A Tutorial for CC++

Paul A. G. Sivilotti
Peter A. Carlin

CRPC-TR94391-S
February 1994

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

A Tutorial for CC++

First Edition

CRPC-94-01

Paul A.G. Sivilotti and Peter A. Carlin
Compositional Systems Research Group
Department of Computer Science
California Institute of Technology
Caltech Mail Stop 256-80

Pasadena, California 91125
cc++@cs.caltech.edu

©1994, All Rights Reserved

Acknowledgements

This tutorial owes a great deal to the other members of the Compositional
Systems Research Group at Caltech - Mani Chandy, Carl Kesselman, John
Garnett, Svetlana Kryukova, Tal Lancaster, Berna Massingill, Adam Rifkin,
Mei Su, and John Thornley. Their careful review and criticism helped shape
this document into its current form.

This research was supported in part by NSERC. The research on CC++
object libraries for concurrent computation is funded by ARPA under grant
N00014-91-J-4014. The research on compositional concurrent notations is
funded by the NSF Center for Research on Parallel Computing under grant
CCR-9120008.

iii

Contents

1 Introduction
1.1 The CC++ Programming Language
1.2 This Tutorial

2 Creating Parallel Threads of Control
2.1 Structured Parallel Blocks: par . . .

2.2

23

3 Atomicity

2.1.1
2.1.2
2.1.3
2.14
2.1.5
2.1.6

Introduction
Structuring
Sharing Data
Nesting
Pitfalls.
Examples

Structured Parallel Loops: parfor .

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5

Introduction
Sharing Data
Loop Unraveling
Pitfalls.
Examples

Unstructured Parallelism: spawn . .

23.1
2.3.2
2.3.3
2.34
2.3.5
2.3.6

Introduction
Argument Copying
Unstructured Termination . .
Sharing Data
Pitfalls.
Examples

3.1 Imntroduction.

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

3.2 Controlled Nondeterminism

33 Deadlock
3.4 Imheritance
35 Pitfalls.
36 Examples
Synchronization

41 Introduction.
4.2 Data Dependencies and Flow of Control
4.3 Single-Assignment Arguments and Return. Values
44 TypeConversions.
4.5 Synchronizing Spawned Functions
4.6 Memory Management
4.7 Pitfalls. e
48 Examples 00
Distributed Hello World

5.1 Introduction to Distributed Computing
5.2 Distributed Hello World
Global Pointers

6.1 Imtroduction.
6.2 Dereferencing Global Pointers
6.3 Invoking Functions Through Global Pointers
6.4 Casting Global Pointers
65 Pitfalls.
6.6 Examples
Processor Objects

7.1 Imtroduction.
7.2 Declaring Processor Object Types
7.3 Defining Processor Object Types
7.4 Allocating Processor Objects
7.5 Using Processor Object Pointers
7.6 Deallocating Processor Objects
7.7 CC++ Computations
7.8 The thisPointer
7.9 Pitfalls.
7.10 Examples e e e e

vi

8 Data Transfer Functions 88

8.1
8.2
8.3
8.4
8.5
8.6

Introduction . . . « « v v o b e e e e e e e e 88
Building Transfer Functions 89
Structures with Local Pointers 90
Automatic Transfer Function Generation. 92
Pitfalls v o e e e e e e e e e e e e e e e e 93
Examples o vt v i e e 93

vii

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2

4.1
4.2
4.3
4.4

6.1
7.1
8.1

Flow of Control in a Simple Parallel Block 6
Flow of Control in a Parallel Block 7
Concurrent Execution of Divide and Conquer Algorithm . . . 10
Nesting Blocks Within Parallel Blocks 14
Flow of Control in a Basic Parallel Loop 18
Flow of Control in a Parallel Loop 20
Flow of Control with Atomic Functions 34
Possible Sequence of Execution for Finding Minimum Element 36
Effect of Single-Assignment Variables on Flow of Control . . 48
Linear Data Dependency for Calculating Powers of 2 49

Binary Tree Data Dependency for Calculating Powers of 2 . . 51
A Stream Implemented as a Linked List with Single-Assignment

Links. e 59
Flow of Controlinan RPC 69
MergeSort e e 77
Transferred List Object 97

viii

© M - -y

Chapter 1

Introduction

1.1 The CC++ Programming Language

Is parallel programming difficult? Many programmers complain that archi-
tecture dependencies, confusing notations, difficult correctness verification,
and burdensome overhead make parallel programming seem tedious and
arduous. These barriers cast doubt on the practicality of parallel program-
ming, despite its many potential benefits.

Compositional C++ (CC++) was designed to alleviate the frustrations
of parallel programming by adding a few simple extensions to the sequential
language C++. It is a strict superset of the C++ language so any valid
C or C++ program is a valid CC++ program. Conversly, many classes of
parallel CC++ programs can be simply rewritten as equivalent sequential
programs. For these classes of programs, the developement path can be very
similar to that of the equivalent sequential program. This compatibility with
the C and C++ languages facilitates the transition to the task of parallel
programming for users knowledgeable in those languages.

CC++ extends C++ with the following eight constructs:

par blocks enclose statements that are executed in parallel.
parfor denotes a loop whose iterations are executed in parallel.

spawn statements create a new thread of control executing in parallel with
the spawning thread.

sync data items are used for synchronization.

atomic functions control the level of interleaving of actions composed in
parallel.

processor objects define the distribution of a computation.
global pointers link distributed parts of the computation.

data transfer functions describes how information is transmitted between
address spaces.

Despite the simplicity and the small number of extensions, the conjunction
of these constructs, when combined with C++, results in an extremely rich
and powerful parallel programming notation.

The richness of this language is reflected in its suitability to a wide spec-
trum of applications. In fact, CC++ integrates many seemingly disparate
fields:

Sequential and parallel programming Parallel blocks are notationally
similar to sequential blocks.

Shared and distributed memory models CC++ can be used on shared
or distributed memory architectures as well as across networks which
may be heterogenous.

Granularity CC++ can be used in computations involving a variety of
granularities, ranging from fine-grain parallelism with frequent syn-
chronization between small threads to coarse-grain parallelism with
sparse synchronization between large, distributed processes.

Task and data parallelismn Task and data parallel applications can be
expressed in CC++, as well as programs that combine the two.

Synchronization techniques The synchronization mechanisms provided
by CC++ are powerful enough to express any of the traditional im-
perative synchronization and communication paradigms.

All of the object-oriented features of C++ are preserved in CC++.
These features (especially generic classes and inheritance mechanisms) pro-
mote the reuse of code, structure, and verification arguments. Thus, CC++
provides an excellent framework for the developement of libraries and for the
use of software templates in program construction. This reuse is especially
important and useful in the context of parallel programming.

1.2 This Tutorial

This document is divided into two basic parts. The first three chapters de-
scribe the single address space constructs in CC++ (par, parfor, spawn,
atomic, and sync). The last four chapters describe the multiple address
space constructs (processor objects, global pointers, and data transfer func-
tions).

Each chapter loosely follows this basic outline:

e Introduces one or more constructs, giving motivation and background.
e Introduces semantics and syntax of the construct(s).

e Highlights possible difficulties (“Pitfalls”) in using the construct(s).
e Provides examples of the construct(s) in use.

The source code of the examples located at the end of each chapter are
at the same ftp site (¢s.caltech.edu and directory CC++/docs/tutorial)
as this tutorial. The names of the files mentioned in the tutorial match with
the names of the files in that directory.

In order to learn CC++, and in order to read this tutorial, a basic
understanding of C is assumed. An understanding of the C++ concept of
an object is also assumed. This tutorial uses C and simple C++ syntax.
Many programs in CC++, particularly distributed computations, use more
detailed C++ features. A good reference for these, and C++ in general,
is The C++ Programming Language by Bjarne Stroustrup, available from
Addison-Wesley.

This tutorial is not a complete definition of the CC++ language. The
complete language definition can be found in the CC++/docs directory at
the anonymous ftp site cs.caltech.edu, or as Caltech Technical Report
CS-TR-92-02.

This tutorial covers some major restrictions in the current CC++ imple-
mentation. The complete set of restrictions is outlined in the release notes,
also in the CC++/docs directory.

Direct comments, questions and suggestions about CC++ or this tu-
torial to cc++@cs.caltech.edu. Report errors in the implementation to
cc++-bugs@cs.caltech.edu.

Chapter 2

Creating Parallel Threads of
Control

Fundamental to any parallel programming language is the mechanism by
which parallel threads of control are created. In this chapter we introduce
the three mechanisms used in CC++:

par: structured parallel block construct
parfor: structured parallel loop construct
spawn: unstructured parallelism

It is important to note that these constructs do not actually distridbute
work, or describe where work is to be performed. They simply describe
possible concurrency in a program. If, for example, the program is being
executed on one single-processor workstation, at most one thread can be
executed at any point in time and hence no performance speed-up will be
observed. In this case, the actions of the statements composed in parallel
by the above constructs will execute in some arbitrarily interleaved fashion.

2.1 Structured Parallel Blocks: par

2.1.1 Introduction

The most basic mechanism for creating parallel threads of control in CC++
is the parallel block. A parallel block looks just like a compound statement
in C or C++ with the keyword par in front of it:

par {
statement_1;
statement_2;

statement_N

}

Except for a few cases, the statements inside a parallel block can be any
legal C, C++, or CC++ statement. The exceptions are variable declarations
and statements that result in nonlocal changes in the flow of control. These
limitations will be discussed in more detail in the “Pitfalls” section of this
chapter (2.1.5).

A parallel block differs from the normal C block in that the order in
which the statements in the block execute is not defined: an execution of
a parallel block is an interleaved or possibly concurrent execution of the
statements within the block. The execution of a parallel block is finished
after all of the statements within the block have finished executing. Conse-
quently, statements after a parallel block will not start to execute until all
the statements within the parallel block terminate.

We do know some things about how the operations in a parallel block
are mixed together. We know that the order of operations within any one
statement in the parallel block is preserved. We also know that regardless
of how long it may take any statement to finish, each statement in the block
will eventually get a chance to execute. We call the type of execution that
occurs in a parallel block a fair interleaving. There are some pragmatic
issues having to do with implementing fair interleaving. If you have an
application that depends on fairness, you should consult the Appendix for
the particular hardware platforms you are using to get the details.

Let us look at some parallel blocks.

int a, b, 4;
c=1;

The parallel block in this example has two independent threads of con-
trol: the first assigns the value 2 to the integer variable a and the second
evaluates the sum c+3 and assigns this value to the integer variable b. The
statement assigning the value to d does not execute until both assignments
to a and b have completed. This flow of control is illustrated in Figure 2.1.

1

int a,b,d;
c=1;

Figure 2.1: Flow of Control in a Simple Parallel Block

The statements contained in a parallel block can be function calls, such

as:
par {
g = gcd(a,b);
1 = 1lcm(a,b);
s = sum(a,b);
}

2.1.2 Structuring

The key feature of a parallel block is the structuring it provides to parallel
code. This structuring is a result of the implicit barrier defined by a parallel

block. As discussed above, a parallel block is defined to terminate only when
all statements inside the block have terminated. Thus, the closing brace of a
parallel block represents a barrier that all parallel threads of control within
the block must reach, before the block is terminated.

To illustrate, consider:

{
par {
a = £(2);
b = £(31);
c = g(2,6.5);
}
sum = a+b+c;
}

Schematically, the flow of control is represented in Figure 2.2. Notice
that the individual threads that assign values to a, b, and ¢ may terminate
in any order, at various times. The block, however, is not terminated until
all three have completed. Because the outer block is sequential, only when
the parallel block terminates can the statement assigning a value to sum
execute, as you would expect from knowing C.

par (

a= f(2))| l b = f(31)74| l c =g(2,6.5);

sum = a+b+c;

Figure 2.2: Flow of Control in a Parallel Block

Similarly, consider the following example:

7

int min, max;

par {
min = find_min(A);
max = find_max(A);

}

for (i=min; i<=max; i++)
compute(i);

Again, at the end of the parallel block, we know that both findmin()
and findmax () functions have completed and their return values have been
assigned to min and max respectively.

The same principal applies when a parallel block is part of an enclosing,
perhaps iterating, structure. Consider the following example:

{
int pow[N];
pow[0] 1;
pow(1] = 2;
for (int i=2; i<N-1; i=i+2)
par
pow(i]
pow[i+1]
}

pow([i/2)*pow[i/2];
pow[i/2]*pow[i/2]*2;

This concept of an implicit barrier is an extremely powerful and ex-
pressive one. Many sequential C or C++ programs can be conveniently
transformed into parallel programs with judicious use of the parallel block.
The following example finds the minimum element in a global array. The
technique used is that of divide and conquer, where the minimum is found as
the smaller of the minimum of the first half and the minimum of the second
half of the array.

int A([N];
int min_element (int i, int j)
{
if (i==j) return A[i];
else {
int smalll, small2;
int middle = (i+j)/2;
par {
smalll = min_element(i,middle);
small2 = min_element (middle+1,j);
}
if (smalli<small2) return smalll;
else return small2;

Notice that if the keyword par is removed, the resulting program is
a correct solution (albeit a sequential one) to the problem of finding the
minimum element. The parallel block allows the independent branches of
the recursion to proceed in parallel. The implicit barrier of the parallel
block means that the values of smalll and small2 have been evaluated and
assigned before the comparison between the two is made. The flow of control
in this program is illustrated in Figure 2.3.

2.1.3 Sharing Data

Because the actions contained in different threads of control in a parallel
block are executed in a parallel, or possibly arbitrarily interleaved, manner,
it should be clear that sharing and modifying data between such threads
can be dangerous. The CC++ language allows you to do dangerous things.
However, you can stay out of trouble by following a simple rule. First a
definition:

Definition A mutable variable is any non-constant (const) variable or
structure whose value or contents can be modified.

The above definition may appear redundant. However, in Chapter 4 we
will introduce a new type of variable that is non-constant, and yet whose
contents cannot be modified.

min(0,3)

return A(2];

par {
min(0,1) min(2,3)
par | par
min(0,0) min(1,1) min(2,2) min(3,3)
return A[O]; return A(1l); return A[2]; return A(3];
smalll = A[O]) small2 = A[1l]} smalll = A[2] small2 = A(3]
})
//small2<smalll //smalll<small2
return A(1]; return A(2);
smalll = A[1] small2 = A[2]
}
//small2<smalll

Figure 2.3: Concurrent Execution of Divide and Conquer Algorithm

10

Now for the rule:

If a mutable variable is modified in a thread of a parallel block,
then no other thread of control in the parallel block should make
use of that variable (either by writing or by reading the variable).

The following example illustrates the point.

{
int x;
par {
x=1; //dangerous sharing
x = 2; //dangerous sharing
}
}

This parallel block violates the sharing rule for mutable variables. The
mutable integer variable x is modified in both statements of the parallel
block. Though this code may not result in a compile-time error, or even
necessarily a run-time error, it is extremely dangerous. This is because at
the end of the parallel block we can say nothing about the value of x. It
could be 1, or 2, or something completely different! If mutable variables
are shared in this manner between parallel threads of control, it is almost
certainly a programming error.

Not only should at most one thread of control modify the value of a
mutable variable, but if a mutable variable is modified in one thread, then
no other thread should access the value of that variable. For example:

{
int n,s;
par {
s = 3; //dangerous sharing
n = 2*s; //dangerous sharing
}
}

Here the first statement in the parallel block initializes the value of the
mutable variable s, and the second statement uses the value of s. Again,
this does not necessarily result in a run-time error, but it is almost certainly
a programming error, since we can say nothing about the value of n (or

11

even s for that matter) at the end of the parallel block. Notice that both
examples above are correct sequential programs when the keyword par is
removed. The programmer should therefore take care when parallelizing
sequential code that no inadvertent sharing of mutable data is created by
the creation of parallel blocks.

So the only safe kind of sharing of mutable data between parallel threads
of control is multiple reading of the variable. Examples of this kind are given
in Sections 2.1.1 and 2.1.2. Make sure you understand why these examples
do not involve dangerous sharing of mutable variables and are indeed correct
parallel programs. In Chapter 3 we introduce a mechanism for controlling
access to shared mutables, and in Chapter 4 we introduce a new kind of
variable that can be shared between parallel threads of control in a different
manner.

2.1.4 Nesting

Parallel blocks can contain simple statements, sequential blocks, or even
other parallel blocks. The behavior of such nesting is precisely what one
would expect. The statements within the sequential block are executed
sequentially with respect to each other, but are composed in parallel with
the other threads of control of the parallel block. For example:

par {
{
resultl = trial(paramsi);
statsl = generate_stats(resultl);
}
{
result2 = trial(params2);
statsl = generate_stats(result2);

}
}

Here the function trial() is performed on the argument paramsi and
the assignment to resulti is completed before the function generate_stats()
begins. Between the two threads of control, however, there is no ordering
of actions. The statistics could be generated for the first trial before the
second trial even begins, or vice versa, or some interleaving of the two could
occur. But within each thread, the order of execution is strictly sequential.

12

Similarly, one of the statements of a parallel block could be another
parallel block. Consider the following general example, where si represents
a generic statement.

par {
par {
si;
s2;
s3;
}
{
s4;
par
s5;
s6;
}
sT;
}
s8;
}

The flow of control for this program is represented in Figure 2.4.

2.1.5 Pitfalls

In this section we describe several common errors to be careful to avoid.

1. The interleaving of actions composed in parallel is arbitrary. The
language makes no guarantees about how often, or even how soon,
instructions from a particular thread will be executed. For example:

par {
while (1) gQ);
£0;

X

The first statement in this case is an infinite loop. Instructions from
this loop could be executed for a very, very long time before a single
instruction from the second thread is chosen for execution. Thus, we
cannot expect to observe function £() even begin execution.

13

par

s8;

Figure 2.4: Nesting Blocks Within Parallel Blocks

14

2. Declarations are not permitted at the level of scope of a parallel block.
This is consistent with the rules of variable sharing for parallel blocks.
For example:

par {
int x; //ERROR
x = 2;

}

Within nested levels of scope, however, declarations are permitted:

par A
{
int s;
s =£0;
g(s);
}
for (int i=0; i<3; i++)
k(i);
}

3. Gotos into, out of, or between statements at the level of scope of a
parallel block are not permitted. In particular, no break, continue,
goto, or return statements are permitted.

In addition, the current implementation of the language places the fol-
lowing restrictions on CC++ programs.

1. No exceptions can be thrown inside parallel blocks.

2. A file or stream on which I/O is performed should be seen as a mutable
variable. Thus, composing I/O operations on the same file in parallel
is dangerous and should be avoided. We will see a mechanism in
Chapter 3 that permits safe parallel composition of such operations.
I/O operations on different files or streams can safely be composed in
parallel with each other.

2.1.6 Examples

In this section we give some complete examples that can be compiled and
executed. These examples illustrate the use of the parallel block.

15

Hello World This program displays the traditional greeting "hello,
world". ‘

#include <iostream.h>

int main()
{
char =*s1, *s82;
par {
sl = "hello, ";
s2 = "world\n";
}
cout << sl << s2 << endl;
return(0) ;
}

The assignment of "hello, " to s1 and of "world" to s2 can occur
concurrently or in some arbitrarily interleaved manner. Perhaps the oper-
ations required for assignment to s1 are executed, and then the operations
required for the assignment to s2 are executed. (Such a sequence of op-
eration is identical to the execution of the sequential program created by
removing the keyword par.) Perhaps s2 is assigned to the string "world"
first, and then the assignment of s1 occurs. Perhaps the operations for these
two assignments are interleaved in some manner or perhaps they occur in
parallel. Regardless, because s1 and s2 are distinct mutable variables, these
operations are guaranteed to be noninterfering. Hence, at termination of the
parallel block, we know that s1 is the string "hello, " and s2 is the string
"world".

The program therefore results in the message “hello, world” being dis-
played every time, regardless of the actual order of operations.

Finding a Minimum Element This program finds the minimum el-
ement of a statically defined integer array. The value of this minimum
element is displayed.

#include <iostream.h>

const int N = 8;
int A[N] = {3, 4, 5, 1, 2, 5, 9, 6};

16

int find_min (int i, int j)

{
it (i==j)
return A[i]l;
else {
int smalll, small2;
par {
smalll = find_min (i, (§+i)/2);
small2 = find_min ((j+i)/2+1, j);
}
if (smalli<small2) return smalli;
else return small2;
}
}

int main()

{
int min = find_min(0,N-1);
cout << "Minimum element is " << min << endl;
return 0;

}

As explained in Section 2.1.2, the minimum is found recursively as the
smaller of the minimum of the first half of the array and the minimum of
the second half of the array. Because the recursive calls operate on different
parts of the array, they are completely independent and can be composed
in parallel.

2.2 Structured Parallel Loops: parfor

2.2.1 Introduction

The construct for parallel composition of a variable number of statements
is parfor. With the exception of the keyword, the syntax of a parfor
statement is the same as the usual C++ for statement:

parfor (int i=0; i<N; i++) {

statement_1;
statement_2;

statement_N

}

17

This is a parallel loop construct in which the iterations are executed in
parallel with each other. As with the usual C or C++ for loop, the body of
each iteration is executed sequentially. Similar to the parallel block discussed
in Section 2.1, there is an implicit barrier at the end of a parfor. The parfor
statement completes only when all the iterations have completed.

As a simple example, consider:

{
int A[N];
parfor (int i=0; i<N; i++)
Afi] = .4;

Here there are N parallel threads of control. Each element of the array
is assigned (by a different thread of control) to the value of its index. The
parfor statement terminates only when all elements of the array have been
assigned their values. The flow of control for this example is illustrated in
Figure 2.5.

int A(N];

parfor(int i=0; i<N; i++) {

/\

A[0] = O; All] = 1; e e e A[N-1] = N-i;

Figure 2.5: Flow of Control in a Basic Parallel Loop

18

2.2.2 Sharing Data

The rule concerning sharing data that applies to parallel blocks applies to
parfor statements as well. The parallel threads of control in a parfor
statement (that is, the individual iterations of the loop) should not share
mutable data. For example:

{
int sum = 0;
parfor (int i=0; i<N; i++)
sum += A[i); //dangerous sharing

}

In this example, the mutable variable sum is modified in all N iterations.
Recall from Section 2.1.3 that such sharing is dangerous.

The loop control variable used in a parfor statement is a special case.
This variable must be declared in the parfor statement itself, as is seen
in the preceding two examples. Each iteration is then considered to have
its own const copy of this loop control variable. The loop control variable
cannot be modified within the body of a parfor.

2.2.3 Loop Unraveling

The conversion of the loop control variable to a constant value within each
iteration permits unraveling of the loop without executing the body of any
iteration. After the initialization of the loop control variable and the test
of the loop condition, execution of the body of the first iteration can begin,
but so can the increment of the loop control variable, followed by the test
of the loop condition. The flowof control for a generic parfor statement is
represented in Figure 2.6.

Notice that, as in a parallel block, nothing can be said about the order
of execution of the individual iterations. There is no guarantee that the first
iteration will even begin before any other iteration.

The semantics of loop unraveling are therefore defined in terms of a se-
quential repetition of condition test evaluation then loop control variable
increment. Though the generality of C and C++ permit these operations
to be arbitrarily complicated and hence require sequential evaluation, a par-
ticular implementation of CC++ may do better in certain instances. For
example, it is not difficult to envision a compiler that detects the common
loop format

19

1

initialize:;

test;

increment; body 1
test;

increment; body 2

test;

. .

.
.

| &>~

test;

termination;

Figure 2.6: Flow of Control in a Parallel Loop

20

parfor (int i=0; i<N; i++)

and is able to flatten the creation of the N parallel threads of control. Thus,
the linear complexity of the semantic definition of parfor does not neces-
sarily imply a linear component in the performance of parfor in all cases.

2.2.4 Pitfalls

1. The loop control variable must be declared in the parfor statement.
Variables that come from a higher scope cannot be used as loop control
variables in a parallel loop. The following example is a compile-time
error:

{
int i;
parfor (i=0; i<N; i++) //ERROR
{... }

2. The (sequential) body of a parfor represents a nested level of scoping
within the parallel composition. Declarations are therefore permitted
at this level.

parfor (int i=0; i<N; i++) {
int x, y = i*2;
x=£0;
g(x,y);

}

3. Nesting sequential loops within parallel loops must be done with care.
Consider the following sequential code:

{
int 1i,j;
for (i=0; i<N; i++)
for (j=0; j<N; j++)
{... 2%
}

21

The following parallelization of this code is incorrect:

{
int j;
parfor (int i=0; i<N; i++)
for (j=0; j<N; j++) //Error: j is a shared mutable
{... }
}

This code is incorrect because the mutable variable j is shared be-
tween the concurrently -executing iterations of the parallel loop. All
sequential loops nested within a parallel loop should declare their loop
control variables.

4. In general, the creation and deletion of parallel threads of control can
be a relatively expensive operation. If the amount of computation
performed by each iteration is small, such a program could exhibit
significant performance degradation. This cost puts a practical limi-
tation on the number of iterations composed in parallel by a parfor
statement.

5. No gotos into, out of, or between iterations of a parfor are permitted.
No break, continue, goto, or return statements are permitted at the
parfor level of scope.

The current implementation restrictions are the same as those for parallel
blocks (see Section 2.1.5).

2.2.5 Examples

In this section we give some complete examples that can be compiled and
executed. These examples illustrate the use of the parfor statement.

Array Initialization This program initializes the entries of a float-valued
array.

#include <iostream.h>
const int N = 10;

22

float £ (float i)

{
//evaluate polynomial 3zzz-Trz+2z+4 at z=1
return 3*i*iki - T*i*i + 2%i + 4;

}

int main()

{
//makes Afi] = f(i) and then outputs Afi]
float A[N];

parfor (int i=0; i<N; i++)
A[i] = £((float)i);
//implicit barrier

for (int j=0; j<N; j++)
cout << "A[" << j << "] is " << A[j] << endl;
return O;

Each element of the array A(] is evaluated and assigned a value by a

different thread of control. This is an instance of safe sharing of mutable
variables between concurrent threads of execution because each individual
element of the array A[] is a different mutable variable, and single elements
are not shared between iterations of the parfor loop.
Scientific Mesh Computation This is a solution to the cellular automa-
ton grid computation problem. A gradient function is evaluated iteratively
over a two dimensional grid of points. The initial boundary conditions are
given and each interior point computes its new value as a weighted average
of its old value and its neighbors’ old values. This process is repeated until
convergence (or, in this case, until a fixed number of iterations have been
processed).

#include <iostream.h>
const int N = 10;

float Mesh([N] [N];
float compute_cell (int r, int c)
{

return (4*Mesh[r] [c] + Mesh([r+1][c] + Mesh[r-1]([c]
+ Mesh[r][c+1] + Mesh(r][c-1])/8.0;

23

void calculate (void)

{
float New_Mesh[N] [N];
for (int iterate=0; iterate<300; iterate++) {

parfor (int row=1i; row<N-1; row++) // compute new mesh

parfor (int col=1; col<N-1; col++)
New_Mesh([row] [col] = compute_cell(row,col);

parfor (int newrow=1; newrow<N-1; newrow++) //update old mesh

parfor (int newcol=1; newcol<N-1; newcol++)
Mesh [newrow] [newcol] = New_Mesh[newrow] [newcol];
}
}

int main()
{
for (int i=1; i<N-1; i++) o //initialize boundary of Mesh
Mesh([0] [i] = i;
Mesh([i] [0] = i;
Mesh([N-1] [i] = N-1+i;
Mesh[i] [N-1] = N-1+i;
}
for (i=1; i<N-1; i++) //initialize intertor of Mesh
for (int j=1; j<N-1; j++)
Mesh[il [j] = O;

calculate();

for (i=0; i<N; i++) { //display outcome
for (int j=0; j<N; j++)
cout << Mesh[i] [j] << "\t";
cout << endl;
}
return O;

}

The computation is done in parallel for all N? points. Note that a par-
ticular point’s old value may be used in as many as 4 computations (i.e. for
each of its neighbors). Because each computation requiring this old value
performs only a read operation, this is not an instance of dangerous shar-
ing. The value that is computed is written to a new mesh. At the end of
the first two parfor statements, therefore, we know that this new mesh of
values has been completely filled in with the new values. The second group
of parfor statements can then safely copy these values to the original mesh.
It is important to understand why no mutable variable is being both written

and read by parallel threads of control.

24

Clearly this is not a very efficient solution to this problem. The cost
of copying the mesh of values at every iteration is high. One way to avoid
this cost is to maintain two arrays, M1 and M2. On even iterations, the
M1 stores the old value and the new values are written into M2, and vice
versa on the odd iterations. Also, the number of parallel threads of control
is excessive (as discussed in the “Pitfalls” section, 2.2.4), considering the
small amount of work to be performed by each one. It is reasonable to
expect a program in which each thread of control computes the values for a
collection of cells to be more efficient. The following code incorporates this
optimization.

#include <iostream.h>

//N........... size of grid (N by N)

I/ Tounnnnns number of concurrent processes. each working

1/ on an N by ((N-2)/T+2) slice (T maust divide N-2)
// and (N-2)/T >= 2

//HORIZON.....the event horizon for terminating tteration

#define N 22
#define T S
#define HORIZON 300

float Grid(2] [T][N] [(N-2)/T+2];

void initialize (void)
{
int i,3,k;
for (i=0; i<T; i++) //initialize tntertor of Grids
for (j=1; j<N-1; j++)
for (k=0; k<(N-2)/T-1; k++)
Grid [0] [i]1[j]1 (k] = O;
for (i=0; i<T; i++) //initialize boundary of Grids
for (k=0; k<(N-2)/T+2; k++) {
Grid[o0] [i]1[0] (k] = i*(N-2)/T+k;
Grid[0] [i] [N-1] [k] = i*(N-2)/T+k+N-1+N-1;
}
for (i=0; i<N; i++) {
Grid([o] [0] [il1[0] = i;
Grid[0] [T-1] [i] [(N-2)/T+1] = i+N-1;
}
}

25

float compute (int 1, int s, int r, int ¢)
{
return (4*Grid([1] [s][r][c] + Grid([1](s](r+1]1(c] + Grid(1](s](r-1](c]
+ Grid[1][s] [r]l[c+1] + Grid[1][s](rllc-11)/8.0;
}

void exchange_boundaries (int 1, int s)
{
int i;
if (s<T-1)
for (i=0; i<N; i++)
Grid[1] [s+1] (il [0] = Grid[1]([s][i][(N-2)/T];
if (s>0) ’
for (i=0; i<N; i++)
Grid[1] [s-1] [i] [(N-2)/T+1] = Grid[1]1([s][i][1];
}

int main()
{

initialize();

for (int iterate=0; iterate<HORIZON; iterate++) {
parfor (int slice=0; slice<T; slice++) { //for each slice
for (int row=1; row<N-1; row++) //compute new Grid
for (int col=1; col<(N-2)/T+1; col++)
Grid[(iterate+1)¥%2] [slice] [row] [col] = compute(iterate’2,slice,row,col);

}
parfor (int slice2=0; slice2<T; slice2++) { //ezchange boundaries
exchange_boundaries((iterate+1)%2,slice2); //between neighbours
}
cout << "exchange " << iterate << endl;
}
for (int i=0; i<T; i++) { //display outcome

cout << "Slice " << i << endl;
cout << "mmmzmm=z=" << endl;
for (int j=0; j<N; j++) {
for (int k=0; k<(N-2)/T+2; k++)
cout << Grid (HORIZONY%2] [i] [j]1[k] << "\t";
cout << endl;

}

cout << endl;
}

return O;

}

26

Also, the synchronization at the end of each iteration is excessive. The
value of a particular cell in the mesh can affect the next values of only its
neighbors. Thus, there is no need for a cell to synchronize with any cells
apart from its immediate neighbors. We will discuss how such synchroniza-
tion schemes can be constructed in Chapter 4.

2.3 Unstructured Parallelism: spawn

2.3.1 Introduction

A final construct for creating parallel threads of execution is spawn. Parallel
blocks and parfor statements have the nice property that a block terminates
only when all their components terminate. They are the parallel equivalent
of structured control flow statements in C and C++. The spawn statement is
used to create a completely independent thread of control that executes in a
concurrent (or possibly a fairly interleaved) manner with the thread that ex-
ecutes the spawn. Unlike the structured parallel statements, no parent-child
relationship exists between the spawned thread and the spawning thread.
There is no barrier or any form of implicit synchronization between the two,
either at their beginning or at their termination. -

Only functions can be spawned. A spawned function cannot return a
value. Thus, spawn is similar in functionality to the thread creation facilities
provided in many thread libraries.

The syntax for this statement is:

spawn £();

This unstructured parallelism is analogous to unstructured sequential
code, with jumps and breaks in execution. Structured concurrency can be
built on top of spawn, but this requires care and effort on the part of the
programmer. The spawn statement should be used with care.

2.3.2 Argument Copying

Spawn guarantees that the arguments to the function being spawned are
copied before the spawning thread continues to the next instruction. Thus,
the following code has the expected effect:
for (i=0; i<N; i++)

spawn £(i);

27

The argument to £() is copied before the next instruction executes
(which will increment i). Thus, at the end of this sequential for loop, there
are possibly N+ 1 concurrent threads of control: the original thread and the
N threads spawned in the loop. Each of the N instances of the function £()
has a distinct value for its integer argument. We can say nothing, however,
about when each of the instances of £() will begin or terminate execution,
either with respect to each other or with respect to the spawning thread.

For consistency with the C and C++ language definitions, the order of
argument evaluation for the spawned function is not defined, but all side-
effects are guaranteed to occur before the spawned function begins execution.
Consider the following example:

spawn f(i++, &i)

We do not know when £() will begin execution, but when it does it will
have a pointer to the incremented value of i (unless of course the value of i
has been modified; see Section 2.3.4).

2.3.3 Unstructured Termination

Because the termination of a spawned thread is not synchronized with the
spawning thread, it is an error (compile-time checked) to spawn a function
that returns a value. All spawned functions must be void functions.

Again, because there is no synchronization between spawned and spawn-
ing threads, care must be taken that main() does not terminate before any
of the spawned threads. The following example illustrates the problem:

void £f(int i) {...}
int main()
{
spawn f£(2);
return O;

}

The end of a CC++ program is defined to occur (as with C and C++) at
the termination of main(). Thus, the program in the above example could
terminate before £ () begins execution. Such behavior is almost certainly a
programming error.

28

The lack of implicit synchronization with spawn transfers responsibility
for synchronization to the programmer. Barriers, or any other form of syn-
chronized behavior, must be explicitly programmed. We will return to this
question once we have introduced the synchronization mechanism provided
by CC++ (Chapter 4).

2.3.4 Sharing Data

The same rules that apply to sharing mutable variables in parallel blocks
and parfor apply to spawn as well. Usually, the pass-by-value semantics of
function calls in C and C++ prevents such sharing.

{
int i = 1;
spawn incr(i);
i++;
spawn incr(i);

There is no dangerous sharing of variables here because each instance of
incr() has its own copy of the value of i.

However, care must be taken when pointers (or C++ references) are used
in function arguments. This can lead to inadvertent, dangerous sharing of
mutable variables.

{
int a = 1;
spawn f(%a); //DANGER: possible sharing of mutable a
if (a==1) {...}

}

//end of a’s scope, so spawned thread could reference garbage

Even if a is not explicitly modified by either £() or the spawning thread,
this example illustrates another possible danger. The scope of the variable
a is defined in the spawning thread. Without an explicitly programmed
barrier, the variable a could reach the end of its scope and be implicitly
destroyed in the spawning thread, leaving £() with an invalid pointer.

2.3.5 Pitfalls

Some potential problems to keep in mind when using spawn:

29

1. Spawned functions cannot return a value.

2. Explicit synchronization points must be programmed when using spawned
functions; otherwise there is no guarantee they will begin execution
before the end of main() is encountered. How to construct such syn-
chronization points is discussed in Chapter 4.

3. Great care must be exercised when passing pointers (or C++ refer-
ences) to spawned functions, as this often leads to dangerous sharing
of mutable variables.

4. To understand complicated spawning expressions, the precedence in
the order of evaluation in a function call must be understood. The
function call is spawned, not the evaluation of any prefix operators.
For example:

spawn £->g()->h();

First the pointer £ is evaluated, then the function g() is executed, and
then the result is used to determine which function h() is spawned.
The spawning occurs only at the highest level function call.

2.3.6 Examples

Because no mechanism for synchronization with spawned threads of control
has yet been introduced, we postpone the presentation of any examples of
this construct until Chapter 4.

30

Chapter 3

Atomicity

3.1 Introduction

In this chapter we introduce the concept of atomicity. Because this construct
is related to the notion of classes and member functions, some familiarity
with the object-oriented aspects of C++is assumed.

In Chapter 2 the concept of threads of control executing in a paral-
lel manner was introduced. A rule was presented for avoiding dangerous
behavior by not sharing mutable variables between concurrent threads of
execution. Sometimes, however, this sharing is necessary. Consider, for ex-
ample, an implementation of a queue class. The following implementation
is typical:

class Node <
public:
int item;
Node* next;
Node (int i) { item = i; }
};

31

class Queue {

private:

Node* head;

Node* tail;

public:

Queue (void) <
head = NULL;
tail = NULL;

}

void enqueue (int i) <
Node* add = new Node(i);
if (head==NULL) {

head = add;
tail = add;
}
else {
tail->next = add;
tail = add;
}

}

int dequeue (void) <

int ret_val = 0;

if (head != NULL) <
ret_val = head->item;
old_head = head;
head = head->next;
if (head == NULL)

tail = NULL;

delete o0ld_head;

}

return ret_val;

}
};

Now consider a Queue that can be used by an arbitrary and varying

number of threads of control, all executing in parallel. Obviously this can
lead to trouble if one thread of control accesses the queue by interrupt-

32

ing another thread that was already accessing the queue. We would like
a mechanism to specify that once a particular member function has begun
executing, no other member functions (from a particular set) of that object
will begin executing. This mechanism is provided in CC++ by the key-
word atomic. Atomicity is a mechanism for controlling the granularity of
permitted interleavings of parallel threads of control.

Member functions (private, public, or protected) of an object can be de-
clared atomic. This declaration specifies that the actions of such a function
will not be interleaved with the actions of any other atomic function of the
same object. In our queue example, both the enqueue () and the dequeue ()
operations would be declared atomic.

class Queue {

atomic void enqueue (int i) {...}
atomic int dequeue (void) {...}

};
As a simpler example, consider the following program:

class Value {
private:
int x;
public:
atomic void assign (int i)
{x=1i;}
};

void f(void)
{
Value v;
par {
v.assign(1);
v.assign(2);
}

//v.z is now either 1 or 2

33

Two threads of control are created in the parallel block, each executing an
atomic function of the object v. Because atomic functions that are members
of the same object cannot execute concurrently, one atomic function executes
first and is then sequentially followed by the execution of the second atomic
function. The nondeterminism of the interleaving of actions within a parallel
block is reflected in the fact that we do not know which atomic function will
execute first. But once one atomic function begins execution, it will not be
interrupted by the other atomic function. The two possibilities for the flow
of control in this example are illustrated in Figure 3.1.

v.assign(l):

Figure 3.1: Flow of Control with Atomic Functions

Atomic functions should always be used to access mutable variables that
are shared between concurrent threads of control.

3.2 Controlled Nondeterminism

In Chapter 2 it was stressed that arbitrary sharing of mutable variables be-
tween concurrent threads of control is a dangerous practice. This is because
the manner in which the operations on these shared mutables are interleaved

34

is unknown. Therefore nothing can be said about the outcome of such a pro-
gram. Atomicity gives us a way to control this interleaving, and hence to
control the nondeterminism of parallel composition. The example presented
in Section 3.1, for instance, results in v.x having the value 1 or the value
2. Without an atomic access to v.x, however, this program would result in
v.x having an arbitrary value.

Atomic functions can be used to write deterministic programs, despite
the nondeterminism inherent in concurrent access to shared mutables. For
example, consider finding the minimum element of an array:

class Min {
private:
int current_min;
public:
Min(int i)
{ current_min = i; }
atomic void check (int i)
{ if (i<current_min) current_min = i; }

};

int main()

{
int A[N];

Min m(A[0]);
parfor (int i=1; i<N; i++)
m.check(A[i]);

Because of the nature of parfor, we do not know the order in which each
of the N-1 parallel threads of control initiates execution of m.check(A[i]).
However, once one thread begins execution of this m.check() function, no
other thread is permitted to begin execution of any other atomic member
functions of object m (including, of course, other instances of m.check()).
Figure 3.2 represents one possible sequence of execution for this program.

Thus, the order in which m.current.min is updated is nondeterministic.
However, the nature of the application guarantees that at the end of the
parfor statement, m.current.min will have been compared (and updated)

35

Min m(A[0]);

A= nn currontl_min = 6;

[parfor(inl’. i=1; i<N; i+e) (J

m.check (A{3]):

current_min = 3;

m.check (A[2]):

current_min = 1;

m.check (A(1]));

Figure 3.2: Possible Sequence of Execution for Finding Minimum Element

36

to the minimum element of array A[J. Hence, given the input array A[(],
the intermediate values taken on by m.current_min are unknown, but the
final value is fixed.

It is important to notice how this atomic function represents a significant
bottleneck in the computation of this minimum element. Because only a
single thread of control is allowed to be executing an atomic member function
of m at any given time, the execution is essentially sequential. This suggests
that atomic functions should be kept very small.

3.3 Deadlock

The execution of an atomic function represents a significant control over the
rest of the computation. No other threads of control will be permitted to
begin execution of an atomic function on the same object as the executing
atomic function, until that executing atomic function terminates. Thus, it
is possible to write an atomic function that prevents the rest of the com-
putation from proceeding by preventing any other atomic functmns from
executing. This is an example of deadlock.

Fortunately, there is a small collection of simple rules for avoiding dead-
lock. The following rules guarantee that an atomic function will not cause
a computation to deadlock:

1. atomic functions must terminate.

2. atomic functions must not suspend (suspension is discussed in Chap-
ter 4).

3. atomic functions must not contain parallel blocks or parfor statements.
4. atomic functions must not call other functions.

Notice that the above collection of rules is a stronger set of requirements
than strictly required. It is possible to write a program that violates one
or more of these rules and yet will not deadlock. Following these rules,
however, guarantees that no atomic function will cause a deadlock.

Let us examine each of these requirements in turn.

The first two rules prevent a single atomic function from monopolizing
the computation by preventing any other atomic function from executing.
It is possible, however, to write a program with a nonterminating atomic
function which is deadlock-free. For example, if no other threads of control

37

require atomic access to the same object as the nonterminating atomic func-
tion, no deadlock will occur. Of course, in this case, declaring the function
atomic has no effect.

The third rule prevents deadlock at a nested level of scope within an
atomic function. Certainly if an atomic function does not contain a parallel
block or a parfor, no deadlock between concurrent threads of control within
the atomic function is possible. Again, however, it is possible to write pro-
grams that violate this rule and yet will not result in deadlock. For example,
an atomic function that contains a parallel block that can be guaranteed not
to deadlock is perfectly safe.

The last rule prevents an atomic function from not terminating due
to a deadlock in a function called by the atomic function. Clearly if no
functions are called from within an atomic function, such deadlock cannot
occur. Again this requirement is too strong, and it is possible to write atomic
functions that do call member functions and yet will never deadlock.

Though it is possible to write deadlock-free programs that violate the
rules given above, this programming style is strongly discouraged. Such
programs can easily contain subtle errors that, because of various timing or
dependency issues, may go undetected for a long time.

As a general rule, atomic functions should be used sparingly, and then
only to do the most fundamental operations.

3.4 Imheritance

Atomicity of member functions is preserved under inheritance. Base classes
and derived classes can contain atomic member functions. The atomic mem-
bers of an object of a derived class behave the same as for a simple class
without inheritance. That is, regardless of whether the atomic member is
declared in the base class or the derived class, it is an atomic member of the
derived class. For example:

class Base {
protected:
atomic void f(int) {...}

};

38

- e me e =

class Derived : private Base {
public:
atomic int g(void) {...}
void h(int i)
{
£(i); //executes atomically with respect to g()

}
};

In an object of type Derived, instances of g() and £() execute atomi-
cally.

3.5 Pitfalls
The following issues should be kept in mind when using atomic functions.

1. Atomic functions should be used sparingly. This is because of the
high performance cost associated with the decrease in parallelism they
represent. Many applications will have no need for atomic functions.

2. When it is necessary to use an atomic function, encapsulate only what
is absolutely necessary within the atomic function. These functions
should be small and simple.

3. Because atomic functions provide a means to manipulate shared mu-
table variables, it is easy to fall into the trap of a busy wait similar
to the fair interleaving pitfall described in Section 2.1.5. For example,
consider:

class Trouble {

private:
int x;
public:
atomic void assign (int i)
{x=1;1}

atomic int check (void)
{ return x; }

};

39

int main()
{
Trouble t;
t.assign(0);
par {
t.assign(1);
while (t.check()'=1) {}
}

}

Though the language guarantees that eventually operations from both
threads of control in the parallel block will get a chance to execute,
there is no guarantee about how soon an operation from a particular
thread (say the first one, which assigns 1 to t. x) will be chosen. Thus,
we cannot be guaranteed to observe the termination of this parallel
block.

_ Because atomic functions are associated with an object, static mem-
bers cannot be declared atomic. Similarly, functions at global scope
(i.e. non-member functions) cannot be declared atomic.

. The actions within an atomic function can be interleaved with actions
from nonatomic members of the same object. Thus, it is important
to protect not only the write operations on mutable variables inside
atomic functions, but also the read operations. The following class,
for example, permits dangerous sharing.

class Protect {

private:
int x;

public:
atomic void write (int i) { x = 1i; }
int read (void) { return x; }

};

To rectify the problem, the member function read () should be de-
clared atomic as well. (Of course, there is no problem if the class
is used in a manner that guarantees that no instance of write() is
composed in parallel with any instances of read().)

40

3.6 Examples

In this section we give some complete examples that can be compiled and
executed. These examples illustrate the use of atomic member functions.

Hello World This program is a variation on the traditional greeting pro-
gram presented as the first example of Chapter 2.

#include <iostream.h>
#include <string.h>

class Greeting {
private:
char* s;

public:
Greeting (void) { s = new char[20]; }
atomic void append (char* add) { strcat(s,add); }
void display (void) { cout << s << endl; }
}

int main()
{
Greeting g;
par {
g.append("hello, ");
g.append("world");

g.display();

return O;

}

This program displays one of the two following messages: "hello, world"
or "worldhello, ". This message is built up by appending strings to the
private mutable variable g.s. These appends can be safely done in parallel
because the function is atomic. We do not know, however, which append
will be performed first. The two possible interleavings of these append oper-
ations result in two different messages which can be displayed. Notice that
display() is not atomic. This is not a problem because the program does
not compose any operations in parallel with display().

Finding the Minimum Element This program finds the minimum ele-
ment of a statically defined integer array.

41

#include <iostream.h>
const int N = 8;
int A[N] = {3, 4, 5, 1, 2, 5, 9, 6};

class Min {
private:
int current_min;

public:
Min(int i)
{
current_min = i;
cout << "minimum initialized at " << current_min << endl;

}

atomic void check (int i)

{
cout << "comparing " << i << "...";
if (i<current_min) current_min = i;
cout << "minimum so far is " << current_min << endl;

}

int value (void)
{
return current_min;
}
};

int main()
{
Min m(A[0]);
parfor (int i=1; i<N; i++)
m.check(A[i]);

return m.value();

}

Each element of the array is compared to the smallest value seen so far.
If the element is smaller, then the smallest value seen so far is updated. By
the nature of a parfor loop, we do not know the order in which elements will
be compared using class m. The atomicity of the member check(), however,
guarantees that there will be no interference between concurrent threads
operating on m. Thus, the mutable variable m.currentmin is protected,
and the result of the program is deterministically the smallest element of
the array.

42

Multiple-Reader Multiple-Writer Linked List This example defines
a class that implements a linked list of integers. This class can be shared
by multiple processes adding elements to the list (writers) and multiple
processes making removals from the list (readers).

#include <iostream.h>
class List;

class ListNode {
private:
int data;
ListNode* next;

ListNode (int d)
{
data = d;
next = NULL;
Yo
friend class List;

};

class List {
private:
ListNode* head;
ListNode* tail;

public:
List (void)
{
head = new ListNode(0);
tail = head;
}

atomic void append (int a)

{
ListNode* addition = new ListNode(a);
tail->next = addition;
tail = addition;

}

43

atomic int remove (int& item)
{
it (head==tail)
return O;
else {
ListNode* old_head = head;
head = head->next;
delete old_head;
item = head->data;
return 1;

};
List L;

void producer (imt id, int n)
{
for (int i=0; i<n; i++)
L.append(id#*n+i);
}

int consumer (int id, int n)
{

int item;

int sum = 0;

for (int i=0; i<n; i++)

if (L.remove(item) == 1)
sum += item;
return sum;

44

int main()
{
par {
producer(0,10);
producer(1,10);
}
int sum0O, sumi;
par {
sum0 = consumer(0,10);
suml = consumer(1,10);

}

cout << "Sum of list received by consumer 0: " << sum0 << endl;
cout << "Sum of list received by consumer 1: " << suml << endl;
return O0;

Because modifications (appends and removals) to this list are atomic, an
object of this list class can be shared between multiple threads of control.
Instances of an append() operation and a remove() operation are guaran-
teed not to interfere with each other, or with other instances of the same
operation. Thus, in the examples, two producers can safely be composed
in parallel, as can two consumers. The result of the composition of these
two producers is a linked list containing the integers 0 to 9 (in that order)
interleaved with the integers 10 to 19. The language definition says noth-
ing about how these two sequences will be interleaved (though a particular
implementation may have a specific strategy).

45

Chapter 4

Synchronization

4.1 Introduction

Until now, we have discussed how parallel threads of execution can be cre-
ated (with par, parfor, and spawn) and how the granularity of the inter-
leaving of actions in different threads of execution can be controlled (with
atomic). The only mechanism for synchronization between concurrently
executing threads of control has been the implicit barrier at the end of a
parallel block and at the end of a parfor statement. In this chapter, we
introduce a mechanism for programming arbitrary synchronization behavior
between concurrent threads of control.

The sharing of a mutable variable (unprotected by atomic access) be-
tween actions composed in parallel is dangerous when at least one of the
actions modifies the value of this variable. By contrast, it is always safe
to share constants (i.e. C or C++ const variables). In this spirit, CC++
defines a new type of variable, a single-assignment variable (or delayed ini-
tialization constant), denoted by the keyword sync. Like a constant, the
value of a defined single-assignment variable cannot be modified. Attempt-
ing to modify the value of a defined single-assignment variable is a run-time
error. Unlike a constant, however, a single-assignment variable need not be
defined when it is declared. The definition can be postponed until some
later point. Thus, a single-assignment variable can be in one of two states:
undefined (as it is initially) or defined. Once defined, there is no difference
between a single-assignment variable and a constant.

Here are some examples of declarations of single-assignment variables:

46

sync int a; //sync integer

char *sync b; //sync pointer to a mutable character
sync char* c; //mutable pointer to a sync character
sync float D(N]; //array of sync floats

sync int *sync e; //sync pointer to a sync integer

The keyword sync is analogous to the keyword const. It can be used any-
where that const can be used. Any regular C or C++ type can be declared
to be single-assignment (see Section 4.7 for an exception).

Single-assignment variables provide a means for synchronization because
of the following rule:

If a thread of control attempts to read a single-assignment vari-
able that has not yet been defined, that thread suspends ezecution
until that single-assignment variable has been defined.

Thus, threads of control that share access to a single-assignment variable
can use that variable as a synchronization element.

4.2 Data Dependencies and Flow of Control

Consider the following code:

{
sync int a,b,c,d;
par {
a = b+c;
b = 2;
c = 3;
d = a+c;
}
//at this point, a=5, b=2, c=3, d=8
}

The data dependencies in this calculation control the flow of control.
The first thread of execution, that defines the single-assignment integer a,
cannot proceed until both b and ¢ have been defined. The second and third
threads of control can proceed immediately with the definition of b and ¢
respectively. Once a and ¢ have been defined, then the fourth thread of
control can define d. Notice that in this example, d could have been a

47

mutable integer, since it is not shared between any threads. The flow of
control for this code is schematically represented in Figure 4.1.

|

sync int a,b,c.d

par

Figure 4.1: Effect of Single-Assignment Variables on Flow of Control

As another example, consider the problem of calculating all the powers
of 2 from 0 to N-1. We use the fact that the i** power of 2 can be calculated
as 2% 271,

{
sync int P[N];
P[0] = 1;
parfor (int i=1; i<N; i++)
P[i] = 2*P[i-1];

Recall that we do not know in what order or in what interleaving the
threads of execution created by a parfor statement will be executed. The

48

semantics of single-assignment variables, however, guarantee that a value
will not be assigned to P[i] until a value has been assigned to P(i-1]. The
data dependencies for this program are represented in Figure 4.2. Notice how
the strict linear data dependency of this example constrains the execution
to essentially a sequential one.

sync int pow(N];
P{O] = 1;

e 1

parfor(int i=1:; i«<N; i++) (

P{1] = 2*P(0];
P(2] = 2*P(1];

I P(N-1] = 2'P[N-2|4

Figure 4.2: Linear Data Dependency for Calculating Powers of 2

It is also worthwhile mentioning that this example can be simply rewrit-
ten as a correct sequential program by replacing the parfor statement with
a for statement. Of course, this need not be the case in general. For ex-
ample, if the bounds for the loop are reversed, so that i begins with a value
N-1 and is decremented to 1, the corresponding sequential program would
no longer be correct. This correspondence between sequential and paral-
lel programs suggests methods of systematic parallelization of certain kinds
of sequential code structures. It also suggests a deterministic debugging
methodology for parallel CC++ programs.

49

With a slight modification to the previous example, the amount of par-
allelism possible can be dramatically improved. Consider:

sync int P[N];

P(0] = 1;
P[1] = 2;
parfor (int i=2; i<N; i=i+2)
par {
P(i] = P[i/2] = P[i/2];
P(i+1] = P[i/2] = P[i/2] =* 2;
}

This program makes use of the fact that the ith power of 2 can be calcu-
lated as 2i/2x2/2 when i is even, and 201)/2520-1)/242 when i is odd. This
modifies the data dependencies in the computation from a linear structure
(as seen in Figure 4.2) to a tree structure, represented in Figure 4.3.

Again notice that this program can be simply rewritten as a correct
sequential program by replacing the parfor statement with a for statement,
and replacing the parallel block with a sequential one.

4.3 Single-Assignment Arguments and Return Val-
ues

Single-assignment variables can be used as function arguments (again, in
exactly the same way that constant variables can be used). The pass-by-
value semantics of function invocation in C and C++ guarantees that the
single-assignment variable can be copied (and hence has been defined) before
the function begins execution. For example:

void f(sync int i) //Suspends here until i is defined

{
// At this point, we can assert that i has been defined

Similarly, a function can return a single-assignment type. This is not
generally a useful thing, however, since an individual statement is evaluated
sequentially in CC++. For example, to evaluate the expression a()+b(),
first the function a() is executed, then the function b() is executed, then

50

i

)} (Z4¥=Y >} {Z=} uyliojred

|

fz = (1)a |
‘v = (0)d
! {f1}mod Juy ou's

Binary Tree Data Dependency for Calculating Powers of 2

.
.

Figure 4.3

51

their result is summed. No potential parallelism between these two functions
is exploited, so no synchronization in the form of single-assignment variables
is required. Because functions that are spawned must be void functions, a
single-assignment return type is not useful in that case either. Thus, it is
always possible to replace a function that returns a single-assignment type
with one that returns a mutable type, without altering the semantic meaning
of the program.

4.4 Type Conversions

The single-assignment nature of a sync variable cannot be cast away, neither
implicitly nor explicitly. This guarantees that a single-assignment variable
cannot be misused (that is, modified) in a thread of control. For example,
consider the following examples:

{
void £ (int *);
sync int a;
int b;
b = a; //OK
b = (int)a; //OK
(int)a = 3; //ERROR
£((int *)&a); //ERROR
}

4.5 Synchronizing Spawned Functions

Synchronization for threads of control created with the spawn command
must be explicitly programmed. This can be done using single-assignment
variables (in conjunction with pointers or C++ reference arguments). For
example, a barrier between a spawning thread of control and the function
that it spawns might be programmed as follows:

52

void independent (sync int* b) <

*b = 1;
}
int main()
{
sync int Barrier;
spawn independent(&Barrier);
if (Barrier == 1) //spawning thread waits here until
// function independent() has set sync value
4}
}

It is important to recall that the semantics of the spawn statement re-
quires that all the function arguments be evaluated prior to the function
beginning execution. This means that if one of the arguments is a single-
assignment variable, the spawned function will not begin execution until
that variable has been defined. Consider the following code:

void £ (sync int* p, sync int n)
{* =n1;}

int main()
{
sync int A(3], B([3];
Af2]) =1,
B(2] = 1;
par
£(&A[0],A[1]); //OK
£(&A(1],A(2]);
}
spawn f(&B(0],B(1]); //program suspends here forever
spawn f(&B(1],B[2]);

53

The parallel block executes correctly because initialization (e.g. argu-
ment evaluation) and execution of both instances of the function £() are
composed in parallel with each other. The spawn statements following this
parallel block, however, must be executed in strict sequential order. Com-
pleting the first spawn statement means evaluating the arguments to the
function £() — that is, the address of B[0] and the value of B (1]). Because
B[1] is an undefined single-assignment variable, the spawn statement itself
suspends. Execution does not proceed to the next statement.

The sharing of references and pointers to single-assignment variables by
concurrent threads of execution can be extremely useful. By contrast, the
sharing of references and pointers to mutables by concurrent threads of ex-
ecution can be dangerous. Because the spawned function is composed in
parallel with the spawning function, pass-by-reference semantics for muta-
ble variables can lead to dangerous sharing between concurrent threads of
control (see Chapter 2, Section 2.3.4).

4.6 Memory Management

The lifetime of a single-assignment object obeys the usual C++ scoping con-
ventions. At the end of the block in which it is declared, a single-assignment
variable goes out of scope, and is destroyed. In this case, the memory man-
agement is handled implicitly.

To create a single-assignment variable whose lifetime extends beyond the
scope of its declaration, dynamic memory allocation can be used. Again,
such allocation is completely consistent with how the allocation would be
done for a constant value in C++, using the new operator. For example:

{

sync int* a = new sync int;

*a = 3;

}

The declaration above creates a pointer to an undefined single-assignment
integer. The assignment later defines the single-assignment integer refer-
enced by a to be the value 3.

54

When dynamic memory allocation is used, C++ makes it the program-
mer’s responsibility to deallocate this memory, freeing it for future use. This
applies to single-assignment variables as well. Thus, corresponding to the
declarations above, we might expect to see:

delete a;

4.7 Pitfalls

Keeping the following points in mind when using single-assignment variables
will help to avoid many common mistakes.

1. Single-assignment variables can be read by other threads of control
immediately after their definition has terminated. For example, a
structure that contains some single-assignment fields and some mu-
table fields must usually be initialized such that the mutable fields
are defined before the single-assignment fields. For an example of the
subtlety of this pitfall, see the second example in Section 4.8 of this
chapter.

In addition, the present implementation of the compiler places the fol-
lowing restrictions on the single-assignment construct:

1. A user-defined class cannot be declared to be single-assignment. The
sync construct can only be applied to fundamental types (that could,
in turn, be part of a user-defined class).

4.8 Examples

In this section we present several examples that can be compiled and exe-
cuted and that illustrate the use of single-assignment variables (in conjunc-
tion with some of the constructs seen in previous chapters).

All-Pairs Shortest Paths This program calculates the length of the

shortest path between all pairs of vertices in a directed, acyclic graph. The
graph is defined statically by its adjacency matrix.

55

#include <iostream.h>
const int N = 4;

int min (int a, int b)
{
if (a < b) return a;
else return b;

}

sync int path_lengths[N+1] [N] [N];

int edges[N][N] = { O, 1, 8, 4,
i, 0, 1000, 2,
8, 1000, o, 4,
4, 2, 4, O01;

void initialize_paths (void)
{
for (int i=0; i<N; i++)
for (int j=0; j<N; j++)
path_lengths[0] [i][j] = edges[il[j];
}

void solve (void)
{
for (int k=1; k<=N; k++)
parfor (int i=0; i<N; i++)
parfor (int j=0; j<N; j++)
path_lengths(k] [i]1[j] = min (path_lengths[k-1][i][j],
path_lengths(k-1] [i] [k-1] + path_lengths[k-1] [k-1][j1);

}

void display_result (void)
{
cout << "All-pairs distance matrix is:" << emndl;
for (int i=0; i<N; i++) {
for (int j=0; j<N; j++) <
cout << path_lengths[N][il[j] << "\t";
}
cout << endl;
}
}

56

int main()
{ .
initialize_paths();
solve();
display_result();

return O;

This example uses the dynamic programming recurrence relation

Vi,5,k:(0<4L,j<SN-1)A(1<k<N):
D; =min(D7?, D7l + DiTi))
where Dfd- is the minimum distance between vertices ¢ and j, using only
vertices numbered strictly less than & as intermediate vertices.

In this example, all N3 calculations are composed in parallel with each
other. If any of the three values required to calculate path_lengths (k] [i] [j]
are not yet defined, that thread of control suspends. Thus, the order of eval-
uation of this three-dimensional array is controlled by the data dependencies
of each element of the array on the previous elements. Again, it is important
to note that the small size of each task to be performed in parallel relative
to the number of these tasks makes this program extremely inefficient. The
dominant cost here is the thread creation and termination time (as op-
posed to the calculations performed) and thus we would expect to observe
a degradation in performance in any practical implementation. This exam-
ple is meant only to illustrate the semantic meaning of single-assignment
variables and the functional style of programming they induce.

Synchronizing Single-Reader Single-Writer Stream This example
implements a single-reader, single-writer stream. Two operations are defined
on such a stream: an append and a removal. A removal from an empty
stream suspends until the stream is non-empty. Appends to the stream
never suspend.

#include <iostream.h>

class Stream;

57

class StreamNode {
private:
int data;
StreamNode *sync next;
StreamNode (int d) { data = d; }
friend class Stream;

};

class Stream {
private:
StreamNode* head;
StreamNode* tail;

public:
Stream (void)
{
head = new StreamNode(0);
tail = head;
}

void append (int a)

{
StreamNode* addition = new StreamNode(a);
tail->next = addition;
tail = addition;

}

int remove (void)
{
StreamNode* old_head = head;
head = head->next;
delete old_head;
return head->data;

};
Stream S;

void producer (int n)
{
for (int i=0; i<n; i++) o
cout << "[appending " << i << "]";
S.append(i) ;
}
}

58

void consumer (int n)

{
for (int i=0; i<n; i++)
cout << "Consumer removes : " << S.remove() << endl;
}
int main()
{
par {
producer(10);
consumer(10);
}
return 0;
}

The last StreamNode of a stream always has an undefined next field.
An empty stream is represented by a single StreamNode with an undefined
next pointer. See Figure 4.4.

An aupty stream A nonempty stream
head head
> data 0 —~ data 0
tail next next
? data 3
next |
data 8
next
/ data S
tail next
?

Figure 4.4: A Stream Implemented as a Linked List with Single-Assignment
Links

Appending an item means creating a new node with the appropriate
data, defining the next field of the last StreamNode, and modifying the
mutable tail member to point to this new node. Notice that because this

59

action is not atomic, this modification of tail is unprotected. Hence con-
current append() operations are dangerous, and so this is a single-writer
stream. A multiple-writer class can be created by simply making append ()
an atomic operation. .

Removing an item requires reading the next field of the StreamNode
referenced by the mutable member head. If this field is not defined, the
removing thread of control suspends here. Once this field is defined, the
data contained in the StreamNode referenced by this next field is returned,
the first node is deleted, and the mutable head member is modified to point
to this second node. Again, this modification is unprotected, and so concur-
rent remove() operations are dangerous. Unlike the append() operation,
however, this member cannot simply be made atomic to permit multiple
readers. This is because atomic functions must not suspend (recall Chap-
ter 3, Section 3.3).

This example illustrates some of the complexity involved in implement-
ing such synchronization classes that contain mutable members and will be
shared between concurrently executing threads of control. There are at least
two common errors that are avoided in the above implementation. Both
stem from the fact that if a thread of control is suspended on an undefined
single-assignment variable, that thread may resume execution immediately
once that single-assignment variable has been defined:

1. When adding a new StreamNode to the stream, the node must be
created and the data field initialized before the new node is linked on
to the stream. If the node is linked first, and then the data filled in,
a suspended remove () operation could resume execution immediately
when the next field of the previous node is defined and attempt to
access a garbage data field.

2. The first node can be deleted by a remove() operation as soon as
the stream becomes non-empty, which occurs in the second line of
the append() function. Thus, we must be careful not to access the
contents of this node in the last line of append (). The following code,
for example, is incorrect:

60

void append (int a) {

StreamNode* addition = new StreamNode(a);

tail->next = addition;

tail = tail->next; //ERROR: tail may point to a deleted node
}

If the stream was initially empty (so head and tail) point to the
same node), then using the value tail->next may dereference deleted
memory, since at this point a remove () operation may have deleted
the node referenced by head.

Fortunately, these issues of synchronization and interaction based on
shared objects can usually be encapsulated in a small collection of classes.
These classes can be rigorously analyzed and verified and used whenever ap-
propriate. For example, libraries that implement semaphores, monitors, and
a variety of message-passing channels have been implemented and verified
here at Caltech.

61

Chapter 5

Distributed Hello World

5.1 Introduction to Distributed Computing

An address space is the set of memory that can be accessed from a thread of
control. So far, all the concurrency we have created using par, parfor, and
spawn has been inside a single address space. Modulo the scoping bound-
aries imposed by the C++ language, each thread of control has access to
the same memory. This means that communicating data from one thread
to another simply requires agreeing on which location in memory to place
the information. However, simultaneous access to data by multiple threads
is nondeterministic. We introduced atomic and sync to control this nonde-
terminism.

We are now going to talk about distributing a computation over several
address spaces. Threads on separate address spaces no longer have access to
the same memory. Thus, commugication of data from one address space to
another is required for two such threads to share data. This communication
is often quite time-consuming. However, we now need to be concerned only
with nondeterminism caused by interaction with other threads on the same
address space, rather than with all threads in the entire computation.

Because communication is now more expensive, deciding in which ad-
dress space to place which pieces of data becomes important. Each thread
would like access to pieces of data it frequently uses to be inexpensive, ie.,
in the same address space. We would like to distribute the computation to
the available address spaces in such a way that each piece can inexpensively
access most of the data on which it depends.

In C++ objects, we group the data related to pieces of computation

62

(member functions) together. CC++ extends this idea with processor 0b-
jects. Each processor object is a separate address space. We group related
pieces of data, and the parts of the computation that go with them, into
one processor object.

Naturally, we cannot always break the computation up such that each
piece can inexpensively access all the data on which it depends. In CC++,
data that is expensive to access is distinguished from data that is inexpensive
to access. Pointers that reference data that is expensive to access (i.e., on
another address space/processor object) are global pointers, while those that
reference inexpensively accessible data (i.e., on the same processor object)
are local pointers.

Dereferencing a global pointer creates a communication to another pro-
cessor object to fetch the value referenced. The specifics of this communica-
tion are controlled through the CC++ construct of data transfer functions.

We will see processor objects, global pointers, and data transfer functions
in detail in the next 3 chapters. First we present a simple example of their
use.

5.2 Distributed Hello World

Let us modify the ‘Hello world’ example presented in Chapter 2 to say hello
from a set of processor objects. We use three files:

// dist_Greeter.h
#include <iostream.h>

global class Greeter { // global identifies a processor object type
public: :
Greeter() {} ‘
void say_hi (int id);

};

// dist_Hello.cc++
#include <stdlib.h>
#include "dist_Greeter.h"

63

// argy[l] - # of Greetings desired (integer)
// argy[2]..argv[l+argy(1]] -

// machines on which processor objects should be located (strings)
int main (int argc, char** argv)
{

int P = atoi(argv[1]); // P becomes # of processor objects to be created
parfor(int p=0; p<P; p++) {
Greeter *global G;
proc_t placement = proc_t("dist_Greeter.out",argv(2+pl);
// placement of processor object is specified by a (definition,location) pair
G = new (placement) Greeter();
G->say_hi(p);
delete G;
}

return O;

}

// dist_Greeter.cc++
#include "dist_Greeter.h"

void Greeter::say_hi (int id)
{

cout << "Hello World from Processor Object#" << id << endl;
}

From our shell we compile two executables:

>cc++ dist_Greeter.cc++ -ptype=Greeter -o dist_Greeter.out
>cc++ dist_Hello.cc++ -o dist_Hello.out

We must now start PVM, a communication library that CC++ uses. Ba-
sically this means invoking pvmd with a file (the hostfile) that lists the ma-
chines we plan to use in our computation. The release notes for the CC++
compiler provide more detailed instructions for executing distributed CC++
computations than given here.

We execute

>pvmnd hostfile

64

and then place pvmd in the background.

Finally we are ready! We run dist_Hello.out, telling it how many
greetings we want, and a corresponding list of locations from which we want
greetings. For instance, here at Caltech we might write

>dist_Hello.out 3 fides hebe fides

As described in the section of the release notes entitled “Running a Dis-

tributed CC++ Program”, the standard output from dist_Hello.out will

be piped to a file in the tmp directory of the machine you started pvmd from.
Let us examine the parts of this program that are not standard C++.

1. The keyword global qualifying the class declaration on line 2. This
identifies Greeter as a processor object type. Each object of type
Greeter will be a separate address space. Note that other than the
word global, class Greeter looks like any other class: processor
objects have constructors, destructors, private, public and protected
members, and can be inherited. Processor objects are explained in
Chapter 7.

2. The keyword global qualifying the pointer declaration on line 16.
This identifies G as a global pointer. A global pointer can reference

- memory in other processor objects, and thus is the basic mechanism for
communication in CC++. Global pointers are explained in Chapter 6.

3. The object placement of type proc_t on line 17. proc_t is an implementation-
defined type that specifies placement of a processor object. In our
implementation of CC++, proc_t contains two fields: an executable
name and a machine name. The executable name states where the
definition of the processor object can be found, and the machine name
states on what machine that processor object should be created. We
compiled the definition of type Greeter into dist_Greeter.out, and
we take the 2 + pth argument in array argv as the machine name.

4. The allocation G=new (placement) Greeter() on line 19. This cre-
ates an object of type Greeter, placed according to the proc_t placement.
Like all calls to new, a pointer to the newly created object is returned.
Since that object is a processor object, by definition it resides in an-
other address space, and therefore G must be a global pointer.

65

5. The function call G->say_hi(p) on line 20. This invokes the mem-
ber function say.hi on the object referenced by G. Since G references
another processor object, the function will be executed on that proces-
sor object. This is known as a remote procedure call, or RPC. say-hi
takes an argument, which is transferred to the processor object where
the function is to execute. If say.hi had a return type, the value re-
turned would be transferred back. The mechanism for controlling how
data is transferred is explained in Chapter 8.

6. The deallocation delete G on line 21. This destroys the processor
object referenced by G. All variables inside the processor object are
destroyed, and any member functions of the processor object currently
executing are halted. The execution of dist_Greeter.out on machine
argv([2+p] is terminated. Deallocation of a processor object is trick-
ier than that of other objects: a processor object might have other
member functions executing when the destructor is run. This will be
discussed in Chapter 7.

7. The compilation cc++ dist_Greeter.cc++ -ptype=Greeter -o dist_Greeter.out.

In CC++, a processor object type is defined by an executable. The

-ptype= linker option names the processor object type that this ex-

ecutable defines. When a processor object is created, CC++ checks

to insure that the type specified in the new statement and the type

assigned to the executable match. Here we define the processor object

type Greeter by the executable created from compiling dist_Greeter.cc++.

The actual name of the executable doesn’t matter.

The next few chapters will explore the concepts presented above in
greater detail. Global pointers, data transfer functions, and processor ob-
jects will be examined.

66

Chapter 6

Global Pointers

6.1 Introduction

We have introduced distributed computations as those using several address
spaces, and defined a processor object to be an address space. We postpone a
detailed explanation of how these processor objects are defined and created
until Chapter 7. In this chapter we discuss how global pointers are used
to communicate data between processor objects, assuming the processor
objects have been created.

In CC++ there are two types of pointers: global pointers and local point-
ers. Global pointers can reference addresses in any processor object in the
computation. Local pointers can only reference addresses in the processor
object in which they are created. Global pointers identify data that is ex-
pensive to access, while local pointers identify data that is inexpensive to
access.

Global pointers are used much like local pointers. When a global pointer
is dereferenced, the value it references is returned. If the global pointer
references an object, member functions can be invoked through the pointer.
In both these cases, since the object resides on another processor object, an
implicit communication is performed to fetch the value or call the function.

Global pointers are declared by using the keyword global to modify
a pointer declaration. Here are some examples of declarations of global
pointers:

67

int *global gpint; // global pointer to an integer
int * *global gppint; // global pointer to a local pointer to an integer
C *global gpC; // global pointer to an object of type C

Global pointers can reference basic types and user-defined structures, but
in the current implementation they may not reference functions. Thus we
may not declare

int (*global gpf)(); // ERROR - global pointer to function returning int

6.2 Dereferencing Global Pointers

Because the communication needed to fetch the value referenced by a global
pointer is implicit, we write expressions involving global pointers as if they
were local pointers. For example:

{
int *global gpint;
int x = *gpint+l;

}

Here x is assigned the sum of 1 and the value referenced by gpint.

We can use gpint without knowing in which processor object the integer
referenced by it resides. The integer might even be in the processor object
where this statement is executed. If this is the case, then the expression is
equivalent to the same expression using a local pointer:

{
int* lpint;
int x = *1lpint+1;

}

The current implementation of CC++ does not take full advantage of global
pointers that reference local memory. Dereferencing such global pointers will
take longer than if they were local pointers, but not as long as if the value
resided on another processor object.

68

6.3 Invoking Functions Through Global Pointers

The communication needed to invoke a member function of an object refer-
enced by a global pointer is implicit, as is the transfer of arguments to the
processor object in which the object resides. For example, we write

{
C *global gpC;
gpC->a_function();
}

to invoke the function a_function() on the object referenced by gpC. This
mechanism of function invocation through a global pointer is known as a
remote procedure call, or RPC.

Each RPC creates a separate thread of control on the remote processor
object. Thus, several RPCs can execute concurrently. atomic and sync
should be used to avoid the dangerous sharing of mutables that might result.

Processor Object#1 Processor Object#2

C*global gpC;
gpC->a_function();

\
thread suspended T
pe —thread created

a_function() {...}

//thread terminated

thread awoken —1

Figure 6.1: Flow of Control in an RPC

The semantics of function call are preserved by an RPC. That is, the
function call statement does not terminate until the function has terminated
on the remote processor object. The flow of control in an RPC is illustrated
in Figure 6.1.

If the function has a return value, it is returned to the processor object
that made the call. Thus, we can write the following:

69

{
C *global gpC;
int x = gpC->a_function_returning_int()+10;

}

CC++ has a mechanism for controlling how the arguments and return values
of functions called remotely are transfered between processor objects. This
mechanism is described in Chapter 8.

Again, a global pointer does not have to reference an address in another
processor object. If the address referenced is on the processor object from
which the function is invoked, the effect is the same as a function invocation
through a local pointer.

Functions that are called remotely may not have arguments that are
local pointers, references, or arrays. This is because these types cannot be
copied from one processor object to another. This topic is also covered in
Chapter 8. For the same reason, remote functions may not return local
pointers, references, or arrays. Violating either restriction will result in a
compile-time error.

6.4 Casting Global Pointers

Casting a global pointer to a local pointer when the global pointer does not
reference an address in that processor object is an error. After such a cast,
the address in the local pointer does not reference the same memory that
the global pointer did.

Because of this danger, CC++ will not implicitly cast a global pointer
to a local pointer. If the global pointer really references memory on the
current processor object, then an explicit cast can be used.

{

int *global gpi;

int* pi= (int *)gpi; // Think Carefully Before Using!
}

An explicit cast must only be used when it is certain that the global pointer
references memory in the local processor object. A run-time error results if
this is not the case.

Local pointers are implicitly, and can also be explicitly, cast into global
pointers. Here are the four possibilities:

70

int* pi;

int *global gpi = pi; // Implicit local-to-global cast OK

int *global gpi2 = (int *global)pi; // Ezplicit local-to-global cast OK

pi = gpi; // Implicit global-to-local cast COMPILE-TIME ERROR

pi = (int *)gpi; // Ezplicit global-to-local cast POSSIBLE RUN-TIME ERROR
}

In this example, the explicit global-to-local cast would not be an error, since
we initialized gpi using the local pointer pi!

6.5 Pitfalls

1. A global pointer takes more memory than a local pointer, and it takes
more time to dereference. Global pointers should be used to indicate
that the data referenced is expensive to obtain.

2. When creating objects whose member functions will be invoked through
RPCs, keep in mind that each RPC creates a separate thread of con-
trol, and that concurrently executing RPCs on the same object might
dangerously share mutable variables.

3. Global pointers cannot be ordered, i.e. the relational operators >,<,<=,
and >= cannot be used with global pointer operands. They may be
compared for equality or inequality using the operators != and ==. An
expression comparing a global pointer to 0 (NULL) will evaluate to
true if the global pointer points to 0 in that processor object.

{
int *global gpinti;
int *global gpint2;
it (gpinti>gpint2) {...} // COMPILE-TIME ERROR
if (gpinti==gpint2) {...} // OK
if (gpint1==0) {...} // OK

71

6.6 Examples

A Distributed List Let’s modify the synchronizing single-reader single-
writer linked list presented in Chapter 4 to append items on one processor
object and remove them on another.

We need to separate the list into two objects:

e DList.appending, which will exist in the appending processor object.
e DList_removing, which will exist in the removing processor object.

The data that has been appended but not removed will be stored in
DList_removing. Thus, we need to transfer an append request to this ob-
ject. To do this, we need a global pointer, as DList_removing is in a different
processor object than DList_appending.

DList.appending contains a member removing_side, which is a global
pointer to an object of class DList_removing. The member function append
just forwards the request through this global pointer, calling the member
function of DList_removing named real_append.

The declaration in the header file gptr_.dlist.h is as follows:

class DList_removing;

class DListNode {
private:
int data;
DListNode #*sync next;
DListNode (int d) { data = d; }
friend class DList_removing;

};

class DList_removing <
private:
DListNode* head;
DListNode* tail;
atomic void real_append (int a); // Called by DList_appending
public:
DList_removing (void);
int remove (void);
friend class DList_appending;

};

72

class DList_appending {
private:
DList_removing *global removing_side;
public:
DList_appending(DList_removing *global 1r) : removing_side(lr) {}
void append (int a);

};
The definition in gptr-dlist.cc++ is as follows:

#include "gptr_dlist.h"

DList_removing: :DList_removing (void)
{

head = new DListNode(0);

tail = head;
}

atomic void DList_removing::real_append (int a)
{
DListNode* addition = new DListNode(a);
tail->next = addition;
tail = addition;

}

int DList_removing::remove (void)
{
DListNode* old_head = head;
head = head->next;
delete old_head;
return head->data;

}

void DList_appending::append (int a)

{
// Use RPC to add item to remote list
removing_side->real_append(a);

}

The member function real_append of object DList_removing is atomic
so that several RPCs to DList.removing can be executing concurrently
but not be dangerously sharing mutables. This makes this list a single-
reader multiple-writer list. The sync next field of ListNode ensures that a
real.append and a remove will not be sharing mutable data.

73

Producer and Consumer Even though the global pointer is not nec-
essary for the list presented above if the appender and remover are in the
same processor object, it will still function correctly. We can see it working
with this program, gptr_prod.cons.cc++

#include <iostream.h>
#include "gptr_dlist.h"

class Consumer {
public:
DList_removing* remover;
Consumer() { remover = new DList_removing(); }
~Consumer() { delete remover; }

void consume (int n)
{
for (int i=0; i<n; i++)
cout << "Consumer removes: " << remover->remove() << endl;

};
class Producer {
public:
DList_appending* appender;

Producer(DList-removing *global remover)
{
appender = new DList_appending(remover);

}
“Producer() { delete appender; }

void produce(int n)

{
for (int i=0; i<mn; i++)
cout << "[appending " << i << "]";
appender->append (i) ;
}
}

};

74

int main (int argc, char**argv)
{
Consumer C;
Producer P(C.remover);
par {
P.produce(10);
C.consume(10);

}

return 0;

}
We compile and run as follows:

>cc++ gptr_dlist.cc++ -c

>cc++ gptr_prod_cons.cc++ -o gptr_prod_cons.out gptr_dlist.o
>pvmd &

>dpc.out

In Chapter 7, after we have seen how to create processor objects, we use
this distributed list class across processor objects.

75

Chapter 7

Processor Objects

7.1 Introduction

A processor object is a collection of data and computation that defines a
single address space. Although each processor object is a separate address
space in a CC++ computation, each processor object does not have to be
located on a physically distinct address space.

This distinction between the virtual address spaces (processor objects)
used in specifying the computation and the physical address spaces used to
implement it is important. It allows us to separate the problem of defining
the computation from the problem of distributing that computation to the
available resources. We specify the computation in terms of abstract objects,
and then define the mapping from abstract objects to available resources.
If the available resources change, we do not have to change the definition of
the computation, only the mapping.

As a trivial example, we saw this in the example in Chapter 5, where we
executed

>dist_Hello.out 3 fides hebe fides

This created three Greeter processor objects, two on a machine at Caltech
named fides and one on a machine named hebe. If we get another machine,
say named rhea, we can execute

>dist_Hello.out 4 fides hebe rhea fides

without redefining what a Greeter does.

76

In this chapter we will go through a more complex example: a distributed
mergesort. We will explain the syntax behind declaring, defining, allocating,
using, and destroying processor objects.

Mergesort can be thought of as a tree of processes, each leaf of which sorts
a segment of the array, and each interior node of which merges two branches,
eventually resulting in a completely sorted list at the root. Figure 7.1 shows
the interaction of these two types of objects, Merger and Sorter.

Sorter Sorter Sorter Sorter
[N/4..Nf2) dorted [3N/4..N) $oned
[0..N/4)jsorted [N/2..3N/4) borted
Merger Merger
[0..N12) sorted
Merger [N/2..N) sorted
[0..N) sorted

Figure 7.1: MergeSort

After we have defined Merger and Sorter, we can write a mergesort that
uses these objects.

7.2 Declaring Processor Object Types

A processor object type is declared when a class or structure declaration is
modified by the keyword global. The processor object class specifies the
interface to objects of that type. Public member functions and data may be
accessed by anyone with a global pointer to that processor object.
Processor object types can be inherited. As with C++ objects, private
and protected members are only accessible from member functions of that

77

processor object, or objects derived from it.
In our mergesort, we have Merger objects and Sorter objects. We de-
clare them in the common header file pobj.MergeSort.h

#include "gptr_dlist.h" // Distributed linked list
const int ENDVALUE = -1;

global class Sorter { // Sort a list and place it into out
private:
int start_index;
int stop_index;
DList_appending *global out;
void sort();

public:
Sorter (DList_removing *global out_receiver, int start, int stop);

};

global class Merger { // Merge sorted inl and in2 into sorted out
private:
DList_removing* inl;
DList_removing* in2;
DList_appending* out;
void merge();

public:
Merger (DList_removing *global);
DList_removing *global get_ini() { return ini; }
DList_removing *global get_in2() { return in2; }
}; '

We are going to use the distributed list built in Chapter 6 to send sorted
lists between our processor objects. Thus, each Sorter has a global pointer
to a DList.removing on the Merger object that is its parent in the tree.
Similarly, each Merger has a global pointer to its parent.

78

7.3 Defining Processor Object Types

Processor object types are defined by assigning a type to an executable
compiled using CC++. The processor object type to assign to an executable
is specified using the compiler option -ptype=. The type must have been
declared in the executable; otherwise, a link-time error will result.

Defining a processor object as an executable means there are two types
of members for processor objects: implicit and explicit. Implicit members
are those functions and objects at file scope in the executable, while explicit
members are those explicitly declared in the processor object type. Implicit
members are protected members of the processor object type and cannot be
accessed using a global pointer to the processor object.

In our mergesort, we will define the Sorter processor object by compiling
the file pobj_Sorter.cc++, shown here:

// Definition of Member Punctions of Processor Object Sorter
#include "pobj_MergeSort.h"

void Sorter::sort()

{
// Sort a portion of an array, perhaps reading it from disk.
// In this ezample, just output a sorted list of numbers.

" for (int i=start_index; i<stop_index; i++)

out->append(i);

out->append (ENDVALUE) ;

}

Sorter::Sorter (DList_removing *global remover, int start, int stop)
start_index(start), stop_index(stop)

{
out = new DList_appending(remover);
spawn sort();

}

We define the constructor Sorter: :Sorter and the member function Sorter: :sort
as explicit members of the type Sorter. When we compile this using

>cc++ pobj_Sorter.cc++ -o pobj_Sorter.out -ptype=Sorter gptr_dlist.o

79

all file scope objects and variables in gptr_dlist.o become implicit mem-
bers of Sorter. The executable pobj_Sorter.out is now a processor object
of type Sorter.

We similarly define Merger

>cc++ pobj_Merger.cc+ -o pobj_Merger.out -ptype=Merger gptr_dlist.o
where pobj.Merger.cc++ contains

// Definition of Member Functions of Processor Object Merger
#include "pobj_MergeSort.h"

void Merger: :merge()

{
int topl = ini->remove(); // Smallest UnMerged Element in inl
int top2 = in2->remove(); // Smallest UnMerged Element in in2

while ((topl!=ENDVALUE) && (top2!=ENDVALUE)) {
if (topi<=top2) {
out->append(topl);
topl = ini->remove();
}
else {
out->append (top2) ;
top2 = in2->remove();
}
}
while (top1!=ENDVALUE) {
out->append(topl);
topl = inl->remove();
}
while (top2!=ENDVALUE) {
out->append(top2) ;
top2 = in2->remove();
}
out->append (ENDVALUE) ;

80

Merger: :Merger (DList_removing *global remover)

{

inl = new DList_removing(); in2 = new DList_removing();
out = new DList_appending(remover);
spawn merge();

}

7.4 Allocating Processor Objects

Processor objects are allocated using the C++ new operator:

{
proc_t placement("pobj_Merger.out","fides");
Merger* global mergerl = new (placement) Merger(constructor-arguments)

}

The placement argument must be of type proc_t. proc.t is an implementation-
defined type that specifies where to place a processor object and where to
find its definition. In our implementation of CC++, proc.t contains two
fields: an executable name and a machine name. The executable name states
where the definition of the processor object can be found, and the machine
name states on what machine that processor object should be created.

The interface to type proc_t is as follows:

class proc_t {
public:

char* host_name;
char* executable_path;
proc_tQ);
“proc_t();
proc_t (const proc_t &);
proc_t (char* executable,char* host);
proc_t & operator=(const proc_t &);

};

When creating a processor object, CC++ checks that the type assigned
to the executable given in the proc_t matches the type of the processor
object being created. If these do not match, a run-time error occurs. For
example, we get a run-time error with this piece of code:

81

{
proc_t placement("pobj_Sorter.out","fides");
Merger *global merger = new (placement) Merger(constructor-arguments);

}

The type assigned to pobj_Sorter.out was Sorter, while the allocation
statement is creating an object of type Merger. The call to new returns a
global pointer to the newly created processor object.

7.5 Using Processor Object Pointers

A processor object acts like any other C++ object: it stores data members
and can be requested to perform member functions on that data. Invoking
a member function of a processor object through a global pointer to that
processor object results in a thread of control being created to perform that
member function. When the member function terminates, that thread is
terminated. Multiple member functions can be executing on a processor
object simultaneously.

These member functions might return global pointers to objects in the
processor object. For instance, in our mergesort we need a global pointer
to the DList_removing object in a Merger in order to construct a Sorter
object. Thus, member functions (get-in1() and get_in2()) in type Merger
return global pointers to their DList_removing members.

Thus, we could create a mergesort with two sorters and one merger as
follows:

{
proc_t merger_placement("pobj_Merger.out",argv(2]);
proc_t sorterO_placement("pobj_Sorter.out",argv(3]);
proc_t sorterl_placement("pobj_Sorter.out",argv(4]);

Sorter *global sorters(2];
Merger *global merger;

// Create Merger Processor Object

DList_removing* final output = new DList_removing();
merger = new (merger_placement) Merger(final_output);

82

// Create Sorter Processor Objects
DList_removing *global merger_left_input = merger->get_in1();
sorters[0] = new (sorterO_placement) Sorter(merger_left_input,0,N/2);

DList_removing *global merger_right_input = merger->get_in2();
sorters[1] = new (sorteri_placement) Sorter(merger_right_input,N/2,N);

7.6 Deallocating Processor Objects
Processor objects are deallocated using the C++ delete operator:
delete merger;

When a processor object is deallocated, all member functions currently run-
ning are terminated. Deleting a pointer to an object that has already been
deleted results in undefined behavior.

Since all member functions which are executing on a processor object are
terminated when a processor object is deallocated, we have to be careful.
Many threads of control in the computation may be waiting for member
functions of the deleted processor object to complete. These threads of
control will be suspended forever, perhaps resulting in the suspension of our
entire computation.

In our mergesort example, the constructors for Sorter and Merger spawn
member functions sort and merge respectively. The semantics of CC++
make no guarantees about when these functions will terminate. However,
we know that when the end of the merged output stream is received, these
functions have in fact terminated and it is safe to delete all the processor
objects.

7.7 CC++4 Computations

A CC++ computation is initiated by specifying an initial processor object.
Only in this processor object is the function main executed. This proces-
sor object may create other processor objects, which may create still other
processor objects.

A computation is terminated when main terminates on the initial proces-
sor object, or when exit () or abort() is called from any processor object.

83

Terminating a computation results in the termination of all threads of con-
trol on all processor objects and the deallocation of all processor objects.

The initial processor object is specified by executing a program of the
type of the initial processor object. When we compile a CC++ program
without specifying a type for the executable, an anonymous type is created.
Thus, all the programs we wrote in Chapters 2- 4 defined anonymous pro-
cessor object types. When we executed them, we created a single processor
object.

7.8 The ::this Pointer

Every processor object member, whether implicit or explicit, has a pointer to
the processor object on which it is being invoked. This pointer is analogous
to the C++ this pointer. In CC++, ::this is a pointer to the current
processor object. In the current implementation, however, this syntax is
replaced by THIS(type) where type is the type of the current processor
object.

7.9 Pitfalls

Take care to remember these things when using processor objects:

1. Multiple threads of control can be executing on one processor object at
any one time, since anyone with a global pointer to a processor object
can perform an RPC. Use atomic and sync to prevent dangerous
sharing.

2. The destructor for a processor object is just another member function
of that object. It can be running concurrently with other threads
on the processor object, and will not wait for those other threads to
finish before deallocating the processor object. In CC++ it is bad
style to finish a computation when all processor objects have not been
deallocated. The system will try to deallocate those processor objects
left by the user. The system is not always able to do this, and in CC++
the consequences of an undeallocated processor object are significant:
a process left running, wasting processor time and resources. That
process may even exist on another machine. Ending a computation
with exit() from any processor object guarantees that all processor
objects are deleted, while ending it with abort () will not. Killing a

84

single process in the computation, for instance using the UNIX kill
command, will not terminate the entire computation.

In addition, the current implementation has the following pitfalls:

1. The syntax delete [] to delete an array of pointers cannot be used
with an array of pointers to processor objects.

2. CC++ defines a function, called the entry function, for each type to
handle RPCs to objects of that type. This function is automatically
generated by the compiler. When compiling many modules into one
executable, the same type can be declared many times. If the entry
function is defined in each module, a link-time error will result. Be-
cause of this, CC++ defines the entry function for a type at the point
of the first non-inline non-constructor member function of that type.
If there are no non-inline non-constructor members of a type, you can
force entry functions to be defined at the point of type declaration by
using the compiler option +eel.

7.10 Examples

MergeSort Here is a complete MergeSort that uses the Merger and Sorter
processor objects discussed in this chapter. This pobj.MergeSort.cc++ cre-
ates 2 sorters and 1 merger, splitting the work evenly between the sorters.

#include "pobj_MergeSort.h"
#include <iostream.h>
#include <stdlib.h>

85

int read_output (DList_removing* out, int N)

{

}

int prev = -1;
int all_correct = 1;
for (int i=0; i<N; i++)
int temp = out->remove();
it (temp<prev) {
cout << "GOT ITEM #"<<i<<" OUT OF ORDER" << endl;
all_correct = 0;
}
prev = temp;
}
out->remove(); // ENDVALUE
return all_correct;

int main (int argc, char* argv(l)

{

it (arge<s) <

cout << "MergeSort::Not emnough arguments. Expect:" << endl;
cout << " Argument 1) # of Elements to sort (N)" << endl;
cout << " Argument 2) Machine to place merger" << endl;
cout << " Arguments 3,4) Machines to place sorters" << endl;
exit(1);

}

int N = atoi(argv(i]);

proc_t merger-placement("pobj_Merger.out".argv[Z]);
proc_t sorterO-placement("pobj,Sorter.out".argv[B]);
proc_t sorteri,placement("pobj_Sorter.ont",argv[4]);

Sorter *global sorters([2];
Merger *global merger;

// Create Merger Processor Object
DList_removing* final_output = new DList_removing();
merger = nev (merger_placement) Merger(final_output);

// Create Sorter Processor Objects
DList_removing* global merger_left_input = merger->get_in1();

sorters[0] = new (sorterO_placement) Sorter(merger_left_input,0,N/2);

DList_removing* global merger_right_input = merger->get_in2();
sorters[1] = new (sorteri_placement) Sorter(merger_right_input,N/2,N);

86

// Check that output list is in ascending order

int result = read_output(final_output,N);

if (result==0) cout << "Incorrect MergeSort" << endl;
else cout << "Correct MergeSort" << endl;

// Deallocate Processor Objects

delete merger; delete sorters(0]; delete sorters[i];
return result;

To compile and run this, we write

>cc++ pobj_MergeSort.cc++ -o pobj_MergeSort.out gptr_dlist.o
>pvmd hostfile &
>pobj_MergeSort.out 100 fides hebe rhea

87

Chapter 8

Data Transfer Functions

8.1 Imntroduction

In Chapter 6 we learned that when a function with arguments is invoked
through a global pointer, those arguments are copied to the remote processor
object and the function invoked with those copies. Function return values
are similarly transferred back to the processor object that invoked the remote
function.

While transferring the arguments is simple if they are basic types, it
is more complex when they are user-defined structures, particularly if they
contain local pointers. (Recall that local pointers are only valid in the
processor object in which they are created.)

To give you control over how types are transferred, in CC++ every type
has a pair of functions which define how to transfer that type to another
processor object. These functions are the data transfer functions for that
type.

Once defined for a type, these functions are automatically invoked by
the compiler to perform all transfers of that type. You do not need to call
these functions explicitly; they are invoked implicitly by calling a function
through a global pointer that takes an argument of that type. They are also
automatically invoked when a remote function returns a value of that type.

The function

CCVoidk operator<<(CCVoidk,const TYPEX obj_in);

defines how TYPE should be packaged up. It is called by the compiler
whenever an object of TYPE needs to be transferred to another processor

88

object.
Similarly, the function

CCVoid& operator>>(CCVoid&,TYPEZ obj_out);

defines how TYPE should be unpackaged. It is called by the compiler when-
ever an object of TYPE is received from another processor object. Upon
termination, obj_out will be a copy of the obj_in used as the argument to
the operator<< in the initial processor object.

The type CCVoid is a compiler-defined type analogous to class ios of
the iostream library. Data transfer functions are used much like the input
and output streams of C++. In C++ the functions

ostream& operator<<(ostreamk,const TYPEZ obj_in);
istream& operator>>(istream&,TYPEZ obj_out);

define how TYPE should be packaged to and retrieved from storage.

8.2 Building Transfer Functions

CC++ defines these packaging and unpackaging routines for the following
types: basic integer types, float, double and global pointers. The basic
integer types are: char, short, int, long, sync char, sync short, sync int, sync
long and the unsigned varieties of each of these. With these building blocks,
the transfer functions for other types can be defined. For instance:

class Point {
float x_coordinate;
float y_coordinate;
friend CCVoid& operator<<(CCVoid&,const Point&);
friend CCVoid& operator>>(CCVoidk,Pointk);
friend ostream& operator<<(ostream&,const Point&);
friend istream& operator>>(istream&,Pointk);

89

CCVoid& operator<<(CCVoid& v,const Pointk p_out)
{

v << p_out.x_coordinate << p_out.y_coordinate;
return Vv;

}

ostreamk operator<<(ostream& v, const Point& p_out)

{

v << p_out.x_coordinate << p_out.y_coordinate;

return v;

}

CCVoid& operator>>(CCVoid& v,Point& p-in)

{
v >> p_in.x_coordinate >> p_in.y_coordinate;
return v;

}

istreamg operator>>(istream& v, Point& p_in)

{
v >> p_in.x_coordinate >> p-in.y_coordinate;
return v;

}

Notice the similarities between the data transfer functions and the input /output
stream functions for class Point. The data transfer functions are declared
friends of Point so that they may access the private data members of Point.

Both istreamk operator>> and CCVoid& operator>> operate on an
object for which memory has already been allocated and initialized. The
compiler invokes the default constructor to initialize an object, and then
invokes CCVoid& operator>> with the initialized object. Thus, a default
constructor must be defined for each type. Like C++, CC++ will automat-
ically generate a default constructor for a type if there is no other constructor
defined for that type.

8.3 Structures with Local Pointers

CC++ does not define how local pointers are passed between processor
objects. While the value of an integer means the same thing in all processor

90

objects, a local pointer is valid only in the processor object in which it was
created.

For structures with local pointers, then, the information needs to be
packaged in such a way as to enable the reconstruction of the same structure
in the other processor object. For instance:

class Vector {
int length;
double* elements;
friend CCVoid& operator<<(CCVoid&,const Vector);
friend CCVoid& operator>>(CCVoid&,Vectork);
};

CCVoid& operator<<(CCVoid& v,const Vector& input)
{
v << input.length;
for (int i=0; i<input.length; i++)
v << input.elements[i];
return v;

}

CCVoid& operator>>(CCVoid& v,Vectorg output)
{
v >> output.length;
output.elements = new double[output.length];
for (int i=0; i<output.length; i++)
v >> output.elements(i];
return v;

}

The local pointer is never really transferred. Rather, the elements of the
array that it references are sent in an agreed upon order - from lowest index
to highest index — so that the identical array can be reconstructed remotely.
Also notice that no constructor has been defined for type Vector, and thus
CC++ will define one automatically.

The problems with transferring local pointers are also present for arrays,
and must be dealt with similarly.

91

8.4 Awutomatic Transfer Function Generation

If there are no local pointers or arrays in a user-defined type, then the CC++
compiler can generate the correct transfer functions automatically. For in-
stance, the correct transfer functions for class Point can be generated
automatically, while those for class Vector cannot be.

This implementation of CC++ follows these rules for automatic transfer
function generation:

o All types must have data transfer functions defined.

e The compiler can generate the correct transfer functions for struc-
tures where all data members are basic types, global pointers, or user-
defined structures. The compiler cannot generate the correct transfer
functions for types with local pointers or arrays (even statically sized).

e The compiler will generate transfer functions for all types that the
user does not. If the type contains a local pointer or an array, and the
user has not declared the transfer functions, a compile-time warning
will be given, and the generated transfer function will not try to pass
the local pointer or the array. This is a warning rather than an error
so that users interested only in a single address space will not have to
write data transfer functions.

e The user notifies the compiler that they will specify the transfer func-
tions for a type by declaring them as friends of that type. The user
should make these functions friends, even if that friendship is not re-
quired to access the private members of the type. A link-time error
will result if these functions are declared but not defined. A link-time
error will result if these functions are defined without being declared
as friends in the type declaration.

e The compiler will generate either zero or two transfer functions for
each type. The user may not define one transfer function and have the
compiler define the other.

e When compiling multiple modules into one executable, the same type
can be declared many times. If the transfer functions for that type are
defined in each of them, a link-time error will result. Because of this,
if the CC++ compiler is going to generate the transfer functions for
a type, it does so where the first non-inline, non-constructor member

92

8.5

function of that type is defined. If there are no such members, then
the compiler option +eel will force transfer functions to be generated
for all types in that compile, at the point where the type is declared.

Pitfalls

Here are some things about data transfer functions to watch out for:

1.

A default constructor must be defined for all types. The default con-
structor is invoked before an object is unpacked using operator>>.

Although the compiler may be able to generate the correct transfer
functions for a type, where correct means an identical copy of the
object is produced in the remote processor objct, that may not be
what you want. You can generate the transfer functions for any type
you want; the compiler only generates functions for types you do not.

The const in the argument to operator<< is important! Modifying
the structure while it is being packaged is modifying a mutable variable
while it is being read.

Be careful when passing structures with global pointers. The compiler-
generated transfer functions will pass the global pointer, not the object
referenced by the global pointer. The Examples section below explores
this issue in more detail.

It is good practice to think of operator<< and operator>> as two
more functions to be defined for each type, along with the constructor,
the destructor, the assignment operator, etc.

8.6 Examples

Here we present data transfer functions for some complicated structures.

Linked List Suppose we need to transfer a linked list between processor
objects. The type is defined much like the linked list used in Chapter 4,
except that no sync links are used.

93

struct ListNode {
ListNode* next;
int data;
ListNode (int d) { data = d; next = 0;}

ListNode() {3} // Default constructor to be called before operator>>

friend CCVoid& operator<<(CCVoidk,const ListNode&) ;
friend CCVoid& operator>>(CCVoid&,ListNodek);

};

struct List {
int size;
ListNode* head;
ListNode* tail;

List() { head = 0; tail = 0; size = 0; } // Called before
void append (ListNode* mn) {

if (tail!=0) { tail->next = nn; tail = nn; }

else { head = nn; tail = nn; }

size++;
}

void remove();

friend CCVoid& operator<<(CCVoid%,const List&);
friend CCVoid& operator>>(CCVoidk,Listk);
};

We might write the transfer functions as follows
CCVoid& operator<<(CCVoid& v,const ListNode& in)

{

v << in.data; returm v;

}
CCVoidk operator>>(CCVoid& v,ListNode& out)
{ .
v >> out.data; return v;
}

CCVoid& operator<<(CCVoid& v,const List& in)
{
v << in.size;
ListNode* temp = in.head;
for (int i=0; i<in.size; i++) {
v << *temp; temp = temp->next;
}

return v;

94

operator>>

CCVoidk operator>>(CCVoid& v,List& out)
{ // Assume head==0 and tatl==0 and size==(
int size; v >> size;
for (int i=0; i<size; i++) {
ListNode* new_node = new ListNode(); v >> *new_node;
out.append(new_node) ;

return v;

}

We send the ListNode structures in head to tail order, and reconstruct the
list in the remote processor object. The ListNode structures are just integers
here, but in general they could be arbitrarily complex data structures. Note
that the unpacking function for the list assumes that head==0 && tail==
&% size==0, i.e., that the default constructor has been called for the object
into which the data is being unpacked.

Linked List with global pointers If we modify List and ListNode to
use global pointers, and allow the compiler to generate the transfer functions,
then the code generated by the compiler would look something like this:

struct ListNode {
ListNode *global next;
int data;
ListNode(int d) { data = d; next = 0; }
ListNode() {} // Default constructor to be called before operator>>
friend CCVoid& operator<<(CCVoid&,const ListNodet);
friend CCVoid& operator>>(CCVoid&,ListNode&);
};

struct List {
int size;
ListNode *global head;
ListNode *global tail;

List() { head = 0; tail = 0; size = 0; } // Called before operator>>
void append (ListNode* nmn);
void remove();

friend CCVoid& operator<<(CCVoid%,const List&);
friend CCVoid& operator>>(CCVoid&,ListZ);
int size;

};

95

CCVoid& operator<<(CCVoid% v, const ListNode& in)

{
v << in.next << in.data;
return v;
}
CCVoid& operator>>(CCVoid& v, ListNodek out)
{
v >> out.next >> out.data;
return v;
}
CCVoid& operator<<(CCVoid& v,comst List& in)
{
v << in.size << in.head << in.tail;
return v;
}
CCVoidk operator>>(CCVoidk v,List& out)
{
v >> out.size >> out.head >> out.tail;
return v;
}

However, these transfer functions would not result in the list being wholly
transferred to the other processor object. When a global pointer is trans-
ferred, the object it references is not. Thus, the transferred list still points
to the same block of memory in the initial processor object. The transferred
list would look as shown in Figure 8.1.

This is known as a shallow copy of an object. A shallow copy is one where
only the object, and not memory referenced by it, is copied. In contrast, a
deep copy is one where the object, and all memory referenced by it, is copied.
The compiler-defined global pointer transfer is a shallow copy. Thus, if you
want a deep copy, you have to write the transfer function yourself.

Tree We want to write transfer functions for this tree class:

96

Initial Address Space Remote Address Space

List List
\ N
size=4 —— | size=4
h ——head
ea .
tail il

o] W e N] =

e

Figure 8.1: Transferred List Object

enum Tree_type{no_children,left_child_only,right_child_only,both_children};
struct Tree {

int data;

Tree_type info;

Tree* left_child; Tree* right_child;

Tree() {} // Default constructor to be called before operator>>

friend CCVoid& operator<<(CCVoidk,const Treet);

friend CCVoid& operator>>(CCVoidk,Treek) ;

};

The transfer functions might be written as follows:

97

CCVoid& operator<<(CCVoid& v,const Treel in)
{
int info = in.info;
v << into; // Transfer the enumerated type as an integer
v << in.data;
switch (in.info) {
case no_children: break;
case left_child_only: v << *(in.left_child); break;
case right_child_only: v << #(in.right_child); break;
case both_children: v << *(in.left_child) << *(in.right_child); break;
}
return v;

}

CCVoid& operator>>(CCVoid& v,Tree& out)
{
int info; v >> info; out.info = (Tree_type)info;
v >> out.data;
switch (out.info) {
case no_children:
out.right_child = out.left_child = 0;
break;
case left_child_only:
out.right_child = O;
out.left_child = new Tree(); v >> *(out.left_child);
break;
case right_child_only:
out.left_child = 0;
out.right_child = new Tree(); v >> *(out.right_child);
break;
case both_children:
out.left_child = new Tree(); v >> #(out.left_child);
out.right_child = new Tree(); v >> *(out.right_child);
break;
}
return v;

}

Again, the unpacking function initializes the already allocated object out.
The packing and unpacking functions agree to use prefix notation for the
tree, and to preface each data value with information about what, if any,
children that node has.

98

