Instructions for my C++ Elliptic
PDE Solver Programs using Mixed
Methods on General Geometries

Philip T. Keenan

CRPC-TR94393
May, 1994

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Supported in part by a National Science Foundation Post-
doctoral Fellowship

Instructions for my C++4 Elliptic PDE Solver
Programs using Mixed Methods on General
Geometries

Philip T. Keenan*
April 25, 1994

Contents

1 Introduction 1

2 Input Commands 2
2.1 Mesh Description Commands 2
2.2 Compute and Display Commands 3

3 Some Mathematical Details 6

4 Running the Programs 8
4.1 Command Line Arguments 8
4.2 Sample Input Files 8

1 Introduction

This manual describes the four elliptic solver programs elliptic_m2d_X, where X is the
name of the numerical method used in that variant. The four programs are otherwise
identical and build on a substantial C++ library of tools for general geometry and linear
algebra. The four methods are defined in detail in [1]. In particular, X is saddlepoint
for the MFEM, hybrid for the MHFEM, stencil for the CCSM, and enhanced for the
ECCSM. These C++ programs all solve the elliptic partial differential equation

-V (Kvp) = f7
on some two dimensional polygonal region Q defined by triangles and rectangles. Here K is
a symmetric tensor function of position. The scalar p represents a potential and u = —K'Vp

is called the velocity. If # is a unit normal to an edge then u - # is called the flux across the
edge in the direction of the normal. On each external boundary edge, one of the following
two boundary conditions must be supplied: either a scalar boundary condition

*Supported in part by a National Science Foundation Postdoctoral Fellowship

1

P = po,

or a flux boundary condition

u'fz:go.

The boundary functions py and go, the coefficient tensor K , and the source/sink function
f must all be specified. The programs also allow “wells” to be specified as delta-function
sources and sinks.

The programs use the lowest order Raviart-Thomas spaces on triangles and rectangles
to construct a mixed finite element approximation to the PDE. The programs differ in the
manner in which they solve the resulting saddle point problem. The saddlepoint variant
rewrites it as a positive definite linear operator and applies conjugate gradient. However,
evaluation of the operator itself requires a nested application of conjugate gradients, re-
sulting in very slow run times for large problems. The hybrid variant introduces Lagrange
multipliers on all mesh edges, yielding a sparse positive definite system, but with sub-
stantially more unknowns. The stencil variant uses special quadrature rules to reduce the
problem to a sparse positive definite system in the scalar variables, analogous to the finite
difference method on rectangles. Finally, the enhanced stencil method combines features
of the stencil and hybrid methods to handle certain problems that can arise when using
regular, rather than smooth, mesh refinement.

The programs are written in C++ for maximum flexibility. In particular, versions for
3-D domains, parallel architectures and systems of nonlinear time evolution equations are
all in preparation, based upon the same libraries.

2 Input Commands

The programs are based on a command interpreter which was built automatically using my
C++ code generator tool cmdGen, which is further documented in the manual Instructions
for cmdGen.

The programs take an input file which can contain any of the following commands. In
addition, the standard commands for command interpreters are accepted. These include
commands for online help, include file capability and comments beginning with #. See the
command interpreter manual for further details on these commands. Also note that this list
is subject to change: use the command help help to get started with on-line help, which
has the completely up-to-date set of commands and options for the version you are running.

2.1 Mesh Description Commands

¢ bndy: bndyConds bc Select the type of boundary condition to impose on subsequent
edges. Boundary conditions can be one of

— scalar The scalar solution variable. (Dirichlet)

— flux The normal flux in the solution across a face. (Neumann)

¢ prop: double prop Specify a property value for subsequent edges and elements.

2

2.2

v: string name, double x, double y Define a vertex by its coordinates.
e: string name, string id1, string id2 Define an edge by its vertices.

tri: string name, string id1, string id2, string id3 Define a triangle by
its edges.

rect: string name, string idi, string id2, string id3, string id4 Define
a rectangle by its edges.

setBndy: char* faceName, bndyConds bc, double value Modify the boundary con-
dition for a given edge.

setProp: char* elementName, double propValue Modify the property value for a
given element.

Compute and Display Commands

subdivide: int N Globally subdivide the mesh N times. This applies regular sub-
division to each element.

solve: Solve the partial differential equation on the current mesh.
colorRange: ranges r Select a range for coloring.

— auto The color range is automatically selected to fit the observed range of values.
— range min max The color range is defined to be [min, maz]. Colors outside this
range are shown as black.

colorTransform: transforms t Select a transformation to apply to variables for
coloring. Choices include:

— identity Colors are based directly on the value.

— absolute-value Colors are based on the absolute value.

— logl0-of-absolute-value Colors are based on the base 10 logarithm of the

absolute value.

plot: colorVariables var Append a plot of the specified variable to the plot file.
Currently the following variable names may be used:

— mesh This draws just the mesh without reference to the solution.

— edgeLines This draws just the edges of the mesh, in black.

— mesh-area This colors each element based on its area.

— mesh-map This displays the determinant of each element’s map to the reference
element.

— mesh-regularity For each element, the length of the shortest edge divided by
the length of the longest edge.

property This displays the property code for each element.
boundary-conditions The boundary conditions on each edge.

sources-sinks This displays the right hand side of the scalar PDE, ignoring
any wells (delta functions) that may also be present.

coef-tensor The determinant of the coefficient tensor.
scalar The computed scalar solution.
gradient The gradient of the computed solution.

flux The computed flux, converted into a vector velocity at the center of the
element.

divergence The divergence of the computed solution.
reference-solution The reference scalar solution.
absolute-error The absolute value of the error in the scalar solution.
relative-error The relative error (computed-reference)/reference.
reference-gradient The gradient of the reference solution.
gradient-error The vector error in the gradient.
gradient-absolute-error The absolute error in the gradient.
gradient-relative-error The relative error in the gradient.
reference-flux The flux from the reference solution.

flux-error The vector error in the flux.

flux-absolute-error The absolute error in the flux.
flux-relative-error The relative error in the flux.
reference-divergence The divergence of the reference solution.
divergence-absolute-error The absolute error in the divergence.

divergence-relative-error The relative error in the divergence.

plotCommands: literal {, char* text, literal } Givelow level plot commands.

write: colorVariables var Append transformed values to the log file. This accepts
the same list of variables as plot.

norms: colorVariables var Compute various error norms for the indicated variable.
This accepts the same list of variables as plot.

label: labels obj Label the specified objects in the current plot. Objects include:

vertices
edges
elements

wells

vectorScale: double factor Change the scale factor used in drawing vectors.

4

¢ redirect: outputFiles file, char* newFileName Redirect any output file. Valid
output file names are

— plot The plot file.
— log The log file.

New output is appended to old when the specified file already exists.
e refSoln: refSolnKinds kind Specify a reference solution.

— linear
— quadratic
— cubic

— Wave

property

The various polynomial reference solutions of total degree d € {1,2,3} are given by

d . .
> cijaty,
i+7=0

where the coefficients are specified with the command
refSolnParams { c00 c10 c01 c20 c11 c02 ... }

The wave solution is
sin(comz) * cos(c1my),

with
refSolnParams { cO c1 }

The property based reference solution uses the element and face property values as
source/sink terms and boundary values, respectively. It does not attempt to compute
an analytic solution (it uses zero instead).

Users with access to the libraries can extend the list of reference solutions simply by
supplying a few functions and relinking the code.

¢ refSolnParams: doubleArray params Specify parameters for the reference solution.

e tensor: doubleArray tensor Specify the coefficient tensor. The command
tensor { ki1 k12 k22 }

specifies

ki1 k12
K= .
(k12 koo)

¢ info: Print information about this program.

¢ iterations: double C, double p, double rtol Iteration parameters for conju-
gate gradient: allow up to C'NP iterations for N equations, while seeking to reduce
the relative error by rtol.

e well: double x, double y, double flowRate Add a well at the specified position.
The flow rate ¢ is positive for injection wells and negative for production wells. The
well acts like ¢ times a delta function in the right hand side of V - u = f.

3 Some Mathematical Details

The programs solve the elliptic partial differential equation

-V - (K(z)Vp(z)) = f(z) for all z € Q C R?,

with boundary conditions

p(z) = po(z) for all z € HQp,

and

—(K(z)Vp(z))- #(z) = go(z) for all z € O,
where 0y = 00 — 0Qp.

Following the standard mixed finite element formulation let

u=—KVp,

whence

V-u=f

Let (-,-) denote the L? inner product on Q, and < -,- > the L? inner product on 092.
Multiplying by suitable test functions, integrating and applying the divergence theorem
yields

(K_lu,v) =—(Vp,v)=(p,V-v) =< p,v >,

and

(V'u’w): (fsw)

For u € H(div) and p € L?, the above equations are equivalent to the original partial
differential equation, provided they hold for all v € Ho(div) and w € L?. Here Hoy(div) =
{ve H(div):v-n =0 on dNy}. Thus the term < p,v > becomes < pg, v >80 -

Now let {w; : j € I,,} be a basis for a finite dimensional subspace of L2, and {v; : j € I}
be a basis for a suitable corresponding finite dimensional subspace of H(div). In these pro-
grams the lowest order Raviart-Thomas spaces are used, corresponding to a decomposition
of { into triangular and rectangular elements, so the w; are piecewise constants and the

v; are discontinuous piecewise linear functions with continuous normal components across
elements. _

Let I, be the set of indices j for which vj-f=0o0n 0Qn, and let I, = I, — I,.

We then seek approximate solutions

U= Ujy,
j€l,
and

P=)" Pu,
J€ly
The unknown coefficients U; and P; must satisfy

Z U;(K v, v;) — Z Pj(w;,V - v;) = =< po,v; >, for all i € I,
J€ly Jj€ly

Z U;(V -vj,w;) = (f,w;), for all 5 € I,
jel,
and

U; = go(z;) for all j € I,
where z; is the midpoint of the external edge on which v; -7 = 1.

Let U = (U;)%;, be the vector of unknown flux coefficients, and P = (Pj)l;, be the
vector of unknown scalar coefficients. Let us use block notation for the I, index range,

writing for example
— Ua
U= (U,) .

Then in block matrix form we have

MaaUa + MabUb - BaP = Raa
BTu, + BfU, = R,

Uy, = G,
where
M;; = (K5, v;),
B;; = (wj, V. v,'),
Rai = —< po,v; >,
and

Ryi = (f,).

This is the symmetric indefinite sparse square linear system which must be solved in the
saddlepoint (MFEM) variation. The other variants are similar and are described in greater
detail in [1].

We take K, f, po and go to be piecewise constant functions for simplicity in the user
interface and in evaluating the above integrals.

4 Running the Programs
4.1 Command Line Arguments
Executing a command like
elliptic_m2d_X -usage

where X is replaced by for instance enhanced will bring up a complete list of the command
line options and C-shell environment variables used by the program. In particular, the -echo
option displays input commands as they are processed, which may help with debugging
input files. The standard command line is

elliptic_m2d_X inputFileName plotFileName logFileName

Using - in place of a file name makes the program read from the keyboard or send output
to the screen, which also happens if the output files are omitted.

4.2 Sample Input Files

Suppose the file twistM contains the following lines:

a pair of triangles stretched along the normal direction

vV a -10
vb 01
vV c 0 -1
vd 21.5

boundary edges

e ab ab
e ac ac
bndy flux

e db db
e dc dc

internal edges

e bc bc
tri t ab ac bc
tri tt db dc bc

It defines a domain made from two triangles, as shown in figure 1.
Next, suppose the file demo contains the following lines:

Mesh

Figure 1: Sample coarse mesh

a sample driver file
include twistM # this reads in the above mesh description

plot mesh
plotCommands { new }

refSoln wave
refSolnParams 2 { 2.5 2.2 }
vectorScale 0.01

plot edgelLines
plot boundary-conditions
plotCommands { new }

iterations 1.1 1 1e-12
subdivide 3
solve

plot scalar
plot edgeLines
plotCommands { new }

plot reference-solution
plot edgelLines
plotCommands { new }

plot absolute-error
plot edgeLines
plotCommands { new }

norms absolute-error

norms gradient-absolute-error
norms flux-absolute-error

norms divergence-absolute-error

This subdivides the mesh and solves the PDE using the wave test problem. It produces
several informative plots as well as norms for the error. If run via a command like

elliptic_m2d_enhanced demo demo.plot demo.log

the plots will be in the file demo.plot, while the norms and other convergence information
will be in demo.log. The plot file can be displayed with my plot program, or converted to
PostScript for printing using my plot2ps program.

10

References
[1] Arbogast, T., Dawson, C., and Keenan, P. T., Mized Finite Element Methods as Finite

Difference Methods for Solving Elliptic Equations on Triangular Elements, Dept. of
Computational and Applied Mathematics Tech. Report #93-53, Rice University, 1993.

11

