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AN ANALYSIS OF NUMERICAL APPROXIMATIONS OF
METASTABLE SOLUTIONS OF THE BISTABLE EQUATION

DoNALD EsTEP

ABSTRACT. We construct a finite element method for the bistable problem that
has the same Lyapunov functional as the true solution. We prove existence and
uniqueness of the approximation and give a short-time a priori error bound. We
show that approximations of metastable solutions evolve on the same time scale as
the true solution, provided the mesh and time steps are sufficiently fine depending
on the initial data and the diffusion constant but not on the length of time of the
evolution.

§1. INTRODUCTION

This paper is concerned with numerical approximations of slowly evolving solu-
tions of the bistable problem,

Uy — €2 Ugy = U — U, 0<z<1,0<t,
(1.1) uz(0,t) = u(1,t)=0, 0<t,

u(z, 0) given.
The dynamical properties of solutions of (1.1) have generated considerable interest
(see [3], [4], [7], and references therein) in part because it is one of the simplest
problems that produce nonlinear relaxation to equilibrium in the presence of com-
peting stable steady states [4]. The asymptotic behavior as ¢ — oo of solutions of

(1.1) is well understood, see [10] and [13]. The only stable equilibrium solutions
are constant in space and minimizers of the energy functional

/01 (%e’u: + %('u2 - 1)’) dz.

For generic initial data, lim,.o u(z,t) exists and is equal to one of these stable
states. :

But, this convergence can be extremely slow because solutions of (1.1) can exhibit
dynamic metastability. If u forms a pattern of transition layers after the initial
transient, then the subsequent time scale for substantial motion of the layers to
occur is

(1.2) exp{Cd/e}

for C = O(1) and d equal to the minimum of distances between layers and layers
and the boundaries. These metastable solutions are neither local minimizers of
the energy or necessarily close to an unstable equilibrium solution of (1.1). After
the metastable period, a relatively quick transient sees one or more of the layers
disappear and the solution form a new metastable pattern. This repeats until the
eventual convergence to a stable state.
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Detailed analyses of metastable solutions have been carried out in (3], (4], and (7].
The last two references share key techniques. They begin with an ansatz on the form
of a metastable solution, then an analytic approximation to the metastable solution
is constructed that is extremely close to the metastable solution (exponentially
close in —1/¢) yet allows precise estimates on its motion. Both analyses involve
consideration of some manifold generated from the approximate metastable states
and are self-termed as geometric approaches. In both cases, the estimate on the
time of substantial motion of layers is (1.2).

Bronsard and Kohn (3] use a completely different approach based on “energy”
estimates. They employ a renormalized energy,

Biul= [ (§u2+ £ -17)ds

that is positive and finite as ¢ — 0. The minimum energy of a single transition
from 1 to —11is

o 1= L2

0 -— 3 '
and in general for Z transitions, the minimum energy is Zeo. The minimum is
achieved by the piecewise constant function &/ that changes value at the Z zeroes
of the layers. The essential tool in their analysis is a result which shows that an
H'(0, 1) function w that makes Z transitions “smoothly” in the sense that

Ew] < Zeo + ¢,

for some [ > 0, and that is close to & in the L!(0, 1) norm, depending on I, satisfies
a lower bound on the energy E.[w]. The rest of the analysis is directed towards
showing that a solution of (1.1) with initial data satisfying these hypotheses main-
tains a transition layer structure with little motion over a time interval of length
O(e~'~1). In comparing these results with those in [4] and (7], we note that for
fixed I,

eC'/l > Ce-l—l'

for € small. On the other hand, the assumptions on the data in [4] and [7] mean
that the data satisfies the hypotheses of Bronsard and Kohn for every ! > 0.

Our interest lies in the behavior of numerical approximations of metastable so-
lutions of (1.1). In general, approximations started with generic data move quickly
to a transition layer pattern as expected. The subsequent evolution varies greatly,
however, depending on ¢, the mesh, and the scheme. The pattern of layers may ac-
tually become fixed; the layers may exhibit metastability on the scale suggested by
the behavior of the solution; and they may move more rapidly than expected. We
would like to understand the mechanism behind these possibilities. We hope that
an understanding of the behavior of approximations of (1.1) will carry light to other
nonlinear parabolic problems that exhibit fast and slow time scales of evolution.

The motivation for this paper lies in the following results produced by a scheme
we introduce in §2. We start the scheme with initial data that is close to a single
metastable transition layer and then record the time of substantial motion of the



NUMERICAL APPROXIMATIONS OF METASTABLE SOLUTIONS 3

layer as a function of the number of spatial mesh points of a uniform mesh. We
use €2 = .01, which is sufficiently small to give metastability. The time-stepping is
performed with equal accuracy throughout. We plot the results in figure 1. It is
clear that motion is more rapid on coarser meshes and that the time scale of motion
seems to “converge” as the mesh is refined. To further emphasize the dependence
on ¢, in figure 2, we plot the ratio of the time of substantial motion for 5 mesh
points to that for 200 mesh points versus €3. As €3 decreases, the effect is more
pronounced. We have tested several other schemes in this fashion and achieved
similar results in all cases.

28.5 T T ™ T T g T Y ™
o0 009 o o o o o o
28 s
6’

5 °
a
§ IS
H 27.SF o b
q
b
-
- °
[
)
-
- 27F o 4
o
®
H
a
o

26.5 b

o
26 A A . A " N R . R
[} 20 40 60 80 100 120 140 160 180 200

number of mesh points

FIGURE 1. PLOT OF TIME VERSUS NUMBER OF MESH POINTS

This behavior cannot be understood by considering the standard a priori error
analysis used to prove convergence. To explain this, we paraphrase the typical
result;

|lerror(t)||4 < CeC/¢ - mesh size - ||ul|s;

for appropriate function spaces A and B. The factor exp{Ct/¢} implies that this
bound has meaning only for a short initial transient and cannot be used to analyze
the scheme over the time intervals that we consider. For linear parabolic problems,
it is possible to give error bounds for some schemes that are uniform in time. The
exponential factor above is produced in the course of a Gronwall argument that
is used to handle the nonlinearity. It is possible to prove long-time error bounds
for certain schemes for nonlinear parabolic problems ([6],(8],(9],{11],[12]). All of
these analyses rely on a “non-smooth” data estimate that is the discrete equivalent
of “parabolic smoothing”. These arguments do not apply to the situation of a
metastable solution. In rough terms, the linear problem obtained by linearizing
(1.1) around a metastable solution has some positive eigenvalues associated to it.
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We perform our analysis on a scheme that has the same Lyapunov functional
E,[] as the true solution. The scheme is described in §2. It is the analog of a scheme
suggested for the phase field model by Du and Nicolaides {5]. We prove existence
and uniqueness of the approximation and a standard a priori error bound in §3.
As we said, the latter is not useful for the analysis of metastability. But, it does
have one important consequence. All of the references 3], (4], and (7] conjecture
that generic initial data move to the assumed profile during an initial transient; if
true, then their analyses are valid for generic data. If this conjecture is valid, then
the short-time error bound would imply that the same is true of approximations
computed on a sufficiently fine mesh.

Our main results, presented in §3, are essentially extensions of the results of
Bronsard and Kohn to the approximation produced by the scheme introduced in
§2. Our results require that the space and time mesh be sufficiently fine, depending
on €, U, E [u(z,0)], and I (see above), but not depending on time. In other words,
for space and time mesh sufficiently fine independent of time, the approximation'’s
layers evolve on a time scale larger than ¢~'~! for any I > 0. We do not know,
of course, whether the approximation tracks a particular solution over this time
interval. Our intuitional explanation of the numerical results presented above is
that the lower bounds we derive on the time of motion and the conditions to achieve
this time are in fact strict. Hence, using a coarse mesh limits the size of the { that
can be used in the assumptions, and so the time of evolution. We believe this to
be true because a careful look at the analysis shows there is little waste in the
estimates.

We note that this analysis of Bronsard and Kohn is particularly suited to the
finite element method we consider. It would be more difficult to extend the analyses
of [4] and (7] to numerical methods because it is essential to both that the tran-
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sition layers are close exponentially in —1/¢ to a given function. Since numerical
approximations for (1.1) are only accurate to polynomial order in the mesh size,
this condition is impractical for computations made on uniform fixed meshes when
¢ is small.

§2. THE NUMERICAL SCHEME
The weak formulation of (1.1) reads: find u € L*((0, 00); H(0, 1)) such that

(2.1) { (e, %) + €*(uz,y v2) + (f(u),v) =0, t>0,v€ HY0,1),
) u(0, z) given ,

where (v,w) := fol vwdz with ||v||? := (v,v) and f(v) := v® — v. We employ an
analog of a scheme proposed by Du and Nicolaides (5] for the phase field model.
We discretize [0,1] into 2o :=0 < 21 < *** < Tp41 := 1, with Az :=Zm —2m-1,
Az := maxAz,, and Az := minAz.m,, and [0,00) into tg := 0 < t; < 83 < ---,
with At, := t, — tn—1 and At := sup At, < co. We use the space of continuous,
piecewise linear functions for approximation,

Vi = {V :V €Co(0,1) and V|(z,._,,z,,) i8 linear  m=1,.... M+ 1}.

By standard results, V, C H!(0,1) and it satisfies the approximation condition;
there is a C > 0 such that

. _ _ 2
Jof (llv - VIl + Azllve Vell) < CAZ?||uel,
for all v € H(0,1). We do not use f directly in the discretization in order to

construct a scheme that preserves the Lyapunov functional. Instead, define for v
and w real numbers,

- vB+rvivt+rwi+uwd v+4w
flv,w):= y -

Note that if F(v) := (v? — 1)?, so F'(v) = f(v), then for all v, w,

F(v) — F(w) = f(v,w)(v — w).

The scheme generates a sequence {Uy, } of functions in Vj, as follows. For an indexed
function V,, let AV, :=V, — V4_; and Vo z := (V3)z. Set

U := mpu(z, 0),

where 7, denotes the interpolation operator into V3, and for n > 0, let U, solve

AU, =
(22) ( Aty ’V) + (Un,z + Un-1,5,Vz) + (f(Un, Un-1), V) =0,
forall V € V.

Before turning to existence and convergence, we explain our interest in this par-
ticular scheme with the following proposition which shows that the approximation
has the same Lyapunov functional as the solution.

e 4 A 4D W0 % . WO <
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Proposition 2.1. For N > 1,

(2.3) : i /0 1 (AAI::)zd::Atn = E.[Uo] - E.[Un].

n=1

Proof. In (2.2), choose V = AU, to get

1 2 2 1

AU, €

/ dzAt, + —/ (U,‘,== + U, _1,3)(U,,,z - U,,_l,,)dz
) At, 2 Jo

1
= —./o f(Un, Un-1)(Un - Un—l)dz’

1 U, 2 2 rl 1
/ (it ) dodtn + 5 / AlUnofdz = — / AF(Uy)dz.
0 n 0 (4]

Summation over n gives

N a 2 2 . -
AU, € . € ,
£ (3 o2 [ - [

n=1

or

- /o ' F(Un)dz + /o ' F(Uo)da.

The result follows. O
Corollary. There is a C = C(E,[Us), €) such that

|Unllze=(0,1) £ C,

for alln > 0.
Proof. (2.3) implies that E,[U,] < E.[Uo] for any n > 0, and in particular that

€
5||U,,,,||2 < Ec[UO]

and 1
102 = 1| < Buo].

However, ||Ua||* < 1 + ||U2 — 1||, so an appeal to the Sobolev inequality yields a
constant C > 0 such that

2
lUnllL=(0,1) £ CllUnll&r1(0,1) < C(1 + 2E,[Uo]*/? + ;E.[Uo])- a

Next, we address existence and uniqueness. The following is proved in §4.
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Theorem 2.2. For At = At(e) sufficiently small, there is a unique sequence of
solutions of (2.2).

Finally, we prove the following convergence result in §4.
Theorem 2.3. There is a constant C > 0 such that for all u with u and u; in
H7(0,1) forr =2 or 3,

TN = u(-,tw)l? < Cllmau(:, 0) = ul-, 0)I? + CAz|Ju(-, tw)llF-(0,1

N
+ CeCtn Z{Az" (IIUNi-((:..-x,z..);m(o.n)

n=1

+|l"’t“%-((z,-‘.t,);ﬂ'(o,l)))

+ At: (“ut“i"((fu-l |‘n);L’(°v1))
+ [utellZ oo ((taes,ta)iza(0,1))

+Ilu=:IIZ-((:.-x.t..);m(o,x))) }A‘"'

§3. THE LONG TIME BEHAVIOR OF THE APPROXIMATION

We analyze the behavior of U by adapting the arguments of Bronsard and Kohn
(3. Recall that the minimum energy E, of a sharp tranmsition from -1 to 1 is
€0 = V2/3. The piecewise constant function &/ has Z transitions between —1 and
1 and

E U] = Ze,.

Bronsard and Kohn showed that if the initial data for (1.1) is close to i in a precise
sense, then the solution remains close to U over a long period of time. We show
the same holds true of the approximation given by (2.2).

We begin by quoting the following result ([3], proposition 2.1) which says that
an H!(0, 1) function that is close to & in the L!(0,1) norm and that makes the Z
transitions with “minimal waste” has energy close to the minimum value Zeg for
Z transitions. We assume that € < 1 in the remaining portion of the paper.

Proposition 3.1. Let | be a positive integer. There exist constants §; > 0 and
C > 0 such that; if w € H'(0, 1) satisfies

lw—UllLr(0,1) < &
and

Ee[w] < Zeo + 51:

then
E w] > Zeo — Ce'/6}.

We assume henceforth that u(z,0) satisfies these hypotheses, however since the
initial data for U, is Up = whu(z,0), we require the following lemma in order to
apply the proposition to U,.
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Lemma 3.2. Suppose that w € H?(0,1) satisfies
lw=UllLr(0,1) < #6

and
Ee[w] < Zeo + ¢¢',

for some § > 0, | a positive integer, and 0 < ¢ < 1. Then, for Az sufficiently small,

(3.1) lrhw — U|[L2¢0,1) £ 6 (Az depends on § and ¢)
and
(3.2) E[mhw] < Zeo + € (Az depends on € and ¢).

This result is proved in §5.

Remark 3.1. We can decrease the changes made in passing from u(z, 0) to 7hu(z, 0)
by taking ¢ closer to 1, but this requires a finer mesh in order for (3.1) and (3.2)
to hold.

Now, we obtain an upper bound on the L2((0,t) x (0,1)) norm of AU,/At, for
a large time ¢, provided the initial data is close to &/. The proof rests on showing
that Uy satisfies the hypotheses of proposition 3.1 for some large N and then using
the resulting lower bound on E,[Uy] in (2.3).

Proposition 3.3. Assume that

(3.3) Uz) = 1}_13:1) u(z,0) in L}(0,1)
and that
(3.4) E[u(z,0)] < Zeo + o€,

for some 0 < ¢ < 1. There are constants C; and C; depending on U and |
and independent of €, Az, and At, such that for all sufficiently small ¢, there are
constants Az(e, ,1), and At(e, Az™*, ¢,1) such that all approximations computed
with Az < Az(e, ¢,1) and At < At(e, Az}, 4, 1) satisfy

N 3
(3.5) E/.. (itv:) dzAt, < Cielt?,

n=1

for some integer N satisfying
ty > Cre~ (1),

This result is proved in §5.

Next, we turn the bound (3.5) into estimates on the rate at which the profile of
Un changes. The simplest result limits the change in the L(0,1) norm over the
interval [0, Cle"‘] .
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Theorem 3.4. Assume that (3.3) and (3.4) hold for some 0 < ¢ < 1. There is
a constant C = C(C\,C3) that is independent of ¢, Az, and At such that for all
sufficiently small ¢, there are constants Az(e, ¢, 1), and At(e, Az™*, ¢,1) such that
all approximations computed with Az < Az(e,¢,1) and At < At(e, Az™}, ¢,1)
satisfy

1
sup / |Un = Uoldz < Ce'/3,
o<n<N Jo

for all integers N withty < Cre~'.

Corollary. If §; in proposition 3.1 is chosen so that
& < Cel/zl

then

1
sup / |Un — U|dz < 2Ce*?,
0<n<N Jo

for all integers N with ty < Cie~'.

Finally, we conclude with more specific information on the rate of motion of
positions of the zeroes of U,. This requires an additional assumption

3.6a. u(z,0) crosses 0 transversely at exactly Z distinct points,
and

3.6b. the same is true of U, for all n > 0 until the first time that two zeroes meet
or a zero meets the boundary.

Note that the analog of (3.6b) for the true solution can be proved to hold, see [2].
The extension of the results in [2] to numerical approximations seems technically
difficult. Arguing as in the proof of proposition 3.3 (see §5), we can prove that for
any § > 0, there are Az(e,8) and At(e, Az™!,6) sufficiently small, such that the
change in the position of a zero from t,_; to t, is bounded by § for all n in any
approximation computed with Az < Az(e, §) and At < At(e, Az}, 6). Moreover,
by the short-time error bound, we know that (3.6b) holds for some positive n. Thus,
if (3.6b) fails to hold for some n > 0, then at that point, the approximation has
begun to act quite differently than the true solution. In this case, perhaps it is no
longer meaningful to look at the motion of its zeroes.

In the following result, we let

Zn,1 << 2nz
denote the Z zeroes of U, and given § > 0,

N(8) := ix'x‘f{lz,.,; — z9,i| > 6, for some i}.
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Theorem 3.5. Assume that u(z, 0) satisfies (3.3), (3.4), and (3.6a), and {Un} sat-
isfies (3.6b). There is a constant C > 0 such that if § > 0 is sufficiently small, then
for all sufficiently small ¢, there are constants Az(e, ¢, 1), and At(e, Az, ¢,1) such
that all approximations computed with Az < Az(e, ¢,1) and At < At(e, Azl 9,0)
satisfy

ING) 2 C§3e= (1),

This result implies that as long as the approximation maintains its “smooth”
transition profile, its zeroes barely change position over a time interval of length

0(6-(“'1)).
§4. PROOFS OF RESULTS IN §2
Proof of theorem 2.2. We define a map ®y ,, : Vi = ViforU€eViand1<nby
U= Qﬁ(V) = Qg’n(V)
if

(4.1) (U,W)+ f‘zhe’(v,, w.) = (U, W) - At,,%(ﬁ,, W.) - At (f(T, V), W),

for all W € V,. It is easy to see that &y is well defined for At sufficiently small,
and that given U,_;, the approximation U, exists if and only if ®y,_, has a fixed
point, namely

Sy._,(Upn) = Un.

Assume that ||7|| < r for some r > 0. We choose W = U +U in (4.1) and obtain
W1 + SN + D)l = 191 - Ata(F(D, V)0 + D),
and if At < 1,
(4.2) U1 < 4TI + 288 F(T, V)12
Using standard inverse estimates that hold for functions in V3, if ||V|| < 4r, then
I£(@, V)l < caz™'r,
for some C > 0. Using this in (4.2), we get
U1 < 160
provided
Cr‘At

Azl

is sufficiently small. Thus, &; maps the ball {V : ||V|| < 4r} into itself for At
sufficiently small. Furthermore, if Uy and U; are two images corresponding to V3

e - ——n -
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and V; in {V : ||V]| < 4r}, then by subtracting the corresponding equations (4.1)
and choosing W = U, — Uz, we get

10Uy = Usl|? < —Ata(f(T, V1) — (U, Va), Us = Ta).
We again use inverse estimates to conclude that

rtAt,

U, -l <C
“1 2”_ _A_z’

”Vl - V2”2»

and hence that ®; is a contraction for At sufficiently small. The Banach fixed
point theorem provides the result. O

Proof of theorem 2.3. In the following we abuse notation to let u(tn) := u(:,ta)
and tn_1/3 := tan-1 + Aln/2. As usual, we introduce the elliptic projection P :
H(0,1) — V3 and split the error

Un - P(tn) = (Un - Plu(tn)) + (Plu(t'l) - u(tﬂ))
=:0np + pn.

We obtain an equation for the unknown part of the error 6, by subtracting the
equation in (2.1) evaluated at t,_,/; from (2.2) and doing some rearrangement;

A6, €2
(Z_t:1w> + -2'((0n + 6, -I)Sst)

= —(f(Un-1,Un) = f(ultn-1/2)), W) + (Ue(tn-xlz) - Au(t,,),W)

N (A(u(tn)A-tnPw(fm))’W) + (ug(tn-m) - “z(t"A)t:zu’(t"‘l),W)

We choose W = (6, + 6n-1)/2 and estimate,

All6a]? | € 2
-_—Atn + 2 ”(en +on—1)=”
1, - 1 Au(t,) |?
< N f(Unz1,Un) = f(u(tn— 142 -1/3) —
s < FIAOnc1,Un) = altmesy DI + 5 ltn-) -
1 am|?, 1 tz(tn) + ve(tn-1) ||°
+ 2" _Atn + 2 uz(tn-—llz) - 2

+ C||6al|* + Cl|n-1]?,

for C > 0. We need to estimate the first term on the right before applying a Gron-
wall inequality. f is not globally Lipschitz continuous, which can cause difficulty.
However, the existence of a Lyapunov functional for both U and u means that
these functions are pointwise bounded uniformly in ¢ > 0. (See the corollary to
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proposition 2.1.) The constant C below depends on the common bound, i.e. on
E¢[mnu(z,0)] and E,[u(z,0)]. To estimate the first term on the right, we note that

1 f(Un, Un-1) = f(u(ta-1/2))II?
SN f(Un, Unc1) = Fltn, unc)lI* + |1 f(tn, un-1) = f(u(tn-1/2)II?

< c(nm — wltnl + [1nes = u(tn I + [[6(tn) = 6(Encry2)I
l(tnnr) = ultmms2)l1? + fls(tn) - u(tn-on’).

Using this in (4.3), we get

Alleal1?

2
€
A=+ Sl16n + 6n-0)el? < By + Cll6nl* + Cllfa-all,

where

Ean-1:= C{IIPnII’ + llon-1ll? + [lu(tn) = u(ta-1/2)|I” + [[u(tn-1) = u(tn_17a)I’

T {lu(tn) — uta)|* + Hw(tn-m) -

Aty

Uz (tn) — Uz(tn-1)
2

1

.

At + ||uz(tn=1/2) —

A discrete Gronwall argument yields
n
[1811? < 116ol|? + CeC~ 3 Ejj-1At;.
ji=1
Straightforward estimates on Ej ;_i, under the regularity assumptions of the the-
orem, yield the result. O
§5. PROOFS OF RESULTS IN §3

Proof of lemma 3.2. By standard results, there is a constant C > 0 with
lw — *awllLi(o,1) < CAZ*|w|aa(o,1)-

Hence,
llxaw — Ul|L2(0,1) < llmaw = wl|La(o,1) + [lw — Ul|L2(0,1) £ 6

provided
CAZ?|w|g3(o,) < (1 - )6

For the proof of (3.2), set W := mpw and compute

EJW] = %f ./, N (W_Wz-_) dz +—A§ (W(z)? - 1)%dz

m-l m=1YEm-1
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For z € [Tm-1,Zm), because w € H3(0, 1), we can estimate

W — Won1 \ 2
w:(z)z—( mAzmm 1)

and therefore

[ d“‘z /%_‘ (Lw_m-_)’d,

Using the identity (a® — 1)? — (® — 1) = (a + b)(a — b)(a? + b? — 2) and the bound
|Wllze(0,1) < llwll=(0,1), We compute

|(w(z)? - 1)* = (W(=z)? = 1)?| < 4(llwllZ=o,) + 1)lIwllze(o,) - [w(z) — W(2)|.
Hence,

! 2 _1\3gp — ! 2)? — 1)3dz
[ i@ - 1y2aa - [wia - 1y

< 4823 (||w]|Zeo(o,1) + 1)llwllzee(0,1)[wlEr3(0,1)-

Tm

< 2||w=“L°°(=-..-1.=m) : |wez|dz,
Tm-1

< eAz||w=IIL-(0,1)IW|H’(0,1)'

<
2

Therefore, there is a constant C > 0 such that
E (W] < |E (W] - E.[w]| + E[u]
CAz?

< Zeo + g€’ + CeBz||w||zrao,1) + ("wllm(o,x) + llwllErao,1y)
< Zeo + el,
provided Az is sufficiently small. O

Proof of proposition 3.3. Using (3.3) and lemma 3.2, we choose Az = Az(6;) so
that

1
|lwau(z, 0) — u(z, 0)||L2(0,1) < 3%

where §; is the constant used in proposition 3.1. We claim that if for some N > 0,

(5.1) 5 /

n=1

2l dzAtn < %51.

then there is a C3 > 0 such that

(5.2) Z / (AU") dzAt, < Ciet?,

n=1

for all sufficiently small € and Az(e, §;). In this case,
et = Unllro,n) < U - Whﬂ(z, °)I|L=(o 1) + IlU~ = UollL:(0,1)

2 ldzAtn

Atn

n=1

5
8.

IA
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Furthermore, by proposition 2.1 and lemma 3.2,

(5.3) E[Un] < E[Uo] < Zeo + €,

for Az(6;, €) sufficiently small. Proposition 3.1 implies that there is a C; > 0 with
(5.4) E[Un] > Zeo — Cié'.

Using (5.3) and (5.4) in (2.3) gives

[

n=1

2
AU") dzAt, < (Ci+1)é,
Atn

which proves the claim.

We need to show that (5.1) holds for some Cy > 0 and N with ty > Cye~(1+1),
In order to do this, we require a uniform bound on the size of the change ||U, —
Un-1llz1(0,1) foralln > 1. We claim that for any § > 0 there is a At(E[Uo], Azl ¢, 6)
sufficiently small such that

”Un - Un-l”b‘(o.l) <6,

for all n > 1. As in the proof of proposition 2.1, we choose V = AU, in (2.2) and
then estimate to get

(55)  lIUn = Un-sll® < (4€%|Un,ell® + 4€%|Un-1,2l1? + 21| f(Un, Un-1)|[?) Atn.

By the proofs of proposition 2.1 and its corollary, we know that there is a constant
C(e, Ec[u(z,0)], Az"!) such that for all n > 0,

ma-x{”Uﬂ”' 1Un =1l |Un,ell, "Un-1.=”} < C(e, El[u(z, 0)]1ﬂ-1)'
Using this information in (5.5) together with an inverse estimate yields
1Un = Un-sl < Ato(€ + Az"?)Cle, Edlulz,0)], Az™)

and
”Un -, —1”L‘(0,1) < Atvlzlzc(ey Et[u(zy O)LM_I) < 5v

for At sufficiently small.
Returning to the proof that (5.1) holds for large t, we assume that At is chosen
so that (5.4) holds with § = 1§ for alln > 0. If

S/

n=1

AU,
At,

dzAt, < %6:.

we are done. Otherwise, let N be the first integer such that

AU"
Aty

dzAt,, < %5,
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but N+1
1
AU, 1
Z/ = dzAtn > -6‘-
n=1Y0 Atn 2
By the assumption on At, we have
N .1
1 AU,
=& < / dzAt
e -El o | Atn "
(5-6) 1/3 N 1 AU", 2 1/2
<t
= (Z/o (At,. ) d”“")

n=1
< Catyy el EHD/2,

where we also use (5.2). We conclude that

tn > —6?—-€°(‘+1). a
16C3

Remark 5.1. The existence of a Lyapunov functional for {U,} allows us to bound
|Un—Un-1llz1(0,1) uniformly in n and this is key to the above argument. Otherwise,
we would not have information on the size of the lower bound in (5.6).

Proof of theorem 3.4. By proposition 3.3, there are constants C;, C3 > 0 such that
for €, Az(e, ¢,1), and At(e, ¢, 1, Az™!) sufficiently small

N a1 2
AU,.) ,
S dzAt, < Caelth),
/;(Atn zAt, < Cae

n=1
for all N with tx > Cye~(*+1). Thus, for all integers N with
tg < Cie™' < tw,

we have
¥,
> / " ldzAt, < 130 < Cet3.
o | Atn =N
n=1
Since ]
1 ZN: 1 AUn
sup / \Un(z) = Uo(z)ldz < / I dzAt
ognedo o | Aty "

the conclusion follows. O

Proof of theorem 3.5. If N(6) = oo, there is nothing to prove. Assume that N(§) <
00, 50

|z (e)i = 20,51 2 6,
for some i. We claim that for sufficiently small € > 0,

1
(5.7) / IUN(F) — Upldz > C4§,
0

for some constant C independent of §. We use the following result from (3] (lemma
4.2),
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Lemma 5.1. Suppose the graph of an H'(0,1) function w crosses 0 transversely
at exactly Z points zy < -+ < zz. Assume that E.[w] < Zeo + €. Then for §>0
sufficiently small and all € < &#), there exist Z intervals I; 3 z C [0,1] with
|I;] < 28 such that (w(z)2 —1)? < § for = ¢ U;L;.

We apply this lemma using first w = Uy(s) and then w = Uy, taking 6 < 6, and
choose € and Az sufficiently small so that (5.7) holds. We estimate from (5.7),

N(§) .1 2 1/3
Z AU, 1/3
0 s <n=1 ~/‘; ( Atﬂ ) dzAtﬂ) tN(E)'

By possibly decreasing Az and taking At sufficiently small, we satisfy the hypothe-
ses of proposition 3.3. Now, if ty(5) > C1€(+1) | then the result holds automatically.
Otherwise, we bound the integral above using (3.5) to find that

C5 < Cce+I3 . ln

and the result follows. . O
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