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Abstract

Broadcasting is an information dissemination problem in which information originating at
one node of a communication network must be transmitted to all the other nodes as quickly
as possible [1, 2]. In this paper, we consider the problem in which all the nodes of a network
must, by turns, broadcast a distinct message. We call this problem the successive broadcasts
problem. Successive broadcasts is a communication pattern that appears in several parallel
implementations of linear algebra algorithms on distributed memory multicomputers. Note
that the successive broadcasts problem is different from the gossip problem [2] in which all the
nodes must perform a broadcast in any order, even simultaneously. We present an algorithm
solving the successive broadcasts problem on hypercubes. We derive a lower bound on the time
of any successive broadcasts algorithms that shows that our algorithm is within a factor of 2 of

the optimality.

Key words: Broadcasting, hypercube, successive broadcasts problem.



1 Introduction

Many algorithms — particularly in linear algebra — have the following form. The data structureis a
set S of n data py, ..., tn. The algorithms perform in n steps. Let SO = S', that is pgo) =pj=

1,...,n. At step ¢, 1 <1 < n, the algorithms construct a set SO = {ug-i),j =1,...,n} by
i - i-1)y
l‘g")=F(/“§" l)’ug ))’.7"_‘1""7'”"

where F is an updating function characterizing a particular algorithm. Let tcomp(F') be the arith-
metic time necessary to apply the function F. Such an algorithm has a cost 12t comp (F)-

Now, such an algorithm can be implemented on a distributed memory multicomputer as follows.
The set S is divided in p blocks, where p is the number of processors, such that each processor
holds approximatively % data. This allocation being fixed, each processor, by turns, computes a
single value from the block it holds, and broadcasts this value to all the other processors. Then,
each processor updates its data, another processor computes the next value and broadcast it, and
so on. This process completes after n broadcasts. Thus, if t4r0ad(p) is the communication time
necessary to broadcast a single data from one processor to the p — 1 other ones, then communi-
cations and computations can be easily scheduled in a time n(tsr0ad(p) + l'%] tcomp(F)) when the
broadcast are performed in distinct phases. The arithmetic speedup is then close to p. However,
the communication cost implies that the efficiency of the algorithm will decrease as the number of
processors increases. Indeed, for instance on hypercube, and it may be worse on other topologies,
toroad(P) > log, (p), therefore the global communication time is O(n log,(p)).

In this paper, we present a communication scheduling that allows broadcasts initiated by suc-
cessive sources to be pipelined on a hypercube so that the global communication time falls to
O(n +log,(p)). Our result is based on the fact that it is possible to initiate different broadcasts by

turns from different nodes of a hypercube, with no conflicts and insuring the correct march of the
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algorithm (each value is received at the due time).
Section 2 below formally states the successive broadcasts problem, and Section 3 describes how

to solve it on a hypercube. Section 4 contains some concluding remarks.

2 Statement of the problem

Let us consider a distributed memory multicomputer with p processors labeled from 1 to p. Let
S be a set of p data py,...,u, distributed among the processors, each processor holding one
data. The distribution depends on a function “alloc” that specifies the processor holding a given
data: the processor alloc(j) holds p;j. We consider the following algorithm to be scheduled on the
multicomputer. This algorithm is given in term of instructions to be executed by any processor

(the function “mynode” returns the label of the current processor).

SuccEssIVE BROADCASTS ALGORITHM
Begin
For :=1 to p do
If mynode = alloc(i) then z « pu;;
broadcast(alloc(z),z); (1)
store(z); (2)

End.

The Successive Broadcasts Algorithm consists in p iterations. Each iteration deals with a
different data p;,i = 1,...,p. At iteration %, Processor alloc(z), holding p;, broadcasts u; to all
the other processors (Instruction (1)). When a processor different than alloc(i) encounters the
instruction “Broadcast(alloc(s), z)”, it means that he will wait upon reception of a value z from

one of its neighboring processors and, eventually, he will continue the broadcast by forwarding this



value to some of its neighbors following the protocol adapted to a broadcast from node alloc(z).
After having received, and eventually forwarded, the most recent value z, each processor stores this
value (Instruction (2)).

Our problem is to organize the communications with respect to the task order of the Successive
Broadcasts Algorithm. For instance two values p;, and p;, should not arrive in a processor in a
reverse order (eventually, if this situation appends, we should be able to know in advance the order
or reception so that every processor can correctly schedule the storage of the data). Note that
organizing the communications depends on finding a adapted allocation of the element p; and, this
allocation being fixed, finding an adapted scheduling of the broadcast operations.

There is an easy, but not efficient, way to implement the Successive Broadcasts Algorithm,
by performing p separated broadcasts. Now, the global bandwidth of the network will certainly
be inefficiently used during each broadcast (especially if the size of the data is small). Therefore
it should be faster to interleave several broadcasts, still up to the respect of the task order of
the algorithm and the communication constraints. This is what we will do on any d-dimensional

hypercube Qg.

Notations

Qu is the graph of p = 2¢ vertices labeled from 0 to 24 — 1 such that there is an edge between two
vertices z and vy if and only if their binary representations differ in exactly 1 bit. For a vertex z of
binary representation on d bits T4_1Z4—2...Z1%0, each subscript ¢ denotes a different dimension.
For two vertices z and y, §(z, y) denotes the Hamming distance between z and y, that is the number
of bits from which they differ. If z @ y denotes the bitwise xoring of z and y ((z® y)i = z: + ¥
(mod 2),i=0,...,d — 1), and |z| denotes the number of bit 1 in z, then §(z,y) = |z y|. For any

bit value z;, Z; denotes its complement.




Communication constraints

We assume the following communication constraints. Each processor is supposed to be able to deal
with only one atomic message at any given time. In particular, a processor cannot simultaneously
receive more than one message. However, we assume that any processor can send a message
simultaneously to all its neighbors. The communication process is thus whispering for the reception,
and shouting for the emission [1]. Moreover, a processor cannot simultaneously send and receive.

Finally, we count 1 for the time to send an atomic message from any processor to its neighbors.

3 Successive broadcasts on hypercube

Our goal is to find an allocating function “alloc” and to organize the communications so that,
for each processor, the storages of Instruction (2) will be performed in the correct order, that is
B1, 42, - - -, bp. An implementation of the Successive Broadcasts Algorithm satisfying this condition
on the order of the storages is said valid. Of course we want also our implementation to respect
the communication constraints.

There exists a valid implementation of the Successive Broadcasts Algorithm performing in
time plog, p by completing each broadcast before initiating the next one. Indeed, a broadcast in
an hypercube with p processors can be done in log, p time under the communication constraints

stated before. However, it is possible to do much better:

Proposition 1
There exists a valid implementation of the Successive Broadcasts Algorithm performing in time

2p + log, p — 2 under the specified communication constraints.

To prove this proposition, we need to recall the definition of a spanning binomial tree of an

hypercube, and its different rotations (see [4]).



Definition. The spanning binomial tree rooted at a vertez ¢ of Qg is denoted SBT (z). For any
verter u = Uq—y . . .ulyuo of Qd, let k be the dimension satisfying (u®z)x = 1 and (udz); =0,Vi< k
(k=-1ifudz=0). Let My, = {k-1,...,0} (eventually empty if K < 0). Then the father of u
in SBT (z) is
Ud—y .. Ukp10Ug—1... U0 ifk# —1;
0 if k=-1;
and his k children are
Ud—y .. . Ukg1lUg—y ... T ... uo, Vi €M, ifk#-1;
Ud—1...T5...u0, V] € {0,...,d =1} ifk=-1.

Note that SBT (z) = ¢ @ SBT(0) where the zoring applies to each vertex of SBT(0).
For any vertex z of Q4, R(z) denotes its left bit rotation, that is
R(z4—1Zg—2...T1T9) = Td—2 ... T1ToTd—1-

For j > 1, the j-th left rotation is defined as R = Ro R’~! (R® = R? = Id). This operator can be
applied on spanning binomial trees on all the vertices since it preserves the adjacency. Note that
a vertex u has no child in R?(SBT(z)),j € {0,...,d — 1} if and only if u; = ;. This property is
the key of the proof of Proposition 1 as one will see later in the proof of Lemma 3. Figure 1 shows

SBT(000), SBT(011) and R} (SBT(011)) in Qs.

000 011 110

100 010 001 }1\ 00,1 010 111 010 100
lli.O 101 011 l(l)l 110 000 011 101 000
111 100 001

Figure 1: SBT(000), SBT(011) and R'(SBT(011)) in Qs.



Any of the trees R?(SBT(z)),5 = 0,...,d—1 can be used for broadcasting a message from z [4]:
at each step, the message is sent from all the vertices at the same level in the tree simultaneously
to all their children in the tree. The levels are labeled from 0 to d, the root being the only vertex
of level 0. Such a broadcast takes d steps since the depth of these trees is d. More precisely, if u is
at distance 6(u, z) from the source z, u will receive the message after &(u, z) steps since these trees
contains only shortest path between any vertex and his children in the trees.

We are now ready to give our allocation and broadcasting strategies.

Allocation strategy

Our allocation uses the Binary Reflected Gray Code sequence BRGC(d) = {z(1),z(®, ..., z(zd)} (see
for instance [3]). Recall that BRGC(1) = {0, 1} and BRGC(d) = {0BRGC(d — 1), 1BRGC(d — 1)}
where BRGC(d) denotes BRGC(d) in the reverse order. For instance BRGC(2) = {00,01, 11,10}
and BRGC(3) = {000, 001,011,010,110,111,101,100}. We define alloc(j) = z(), 1 < j < 2¢ that

is the j-th element of the BRGC sequence.

Broadcasting strategy

First we describe the broadcasting algorithm used by a processor z(), j € {1,...,2%}. Let v be such
that () @ 20+ = 2v (with £(2+1) = z(1)) that is () and z(+1) differs in dimension ». Then,
zU) uses R¥(SBT(z))) to broadcast u;. Note that when z(%) performs its broadcasts, z(+1) will
receive p; at the first step. Moreover, by construction, z(+1) is a leaf in R” (SBT(z(9)).

Now we have to specify how these different broadcasts can be scheduled successively. Since
z*) is a leaf in RY(SBT(z\9)), after reception of i;, and assuming that all the previous values
have been received, z(/+!) is ready to begin the broadcast of u;4,. However, if z(i*+1) performs

the first step of its broadcast when z(%) performs the second step of its broadcast, a conflict will




v

x) _/_' L0 , > 4
L+ el i+

Conflicts

(j)

(j) Second step of the broadcast from X (j+1)

First step of the broadcast from X and first step of the broadcast from X

Figure 2: A conflict occurs when two SBT’s are initiated at each step.

occur (see for instance Figure 2). Our broadcast scheduling is thus as follows: after reception of u;,
Processor (Ut1) waits one top, and then begins the broadcast of pj41. There is no modification of
the broadcasts which are still performed level by level as specified before. Only the time when the

different broadcast will be initiated is specified here: every two steps, a new broadcast begins.

Lemma 1 The allocation strategy and the broadcast scheduling specified above produce a valid

implementation of the Successive Broadcast Algorithm.

Proof: We have to show that the order of reception of the sequence p;,j = 1,...,p is correct.
Assume it is not, and let 7 be the smallest integer such that z(?) receives two values in a wrong
order, that is receives u;» before p; for some j’ and j” satisfying ;" > j'.

Let t; and t;j» be respectively the emission time of pj by ") and the emission time of p;n
by z(/"). Since there are j — j' — 1 vertices between z(") and z(") in the Gray code sequence,
tin >t +2(5" — §'), and 8(al),20") < j” - j'.

Now, since z(*) receives p;» before pjr, tjn + 8z, z()) <t + 6(zU"), 20)) Thus 2(5” - j') +
§(z"),z() < §(zU", z(") + §(z("), z()). Therefore §(z,z0G") > 2(5” - j'), and then j' = 5",

a contradiction. O




Lemma 2 Assuming there is no conflicts, the broadcast scheduling specified above allows to perform

the Successive Broadcasts Algorithm in time 2p + log, p — 2.

Proof: A new broadcast is initiated every 2 tops. After 2(p — 1) tops, the last broadcast begins

and completes in log, p tops. O

Lemma 3 The broadcast scheduling specified above performs the Successive Broadcasts Algorithm

without any conflicts.

Proof: Let T(z(9)) and T(z()) be the broadcasts trees, as specified before, of z(!) and z(¥) respec-
tively, ¢ < j. Let u be a vertex of Qg at level /; in T(z(i)), and v another vertex of Qg at level [;
in T(zU)). Assume that, for some time ¢, u is active in the broadcast of z() and v is active in the
broadcast of z(/). Note that this assumption implies /; < ;. The question is: is it possible that

u=v?

T(x(i))

There are mainly two cases:

1. At time ¢, v and v are sending u; and p; respectively. In that case, I; — I; = 2(5 — ¢). On the
other hand, z() and z() differs in at most j — i bits. Now, by construction of the broadcast
trees,

u=z(@4% where @ € R(SBT(0)) at level /;
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and v=2zU) @9 where 9 € R°(SBT(0)) at level I;

for some integers r and s. Therefore

u=v=>ﬂ@ﬁ=z(i)€9x(j).
Again by construction of the trees, |4 @ 0| > li — I = 2(7 — 1) and |z() @ 29| < j —i. Thus
u # v, otherwise ¢ = j.
The case where, at time ¢, u and v are receiving p; and p; respectively, can be treated similarly.
. At time t, u is sending p; and v is receiving p;. In that case, l; — l; =2(j —i) — 1. Thus if
j —i>1, asimilar argument as in case 1 shows that u # v.

Assume that j = i + 1 and denote v the dimension in which z(® and z(+Y) differ. Node u
is at level l; in T(z()) and v is at level /; — 1 in T(z(+1). Thus, if v = v then u @ z() has
exactly /; bits 1, and u @ z(*1) has exactly I; — 1 bits 1. Therefore u, = (—x-(‘T):, and u is a leaf
in T(z¥) = z) @ R*(SBT(0)): a contradiction with the fact that u is sending p;. Therefore

uFv. O

Proof of Proposition 1: directly follows from Lemmas 1, 2 and 3. 0

Lower Bound. Concerning a lower bound of our problem, we state the following results:

Proposition 2 Let a(d) be the mazimum, over all the spanning trees T of Qg, of the number of

leaves of T. Any implementation of the Successive Broadcasts Algorithm with no conflict performs

in a time at least 2p — a(d) — 1 where p = 24,

Proof: In any implementation of the Successive Broadcasts Algorithm with no conflict, any pro-

cessor has to receive p — 1 messages, and to send its own message. Moreover, let T(z) be the

11



broadcast tree of processor z,z € {0,...,p — 1}. The number of leaves of T'(z) is smaller than
a(d). Therefore, during the broadcast from z, at least p — a(d) — 1 vertices have to forward the
message after reception. Thus during the whole implementation of the Algorithm, there are at least
p(p — a(d) — 1) forwarding operations. Therefore, there exists a vertex zo who forwards at least
p — a(d) — 1 messages. Thus any implementation of the Successive Broadcasts Algorithm needs a

time of at least (p—1)+1+ (p—a(d)-1). O

Note that a(d) > £. Indeed, this bound is reached by the Spanning Binomial Tree. However,
for d > 4, it is possible to do better “by hand”: a(4) > 10. Therefore, it may be possible to perform

faster than 3p+ o(p). On the other hand, it is impossible to perform in p + o(p).

Simulations. We performed some simulations of different successive broadcasts implementations
and generated the corresponding time-stamped traces. We obtain the Figures with a re-execution
of the generated data on the ParaGraph! tool.

The successive broadcasts are started following a Gray code in the hypercube. Figure 3 presents
a simulation of the successive broadcasts using a classical spanning binomial trees in a synchronised
routine. Figure 4 presents a simulation of the interleaved spanning binomial trees and Figure 5
presents a simulation of our implementation that shows how the rotated spanning binomial broad-
cast trees are interleaved in a 4-cube. Remark the effective gain in time as the time scale is the
same on each Figures and that only 11 trees are represented in Figure 3, while the 16 trees are

shown in Figure 4 and Figure 5.

! Available via internet : send an email message containing "send index from paragraph” to netlib@ornl.gov.
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4 Conclusion

We studied in this paper the successive broadcasts problem in which the nodes of a network have to
perform by turns a broadcast in a specified order. This problem comes from parallel implementation
of linear algebra algorithms on distributed memory multicomputers.

A straightforward scheduling performs in time O(p X Troadcast(p)) in any network. We show
that, in hypercubes, it is possible to perform successive broadcasts in time O(p + log, p) by using
individual broadcasting based on the rotations of the spanning binomial tree. We showed that
our approach is within a factor of 2 of the optimality. An open problem stays to find the exact
complexity of the successive broadcasts problem in hypercube. We derived a lower bound based
on counting the maximum number of leaves a(d) of any spanning tree of the d-cube. However, we
did not succeed in finding the explicit value of a(d), and this value may be not sufficient to give a
tight lower bound.

Besides its many applications in linear algebra, the successive broadcasts problem is interesting
by itself. In particular it could be of first interest to study this problem on other topologies as grids

and meshes, and under other communication constraints as specified in [1].
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Figure 5: Interleaving of the different rotated spanning binomial broadcast trees during our imple-

mentation of the Successive Broadcasts Algorithm on a 4-cube.



