MPI_ETEXT Give string describing the error status

SYNOPSIS
character*80 function MPLLETEXT (ierrno)

integer ierrno

INPUT ARGUMENTS

ierrno The error status

DESCRIPTION
MPI_ETEXT gives a brief description of the error corresponding to the value of the

error status integer ierrno.

RETURN VALUE
MPI_ETEXT returns a string describing the error status.

- 64 -

NAME
MPI_MACHINE Get machine name, version, and related information.

SYNOPSIS
character*80 function MPI_.MACHINE ()

ARGUMENTS

None

DESCRIPTION
MPI_MACHINE returns a character string giving the name of the machine that the

calling process is running on, together with other information that may include the loca-

tion of the machine, the type of machine, and similar site-specific details.

RETURN VALUE
MPI_MA CHINE returns a character string giving details about the machine on which

the calling process is running.

p———

e Ve e 8 e

- 65 -

NAME
MPLINFOMN Get information on the machine configuration.

SYNOPSIS
integer function MPIINFOMN (maxlis, ilist)

integer maxlis

integer ilist(*)

INPUT ARGUMENTS

maxlis the size of the array ilist.

OUTPUT ARGUMENTS

ilist an integer array

DESCRIPTION

MPILINFOMN returns in the array ilist a list of integers that characterize the ma-

chine that the calling process is running on. The first integer in ilist is the number

of physical processors of the machine in use by the application, the second in the total

number of processors in the machine. Other entries characterize the memory, I/0, and

performance of the machine. The meaning of the entries in ilist is still under review.

RETURN VALUE

On successful completion MPIINFOMN returns the number of entries in ilist that

have been assigned a valid value. Otherwise, -1 is returned.

- 66 -

NAME
MPI_TIME Determine the current time.

SYNOPSIS
character*8 function MPLLTIME ()

ARGUMENTS

None
DESCRIPTION
MPI_TIME gives the time as an eight character string of the form “HH:MM:SS” to the

nearest second. A twenty-

Thus, for example, “15:30:00” signifies 3:30pm.

RETURN VALUE
MPLTIME gives the time as an eight character string of the form “HH:MM:SS.”

four hour clock is assumed for which “00:00:00” is midnight.

- 67T -
NAME -
MPI_WALL Determine elapsed wallclock time in seconds. :
SYNOPSIS -
double precision function MPL.WALL)
ARGUMENTS -
None
DESCRIPTION -
MPILWALL determines the wallclock time in seconds that has elapsed on the calling \
process since the process was created. -
RETURN VALUE
MPI_WALL returns the wallclock time in seconds that has elapsed on the calling process -
since the process was created.
-—
-
-—
-
-

