Open Problems in Numerical
Linear Algebra

J.W. Demmel

CRPC-TR92421
1992

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

This work was supported in part by the NSF and DARPA.

Open Problems in Numerical Linear Algebra

J. W. Demmel*
Computer Science Division and Mathematics Department

University of California
Berkeley, CA 94720

Abstract

The original goal of the LAPACK project was to design and implement a portable
linear algebra library that would be very efficient on high-performance machines. During
the project it became apparent we could also significantly improve the accuracy of
many standard algorithms in linear algebra, with little or no sacrifice of speed. This
work has led to new perturbation theory, new algorithms and new error analyses for
many problems, as well as many still unsolved problems. In this paper we survey some
of these new results, and discuss open problems in four related areas: high accuracy
algorithms, parallel algorithms, the complexity of condition estimation, and exploiting
IEEE standard floating point arithmetic.

1 Introduction

The University of Tennessee, the Courant Institute for Mathematical Sciences, the Numer-
ical Algorithms Group, Ltd., Rice University, Argonne National Laboratory, Oak Ridge
National Laboratory, and the University of California at Berkeley have developed a trans-
portable linear algebra library in Fortran 77. The library is intended to provide a uniform
set of subroutines to solve the most common linear algebra problems and to run efficiently
on a wide range of high-performance computers.

The LAPACK library (shorthand for Linear Algebra Package) provides routines for
solving systems of simultaneous linear equations, least-squares solutions of overdetermined
systems of equations, and eigenvalue problems. The associated matrix factorizations (LU,
Cholesky, QR, SVD, Schur) are also provided, as well as related computations such as
reordering of the factorizations. Dense and banded matrices are provided for, but not
general sparse matrices. In all areas, similar functionality is provided for real and complex
matrices. The software is in the public domain and is available from netlib [35]. For a more
complete survey of LAPACK, see [2, 1].

The original goal of LAPACK was simply to be faster than its predecessors EISPACK [81,
44] and LINPACK [29], which run inefficiently on machines with hierarchical memories.

*This paper was written while the author was visiting Clemson University and the Institute for Mathe-
matics and its Applications at the University of Minnesota. The author also acknowledges the support of
NSF grants ASC-9005933 and DCR-8552474, and DARPA grant DAAL03-91-C-0047 via a subcontract from
the University of Tennessee.

In the course of the project, it was also discovered that many standard problems could
also be solved much more accurately than before. This was done by discovering algo-
rithms whose backward error was significantly smaller than that of conventional algorithms
(4, 26, 16, 8, 27]. This permitted us, for example to compute singular values of bidiagonal
matrices to high relative accuracy no matter how tiny they are [26); in contrast, the stan-
dard algorithm [50] may compute the tiny singular values without any relative accuracy at
all.

As a result of these successes, our vision of what linear algebra software should provide
has changed considerably: our expectations of accuracy have risen. In addition, there are
a great many new problems to solve (and new techniques to try) in order to expand these
results to more algorithms. We will discuss these open problems in section 2 below.

On the other hand, there remain some problems for which no highly parallel algorithms
exist that are numerically stable even in the conventional sense. For some problems insisting
on maximal parallelism means no numerically stable algorithm is known at all; in other cases
there is a “smoother” tradeoff of parallelizability and stability. In these cases we propose
the following paradigm for using unstable but fast algorithms safely:

1. Solve the problem (quickly).
2. Test for instability.

3. If the answer is unsatisfactory, recompute the answer using a slower but more stable
algorithm.

This paradigm will be successful if the fast algorithm in the first step is only rarely unstable,
and if the instability test in the second step is cheap. A number of problems can be solved
this way, and are discussed in section 3.

In LAPACK as well as in many other packages we estimate condition numbers using
fast approximation algorithms rather than attempting to compute them exactly. We do
this because error bounds are approximations anyway, and high accuracy is generally not
needed. Also, a user more interested in speed may not be willing to take much more
time to compute an error bound on top of solving the original problem. However, the
price of using estimators is that all of them invented so far have counterezamples, i.e.
problems whose condition numbers are arbitrarily misestimated (usually underestimated).
Fortunately, these counterexamples appear to be extremely rare. This leads us to the
following conjecture:

The complexity of computing a condition number with a certain guaranteed
accuracy is at least as large as the complexity of the original problem.

In particular, this would imply that any fast estimator would necessarily have a coun-
terexample. We will sketch a proof of this in a very simple (and nonrealistic) model of
computation in section 4, and discuss an approach for analyzing how rare counterexamples
are.

One of the goals of LAPACK was portability of correctness. Our need for machine
specific versions of kernels like matrix-matrix multiplication (the Basic Linear Algebra Sub-
routines, or BLAS [33, 32, 31, 30]) in order to get high performance means that the potential

high speed of LAPACK is not portable without fast implementations of these kernels. But
we strived very hard to make sure the computed answers are correct no matter how fast
they are computed. As developers of putatively portable numerical software know, this
is a hard problem because of the difference in floating point arithmetics provided on dif-
ferent machines, with different compilers, and with different basic mathematical function
libraries. Fortunately, there is an opportunity to change this difficult situation, because of
the widespread acceptance of IEEE floating point standard arithmetic [3]. There are nu-
merous algorithms which would be much shorter and sometimes much faster if we were able
to use certain features of IEEE arithmetic, especially the good rounding and the “sticky”
exception flags. In section 5 we describe some of these algorithms.

2 High-Accuracy Linear Algebra Algorithms

We begin by describing the approach used to design and analyze the high accuracy algo-
rithms already designed for LAPACK, and then discuss open problems.

We let H denote the problem for which we seek a solution for some problem; we denote
the solution by f(H). For example, f(H) may denote the eigenvalues, eigenvectors, singular
values, or singular vectors of the matrix H. If H denotes the pair (A,b), then f(H) may
denote the solution of the linear system Az = b, perhaps in a least-squares sense if A
is singular or not square. In general, f(H) cannot be computed exactly and hence is
approximated by an algorithm whose output we denote f(H). We also let € denote the
machine precision.

Analyzing the accuracy of an algorithm f for f consists of two parts. First, we use
perturbation theory, where we bound the difference f(H + 6 H)— f(H) in terms of 6 H. This
part depends only on f and not the algorithm that approximates it. Second, we use error
analysis, which attempts to show that the computed solution f(H) is close to f(H + 6H)
for some bounded §H. Showing that f(H) = f(H + 6H) for some bounded 6H is called
backward error analysis, but is by no means the only way to proceed.

There is a great deal of choice in the measures we choose to bound errors and measure
distances. In conventional error analysis as developed by Wilkinson, we bound || f(H +
6H) — f(H)|| in terms of ||6H||, and show f(H) = f(H + éH) where ||6H| < O(¢)||H||-
Here, || - || denotes a norm, like the one-norm or Frobenius norm. Typically one proves a
formula of the form ||f(H + 6H) — f(H)|| < «(f,H) - ||6H|| + O(||6H||?), where x(H) is
called the condition number of H with respect to f. In this formulation, it is easy to see
that x(f, H) is simply the norm of the gradient of f at H: ||V f(H)||; other scalings are
possible. Thus, combining the perturbation theory and error analysis, one can write

I|f(H +6H) - f(H)|| < O(e)s(f, H) - | H|| + O(?)

provided the algorithm is backward stable.

The drawback of this approach is that it does not respect the structure of the original
data. In particular, if the original data is sparse or graded (large in some entries, small in
others), bounding 6 H only by norm can give very pessimistic results. A trivial example is
solving a diagonal system of equations. Each component of the solution is computed to full
accuracy by a single divide operation, but the conventional condition number is the ratio
of the largest to smallest diagonal entries and may be arbitrarily large.

3

Instead of bounding 6 H by its norm ||§ H ||, one may instead use the measure rel qH(6H) =
max;; |6 Hi;|/|Hijl, the largest relative change in any entry (we use the notation rely to
indicate the dependence on H). This measure respects sparsity, since 6 H;; must be zero if
H;; is zero, and also grading, since every entry is perturbed by an amount small compared
to its magnitude. For example, in the case of diagonal linear equation solving, one can
easily see that a perturbation §H of size relp(6H) in the matrix can only change the
solution relatively by relg(§H) in each component, and that the algorithm is backward
stable with relg(6H) < e. Thus, the new perturbation theory and error analysis with
respect to relg(6H) accurately predict that each component of the solution is computed to
full relative accuracy.

We have successfully developed new perturbation theory, algorithms, and error analysis
for the measure relg(6H) for much of numerical linear algebra. We cannot always guar-
antee to solve problems as though we had a small relg(§H), but the algorithms can in all
cases monitor their accuracy and produce useful error bounds. The algorithms are usually
small variations on conventional algorithms, perhaps with a slightly different stopping cri-
terion, although the bidiagonal SVD algorithm has a quite new component. In all cases the
algorithms run approximately as fast as their conventional counterparts, sometimes a little
slower and sometimes a little faster. Since they are based on the conventional algorithms,
all the techniques using the Level 3 BLAS apply to them.

This approach has been applied to linear equation solving [4], linear least-squares prob-
lems [5, 24, 58], the bidiagonal SVD [26, 16], the tridiagonal symmetric eigenproblem [61, 8],
the dense symmetric positive definite eigenproblem [27], and the dense definite generalized
eigenproblem [8, 27]. We have similar but slightly weaker results for the dense SVD and
generalized SVD [27]. These algorithms either will be included directly in LAPACK or can
be easily constructed by using LAPACK subroutines as “building blocks.”

Now we discuss various open problems that remain to be solved, along with some indi-
cation of how hard we think they are.

High accuracy eigenvalues of Hessenberg matrices. The nonsymmetric eigenprob-
lem has proven to be one of the more difficult problems to either parallelize successfully,
or solve to high accuracy. Here we outline the building blocks that could be assembled
into an algorithm that computes the eigenvalues of an upper Hessenberg matrix with tiny
componentwise relative backward error. Hessenberg matrices are of interest because one
can reduce a dense matrix to Hessenberg form quite effectively using matrix multiply and
other BLAS [42, 36].

The first tool is a way to evaluate the determinant of an upper Hessenberg matrix H
with tiny componentwise relative backward error. The method is due to Hyman, and is
discussed in [90, p. 427], [89]. This method could be used in a Newton-based iterative
refinement scheme to improve eigenvalues computed another way [37], or it could be used
as the basis of a scheme itself [70]. To evaluate the accuracy of a computed eigenvalue
or eigenvector pair, one can use an a posteriori estimate of the componentwise backward
error; a simple expression for this error in given in [15], which is a simple generalization
of a result of Oettli and Prager [74]. Finally, one needs a condition number. The simplest
such expression is given as follows. Let A be an eigenvalue of A with unit right eigenvector
z (so Az = Az) and unit left eigenvector yT (so yTA = AyT). Suppose we perturb A by

6A, where |6A4;;| < 1| A;;|. Then to first order the perturbation 6 in X is given by [48]

6N lyTods| _ |y76As| _ 17 |Al-Io
= eTel T [TAgl < [T Ae]

a quantity we easily to see be at least 7, and exceeding 7 to the extent we have cancellation
in the evaluation of yTAz. Thus this provides a condition number with which we can
compute relative error bounds for computed eigenvalues.

Stability of Parallel Prefix Operation. Suppose zi,...,T, are data items, and @
is an associative operator acting on them. We wish to compute y,...,y, where y; =
Ty @ ---® z;. It turns out all the y; can be computed on O(log, n) time using a single
tree of processors; this operation is called parallel prefiz [68, 22, 11, 13]. A large number of
important computations can be reformulated as parallel prefix operations, and in fact Kung
has shown that all rational scalar recurrences (z;+; = fi(z;) where f; is a rational function of
the scalar z;) which can be parallelized at all using rational operations can be parallelized
using parallel prefix where the associative operation is 2-by-2 matrix multiplication [67].
For example, the eigenvalues of a symmetric tridiagonal matrix 7 with diagonal entries
a,...,a, and offdiagonal entries b,,...,b,—; can be found using the Sturm sequence

d; = (a; — o)di—1 — b?_,d;_,

where d; is the determinant of the leading i-by-: principal submatrix of T—oI. By Sylvester’s
theorem the number of sign changes in the sequence of d;’s is the number of eigenvalues of
T less than o. This can be used to count the number of eigenvalues in any interval [0y, o]
and so find all the eigenvalues of T' by bisection [51]. This scheme is very stable numerically
if evaluated serially in O(n) time. It can be evaluated in O(log, n) using parallel prefix by
rewriting it as

d; _|ai-0o —bi, N IS Y S U P P YA B
[di-ll—[1 0] [di—2 =M di—2 = Mo Mooy d-y

This technique, or ones like it, have been suggested in [64, 85], where good numerical
results have been attained. But so far no one has succeeded in proving it is stable, and
it appears difficult to do so. Also, the paradigm we proposed earlier for using possibly
unstable algorithms, checking quickly for instability and recomputing if necessary, is hard
to apply because we know of no faster way to confirm the accuracy of an eigenvalue than
running this parallel prefix operation. So studying the numerical stability of parallel prefix
is an important open problem.

Accuracy of Jacobi’s Method. In [27] it was shown that Jacobi’s method (with a suitable
stopping condition) for finding the eigenvalues of a symmetric positive definite matrix could
be much more accurate than other methods based on tridiagonalization followed by solving
the tridiagonal eigenproblem; similar results were obtained for the SVD. The reason for this
is as follows: Let H be the symmetric positive definite matrix whose eigenvalues we desire.
Write H = DAD, where D = diag (Hlll/z, ceny ,1.,/;2), and A;; = 1. One can show that this
diagonal scaling of H results in A having a condition number x(A4) = ||A||; - ||A7!||2 never
much larger than x(H) and potentially much smaller, especially if the H;; vary greatly in

5

magnitude. One can show that a normwise perturbation in H of size 7 < 1 can cause
relative changes in the eigenvalues of at most about nk(H), but that a componentwise
relative perturbation in H of size n can cause relative changes in the eigenvalues of at most
nk(A), which can be much smaller. Furthermore, one step of Jacobi can also only change
the eigenvalues by a relative amount of size nKk(A), so that the errors introduced by one
step of Jacobi are no worse than tiny componentwise relative error in the original data.

Of course, Jacobi does not converge in one step. Let H = Ho = DyoAoDp be the initial
matrix and its factorization as above. Let H; be the matrix after the i-th Jacobi rotation,
and let H; = D;A;D; be its analogous factorization. Eventually H; approaches a diagonal
matrix A of eigenvalues, D; approaches A/2? and A; approaches the identity matrix I. The
relative error in the eigenvalues cause by the i-th Jacobi step is bounded by O(e)x(Ai),
so the overall error of the algorithm is bounded by O(e) max; k(4;). Since the minimum
possible error bound, due to small relative changes in the initial data, is O(e)k(Ao), the
ultimate accuracy of Jacobi depends on how much larger max; £(4;) can be than k(Ao)-
Note that since A; eventually approachs I, k(4;) approaches 1, and so it is the transient
rather than the asymptotic behavior of k(A;) that is of interest.

In many thousands of numerical experiments on random matrices, the ratio
max; 5(A;)/k(Ao) never exceeded 1.82. This means the error bound attained by Jacobi is
nearly as good as the best possible one. Further work by Mascarenhas [73] found a family
of examples where max; k(A4;)/k(Ao) can be as large as n/2, but this is not bad since there
are factors of n or more in the O(e) factor anyway. Also in [21] we showed that tridiag-
onal QR iteration can fail to compute eigenvalues to high relative accuracy because there
are cases where max; x(A;)/k(Ao) is as large as 1/e. Thus, the factor max; k(A;)/K(Ao)
plays a central role in predicting the accuracy with which we can compute eigenvalues and
understanding when it is small is of interest.

General Structured Backward Error. The real goal of a user of a numerical algorithm
may not so much be tiny componentwise relative backward error in the solution of the
numerical model, but rather tiny backward error in the original physical problem. For
example, one might want to solve a differential equation with tiny backward error, and
this may or may not be implied by solving the corresponding discretized problem with tiny
backward error. Depending on how the parameters of the physical problem appear in the
discrete model, it may be quite hard to even compute the backward error. If there are
more output parameters than input parameters, it will generally be impossible to achieve
tiny backward error for dimensional reasons. Even the simple problem of solving Az = b,
A = AT, with tiny componentwise relative symmetric backward error turns into a high
dimensional sparse underdetermined least squares (or least /) problem, with no apparently
simple solution [53, 9].

3 Parallel Algorithms

In this section we list problems where we still need good parallel algorithms, even ones stable
in the conventional normwise sense. There is of course a tremendous amount of activity
in this area, so we will limit ourselves to problems that have arisen in the course of work
on LAPACK. In particular, we will limit ourselves to direct algorithms for dense problems.

The algorithms currently under investigation illustrate the paradigm of the introduction:
since they can be unstable, their use requires the ability to quickly determine their stability,
perhaps a posteriori, and to recompute the answer stably if required.

The nonsymmetric tridiagonal eigenvalue problem. Here the approach is to reduce
a dense nonsymmetric matrix to tridiagonal form via nonorthogonal transformations, and
then solve the resulting nonsymmetric tridiagonal eigenproblem [34, 45, 46, 47]. The main
difficulty is that the similarity which reduces a matrix to tridiagonal form can be arbitrarily
ill-conditioned, and in fact one need not exist at all. The advantage is that it is cheaper to
find the eigenvalues of a nonsymmetric tridiagonal matrix than a Hessenberg one.

The Hessenberg eigenvalue problem. As stated above, there are good block algorithms
for reducing a dense nonsymmetric matrix to upper Hessenberg form, and several algorithms
begin with this form. The standard serial algorithm for this problem is the Francis QR
algorithm [51], which produces a sequence H; of orthogonally similar Hessenberg matrices
which converge to Schur form. To compute H;,, from H;, one performs row and column
operations starting from one end of the matrix and working towards the other. This process
is called “chasing the bulge” since at any intermediate point there is a bulge, or triangle of
nonzero entries lying below the subdiagonal of H; and spoiling its Hessenberg structure. By
increasing the size of this bulge, one can perform matrix-vector (Level 2 BLAS) operations
instead of vector-vector operations (Level 1 BLAS) but the speed up available is modest
(6, 39].

There are two other techniques to reduce the Hessenberg problem to a series of simpler
problems: tearing and homotopy. Tearing [37] involves setting a subdiagonal entry of H near
the middle to zero, thus forming two independent upper Hessenberg eigenproblems which
can be solved in parallel. Given the solutions to these problems, they must be merged to
yield the solution of the entire matrix; clearly this approach may be applied recursively to
the smaller subproblems encountered. This approach has been applied with great success to
the symmetric tridiagonal eigenproblem, where the merging process yields a scalar secular
equation to solve, a simple rational function whose roots are the eigenvalues, and for which
monotonically and globally quadratically convergent Newton based iterative methods exist
[14, 38, 82]. The method even provides disjoint intervals in which the function whose zero
we desire is monotonic and guaranteed to have a single unique solution.

The Hessenberg problem is significantly harder. First, the eigenvalues are complex, and
there is no guaranteed convergent iteration or even a simple way to localize the desired
roots. The eigenvectors as well as the eigenvalues must be computed, and all these may
be very ill-conditioned, and sometimes not even exist. Even if the initial problem has well-
conditioned eigenvalues and eigenvectors, smaller intermediate problems may be very badly
conditioned. If two or more different Newton iterations seem to converge to the same root,
it is hard to tell if the root is really multiple or if another root is not being found [59].

The homotopy method can be though of as variant of the above scheme, where one
(or more) subdiagonals are set to zero, the resulting simpler subproblems solved (perhaps
recursively), and then the solutions merged by gradually increasing the zero subdiagonals to
their original values and following the curves of eigenvalues (and possibly eigenvectors) from
their original values as eigenvalues of subproblems to eigenvalues of the original problem.
This curve following can be done in many ways, such as predictor corrector where one

predicts using Euler’s method and corrects using Newton. One would usually try a large
stepsize first, such as going all the way to the final solution in one step (in which case this
method is very similar to the previous one), and only taking smaller steps if necessary. This
method is also hard to stabilize, since if the curves become very close very tiny step sizes
are needed to distinguish them, or else stability can be lost [70].

The dense nonsymmetric eigenproblem — divide and conquer. Instead of initially
reducing the dense matrix A to a condensed form like Hessenberg or tridiagonal, one can
instead work directly on A [71]. These approaches try to divide and conquer the problem
by computing an orthogonal matrix U = [U1, Uz] where the columns of U; (approximately)
span an invariant subspace of A, so that
UTAU = UITAUI UirAU2 = A'n A,12
UTAU, UFAU, Ay AL,

is nearly block upper triangular, i.e. A}, is nearly zero. If A}, is small enough, one can
just find the eigenvalues of A}, and Aj,, perhaps recursively. So how might one find such
an orthogonal U? The idea is to find a simple rational map f which maps one subset S
of the complex plane to (or near) one point s, and (the interior of) its complement S’ to
another point s/. Then f(A) will (approximately) have two eigenvalues s and &', and so
f(A) = ¢'I will have eigenvalues s — s’ and 0. Then, provided there are no 2-by-2 or larger
Jordan blocks associated with eigenvalue 0, the columns of f(A)—s'I will span the invariant
subspace associated with all eigenvalues inside region S.

One choice of f is the sign function: sign(z) = 1 if Rz > 0, sign(z) = 0 if Rz = 0, and
sign(z) = —1 if Rz < 0. This may be extended to a function of matrices in the usual way,
provided there are no pure imaginary eigenvalues. Thus if

J 0
A =[X1,X)) [61 Jaz] v, Y2)7

is the Jordan canonical form of A, where [Y;,Y3]T = [X;, X3]™?, the eigenvalues of Ji; are
in the open left half plane and the eigenvalues of Ja2 in the open right half plane, then

sign(4) = [X1, X3] [‘OI j‘,] 1, Y)T .

Thus sign(A) — I = —2X,YT, and its column space spans the invariant subspace of A
associated with eigenvalues in the left half plane.

It turns out that there is a very simple globally convergent and asymptotically quadrat-
ically convergent iteration for computing sign(A): Ai+1 = .5(Ai + A7 1). Once A4; is close
enough to its limit the following scheme is also quadratically convergent, and avoids inver-
sion: Aip1 = .5A;(3I — A?). Other higher order schemes are known too, but they are more
expensive to evaluate, and round off tends to obscure the small eigenvalues of powers of a
matrix, so it is not clear that these schemes help.

There are certainly open problems associated with this scheme. In order to divide the
spectrum nearly in half each time, one might try to choose a shift o so close to half the
spectrum of A — o[is in the left half plane and half in the right. If most of the eigenvalues

8

have nearly the same real part (such as a skew symmetric matrix, all of whose eigenvalues
are pure imaginary), then no splitting is possible, and one might consider squaring the
matrix to rotate the spectrum. If the eigenvalues lie very close together on one dimensional
curves, as is the case in many applications, then no shifting or squaring scheme will leave a
gap around the imaginary axis, which is needed for fast convergence to the sign function.
Still, the method has attractions, such as being able to use basic building blocks such as
matrix multiplications, inversion, QR decomposition (to compute U; from the columns of
sign(A) — I), and so on. In addition, the fact that it always acts on the original data by
multiplication by orthogonal matrices means it is numerically stable, provided we iterate
until A%, is sufficiently small.

The dense nonsymmetric eigenproblem — Jacobi. Jacobi’s method has been general-
ized to apply to dense nonsymmetric matrices (40, 41, 75, 78, 79, 83, 87, 88]. The parallelism
arises in the ability to apply rotations to disjoint pairs of rows or columns in parallel. Some
authors [41, 83] consider only orthogonal (or unitary) transformations, and try to converge
to the Schur form. Others [75, 78, 79] use nonunitary transformations as well, and try to
converge to diagonal form, provided the matrix is diagonalizable. The unitary methods
guarantee numerical stability, but appear to only be asymptotically linearly convergent.
The nonunitary methods can be made to be asymptotically quadratically convergent, but
cannot guarantee backward stability. Still, these methods tends to move the original matrix
closer to a normal matrix, which has well-conditioned eigenvalues, and so in practice the
errors do not seem much worse than the condition number warrants. Convergence tends
to slow down the farther from normal the matrix is. Most questions about this class of
methods are open: global convergence, retaining real arithmetic if the original matrix is
real (78, 87, 88], and avoiding instability and simultaneously slowdown of convergence for
highly nonnormal matrices.

The generalized nonsymmetric eigenproblem. All of the above algorithms and chal-
lenges apply even more to the generalized regular eigenvalue problem A — AB. Regularity
means A — AB is square and has a determinant which is not identically zero. Such A — AB
have n finite or infinite eigenvalues; for the more general case see [43, 86, 25, 84]. The
standard serial algorithm ([81] first reduces A to upper Hessenberg form and B to upper
triangular form; we do not even have a block algorithm based on matrix-vector or matrix-
matrix operations for performing this reduction. The extension of the other techniques
mentioned above has not yet been attempted.

4 The Complexity of Condition Estimation

Fast estimators of condition numbers are ubiquitous in numerical linear algebra, because
they provide inexpensive error bounds, and are quite reliable [54, 1]. Still, counterexamples
are known for all existing estimators, i.e. matrices for which the estimators underestimate
the true condition numbers by arbitrary amounts. Thus, research continues on making
estimators yet more reliable while retaining their low complexity. Based on this experience,
we make the following

Conjecture: The complexity of estimating a condition number with a guaranteed error
bound is as large as solving the original problem.

We make this rather vague conjecture more precise in the case of linear equation solving:
computing an estimate of |A~!|| in any norm with any guaranteed accuracy at all is as
difficult as computing A~ itself. In particular, to compute ||A~!|| with any accuracy, we
clearly need to decide whether A is singular, so condition estimation is at least as hard
as deciding singularity. We outline a proof that deciding whether det(A) = 0 is as hard
as computing A~! in the following very simple (and nonrealistic) model of computation:
We suppose the entries of A are complex numbers, run a straight-line program which can
perform any of the four basic operations +, —, X and + but which is not allowed to divide
by zero for any input A, and compare the resulting rational function f(A) of the entries
of A to zero. The function f(A) must clearly be an integer power k of det(A), since the
determinant is an irreducible polynomial, and the presence of any other polynomial factor
in f(A) would for some A either lead to an incorrect decision that A is singular (if it appears
in the numerator of A), or to division by zero (if it appears in the denominator). Now note
that by Cramer’s rule, each entry of A~! may be written (8f(A)/0A;;)/(k - f(A)). By a
result in [10], there exists a straightline code that computes all the df(A)/0A;; in three
times the number of nontrivial multiplies and divides needed to compute f(A). Then all
the (8f(A)/84;;)/(5 - f(A)) can be computed in n2 + 1 more steps, which less than doubles
the operation count so far by a fan-in argument.

More practically, we would like to assess the reliability of a particular estimation scheme,
or to be able to compare two schemes. For example, in [65] the authors compare two esti-
mators for || Az for an n-by-n symmetric positive definite matrix A, where one is permitted
only to multiply A by an arbitrary vector. This could in principal be used to estimate
the smallest singular value of a general matrix G since omin(G) = [[(GGT)7||3 12 and
multiplying by (GGT)~! can be done cheaply given the LU factorization of G. The au-
thors compare k steps of the power method and k steps of Lanczos applied to this problem
with a random starting vector zo. They show that the probability that the relative er-
ror in the estimate of ||Al|; exceeds e is at most \/n(1 — €)* for the power method, and
at most /n exp(—+/e(2k — 1)) for Lanczos. Thus, for small e, Lanczos has a much lower
probability of its relative inaccuracy exceeding e than the power method; this is another
way to express the fact that Lanczos extracts the maximum information from the Krylov
basis [zo, Ao, A2Z0, ..., AFzo] whereas the power method does not. Another probabilistic
analysis of the power method appears in [28].

A different probabilistic approach for comparing methods is as follows. It is motivated
by the approach in [18, 19], where ill-conditioning is associated with nearness to a particular
algebraic variety, and then the chance that a random problem lies close to that variety is
estimated using just the degree and codimension of the variety. In the case of condition
estimation one would try to show that the estimator worked well unless the matrix lay close
to a particular variety (or perhaps semialgebraic set), and then estimate the chance that
a random problem lay close to that variety. This approach would not distinguish between
the power method and Lanczos, since they both use the same basic information about the
matrix (its projection on a Krylov subspace) but might be able to distinguish among the
plethora of other estimators schemes which have been proposed.

10

5 Exploiting Good Floating Point Arithmetic

A great deal of effort went into trying to make LAPACK portably correct despite the varia-
tions in floating point arithmetics, compiler optimizations, and ability to handle exceptions.
Our goal was to write “mail order software” that would work correctly even if passed around
in source form from machine to machine, since that is the model of software development
supported by systems like netlib. We did not attempt to get equally portable high perfor-
mance, since the BLAS are machine dependent, as well as the optimal block sizes used by
each subroutine.

In particular, we had to make worst case assumptions about the floating point environ-
ments:

1. Rounding is sloppy, done without guard digits, so that for any operation & € {+, —, x, +},
one can say only that the rounded value of a @ b is

flla®b) = (a(l+61)) & (b(1 + 63))

where |§,| and |62| are both bounded by some tiny €. € need not be as small as the
relative difference between adjacent floating point numbers.

2. All exceptions except underflow are possibly fatal and to be avoided as much as is
reasonable, in particular when the final result consists of a representable floating point
number.

3. It is possible for complex division and the Level 1 BLAS routine xXNRM2 [69] for
computing the Euclidean length of a vector to malfunction when some of the data
exceeds the square root of overflow, or is nonzero but all less than the square root of
underflow.

4. No mixed precision is permitted, since a single precision code using some double
precision can not be simply translated to a double precision code since quadruple
precision is not generally available.

We also, out of exasperation, made several assumptions which are actually violated by
existing machines, because they only made a few test cases fail and because taking them
into account would have significantly complicated or slowed down the software:

1. It is safe to compute z/y if 0 < z < y without fear of exception. However, this
operation can overflow on machines like Crays which actually compute z * (1/y).

2. The underflow threshold is significantly smaller than e3. This is not true in Vax D-
format, and causes failures we still do not completely understand in some badly scaled
test cases.

However, the price paid for this portable correctness was high, with penalties in speed,
functionality, accuracy and software productivity. In contrast, if we had been able to
assume a uniform floating point environment with IEEE floating point arithmetic [3], these
problems would have been avoided. Not all features of IEEE arithmetic are needed to avoid
each problem; in some cases any reasonably carefully rounded arithmetic would have done,

11

whereas in others certain details of IEEE exception handling are important. In particular,
a large part of the potential benefit is attainable with an efficiently implementable subset
of the possible exception handling mechanism suggested by the IEEE standard [23]. This
is important because full IEEE compliance in supplying precise interrupts is likely to be
inefficient on the heavily pipelined architectures common even in microprocessors.

Here we will discuss the penalties paid for portability, and how IEEE conformance
alleviates them. Since virtually all machines being built or on the drawing boards conform at
least partially to IEEE arithmetic, we believe the time has come to write software specialized
to IEEE arithmetic (or at least some features of IEEE). Otherwise, the great investment
in hardware made by manufacturers will not pay off in faster, more accurate, more reliable
and more speedily written software, which was the entire motivation of the standard.

Computing machine constants — loss of software productivity. Subroutine SLAMCH
in LAPACK computes basic machine constants like the machine precision ¢, underflow
threshold, overflow threshold, the base, rounding style, and so on. It is 339 lines of Fortran
long (not counting comments), and was quite difficult to write. It can be thought of as a
simplified version of programs like Paranoia [60] (over 2300 lines of Fortran without com-
ments) which attempt to characterize the details of machine arithmetic (as seen through a
high level language). Most algorithms need only reasonably accurate values of the machine
precision, over and underflow threshold in order to work correctly, and for these SLAMCH
is adequate. However, for the more subtle algorithms discussed below it is difficult or impos-
sible to reliably discover at run time whether the arithmetic, compiler, and mathematical
libraries have the necessary properties for the algorithms to work. For example, simulating
double precision requires the basic rounding to be accurate enough (77, 17, 72] and although
this can be tested at runtime it is very time consuming and not foolproof [60]. Determining
how underflow is handled (or even finding the exact overflow threshold) requires causing an
overflow, and this may be fatal. Many more examples can be cited.

There are two approach to this problem. In the short run we will simply be assuming
IEEE arithmetic, in which all these features are well defined (even if the software interface to
exception handling is not). In the long run people are, for better or worse, likely to continue
inventing new styles of floating point, as well as languages and compilers providing new
interfaces, expression evaluation mechanisms, parameter passing mechanisms, and other
features impacting the floating point environment as perceived by the programmer [49,
62, 63, 66, 76]. These developments are guaranteed to repeatedly make any program like
SLAMCH obsolete. It would be nice to have a standard set of environmental enquiries
describing all possibly relevant details of the arithmetic, which could be supplied by the
compiler implementor. But it is difficult to imagine a terse but complete set of such enquiries
at the moment, and tentative steps in this direction have not succeeded [62, 76].

Condition estimation and eigenvector computation — loss of speed. Both these
computations involve solving triangular systems of equation. To estimate ||A~1]|, one can
use an LU factorization of A to repeatedly solve either Az = b or ATz = b for certain
cleverly chosen b [52, 54, 56, 55, 57]. To compute eigenvectors one can either reduce to

12

Schur form

T ti2 Tis
T = 0 A i3
0 0 T33

and solve a triangular system (T3 — AI)z = —t;2 to find the right eigenvector [zT,1]T of A
explicitly, or else reduce just to Hessenberg form H and do inverse iteration (H — Al)z;4; =
z; using an LU factorization of H — AI [51].

Thus, it appears that one could just use the Level 2 BLAS routine [33, 32] for solving
triangular systems in all these cases. Unfortunately, we can not, because in all cases we
anticipate solving ill-conditioned systems which could lead to overflow. In the case of
condition estimation, we want a condition estimate as a warning of potential problems in
solving Az = b, and in particular we would want a warning if overflow is possible, since
overflow is generally fatal and to be avoided. If we are computing eigenvectors by solving
(T11 — M)z = —t12, then if X is (nearly) an eigenvalue of T1; too, the system will be very
ill-conditioned and overflow will be possible. When solving (H — AI)z;4; = z; the more
accurate A is, the more singular H — AJ will be and the more likely overflow will be. In
both these cases overflow is not a warning signal to the user, but rather an internal event
of no interest to the user.

To deal with potential overflow, we had to write new versions of all the triangular solvers
in LAPACK which scaled in the innermost loop to avoid overflow. To see that we can not
simply scale T' and b to solve T'z = b consider an n-by-n upper bidiagonal T' with ones
on the superdiagonal and ¢’s on the diagonal; then T~! has an entry of size e~™ which
can be much larger than the overflow threshold. To see how complicated this may be, the
LAPACK subroutine SLATRS (which deals both with Tz = b and 77z = b) is 300 lines of
Fortran (not counting comments).

If we were only interested in condition estimation, as in subroutine SGECON, an over-
flow would signal extreme ill-conditioning and in fact let us stop immediately, returning
RCOND (estimated reciprocal condition number) equal to zero. With the sticky overflow
flag of IEEE arithmetic, this would be possible by simply calling the Level 2 BLAS trian-
gular solver and testing the overflow flag on return. This lets the code go at its top possible
Level 2 BLAS speed, and still be robust.

For eigenvector computations, we currently see no way to avoid sophisticated scaling in
some cases, but for the majority of cases where overflow does not occur, we could again
run at the top speed of Level 2 BLAS and not pay the insurance premium of scaling in the
inner loop unless required. This speed-up can be significant on some machines.

Divide and conquer algorithm for the symmetric tridiagonal eigenproblem — loss
of functionality. The algorithm proposed in [14] and further developed in [38] is a fast
parallel method for the symmetric tridiagonal eigenproblem, and can be much faster than
the older QR method even on serial machines. However, it is not stable unless great care is
taken in solving the secular equation, a rational equation whose roots are the eigenvalues at
each step merging the solutions of two subproblems. In fact, in [82] it is shown that double
precision solution of the secular equation (double in the input precision, whatever that is)
is in fact necessary in order to have a stable algorithm. The amount of double precision
needed is small, and so even if double is simulated somewhat inefficiently it will not affect

13

the overall speed. Certainly a factor of 10 slowdown over single would not be too bad.

There are three ways to get access to double precision. One is simply to declare some
double precision variables, but this violates our ban on mixed arithmetic. One could also
simulate double using integer arithmetic, but the known methods for doing this portably
[12, 7] are quite slow indeed for double precision, although they are useful for very high
precision. This leaves one with simulating double precision using single precision operations,
for which many efficient techniques are known [77, 17, 72]. But these techniques require
sufficiently accurate floating point arithmetic, in particular guard digits.

If we knew arithmetic were correctly rounded, and if we knew how many digits of
accuracy there were, then we could simulate double precision using single perhaps only 5 or
6 times more slowly than just using single alone. We will use this technique for the divide
and conquer algorithm for the symmetric tridiagonal eigenproblem.

Parallel bisection for the symmetric tridiagonal eigenproblem — loss of speed.
Let T be a symmetric tridiagonal matrix with diagonal entries aq,...,a, and off diagonal
entries by, ...,bn—1. As stated in a previous section the Sturm sequence d; = (a; —0)di—1 —
b?_,d;_2 can be used to count the number of eigenvalues of T less than . We may evaluate
this recurrence in O(log, n) time using parallel prefix with the operation of 2-by-2 matrix
@ L 7 "'g—l . The difficulty is that
the entries of products of M; matrices grow or shrink essentially as fast as determinants
of submatrices of T;, and so are very prone to over/underflow. One could scale within the
inner loop, but this would be slow for the same reason condition estimation is currently
slow. Again, an overflow and an underflow flag would be quite helpful. In fact, the wrapped
ezponent feature of IEEE arithmetic would be particularly helpful, because it returns the
true value of an underflowed or overflowed quantity with the exponent biased up or down
by a known amount to keep the returned result in range [3]. This can be used to good effect
to speed up the calculation [22].

multiplication with matrices of the form M; =

2 by 2 and other subproblems — loss of accuracy and software productivity. In
LAPACK much effort was expended on building highly reliable routines for the small (2
by 2 and somewhat larger) linear systems and eigenproblems that must be solved within
larger solvers. These small routines need to be highly reliable since they form the kernels
of the larger problem. It may seem surprising that such small problems were so difficult
to solve well, but this experience is corroborated by the experience of other developers
of linear algebra software. If, on the other hand, we had been able to assume (simulated)
double precision when necessary, vast simplifications would have been possible. For example,
subroutine SLAS2 computes the eigenvalues of a 2-by-2 triangular matrix, and gets them
accurately no matter their values on virtually any machine we know of. It is 33 (nontrivial)
lines of Fortran long. In contrast, a code using simulated double could in principal be 3
(nontrivial) lines long, depending on how much syntactic sugar was available to access the
simulated double. The same comments apply to many other routines as well. In the first
public release of LAPACK, we did not include routines for the generalized nonsymmetric
eigenproblem A — AB, partly because the corresponding 2 by 2 routines were so difficult to
write. For the next LAPACK release, we plan to write these assuming simulated double is
available.

14

Iterative refinement — loss of accuracy. The expert drivers for solving linear systems
in LAPACK do single precision iterative refinement to improve the solution [4, 80]. This
refinement will under certain technical assumptions guarantee a tiny componentwise relative
backward error. In contrast, the earlier conventional wisdom had held that computing
residuals in double precision was needed to justify the procedure, in which case one could
guarantee a tiny forward error provided the problem was not truly badly conditioned. So
double precision residual accumulation has definite advantages, but is not available to us if
we eschew mixed precision. Of course, being able to use simulated double makes it available
again, as well as an array of other iterative refinement schemes based on double precision
iterative refinement. Since the cost of the double precision part of the calculation (for
dense problems) is O(n?) in contrast to the remaining O(n3) part, the marginal cost of this
refinement is small, and so it is well worth doing.

15

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’
Guide, Release 1.0. SIAM, Philadelphia, 1992.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen. LAPACK: A portable linear algebra
library for high-performance computers. Computer Science Dept. Technical Report
(CS-90-105, University of Tennessee, Knoxville, 1990. (LAPACK Working Note #20).

[3] ANSI/IEEE, New York. IEEE Standard for Binary Floating Point Arithmetic, Std
754-1985 edition, 1985.

[4] M. Arioli, J. Demmel, and I. S. Duff. Solving sparse linear systems with sparse backward
error. SIAM J. Matriz Anal. Appl., 10(2):165-190, April 1989.

[5] M. Arioli, I. S. Duff, and P. P. M. de Rijk. On the augmented system approach to
sparse least-squares problems. Num. Math., 55:667-684, 1989.

[6] Z. Bai and J. Demmel. On a block implementation of Hessenberg multishift QR it-
eration. International Journal of High Speed Computing, 1(1):97-112, 1989. (also
LAPACK Working Note #8).

[7] D. H. Bailey. MPFUN: A portable high performance multiprecision package. Technical
Report RNR-90-022, NASA Ames Research Center, 1990. submitted for publication.

[8] J. Barlow and J. Demmel. Computing accurate eigensystems of scaled diagonally
dominant matrices. SIAM J. Num. Anal., 27(3):762-791, June 1990.

[9] S.G. Bartels and D.J. Higham. The structured sensitivity of vandermonde-like systems.
Technical report, Numerical Analysis Report NA/134, University of Dundee, 1991. to
appear in Numer. Math.

[10] W. Baur and V. Strassen. The complexity of partial derivatives. Theoretical Computer
Science, 22:317-330, 1982.

[11] G. Belloch. Prefix sums and their applications. School of Computer Science Technical
Report CMU-CS-90-190, Carnegie Mellon University, November 1990.

[12] R. P. Brent. A Fortran multiple precision arithmetic package. ACM Trans. Math.
Soft., 4:57-70, 1978.

[13] S. Chatterjee, G. Belloch, and M. Zagha. Scan primitives for vector computers. In
Proceedings of Supercomputing ’90, New York, NY, 1990.

[14] J.J.M. Cuppen. A divide and conquer method for the symmetric tridiagonal eigen-
problem. Numer. Math., 36:177-195, 1981.

[15] A. Deif. A relative backward perturbation theorem for the eigenvalue problem. Num.
Math., 56:625-626, 1989. ‘

16

[16] P. Deift, J. Demmel, L.-C. Li, and C. Tomei. The bidiagonal singular values decom-
position and Hamiltonian mechanics. SIAM J. Num. Anal., 28(5):1463-1516, October
1991. (LAPACK Working Note #11).

[17] T. Dekker. A floating point technique for extending the available precision. Num.
Math., 18:224-242, 1971.

[18] J. Demmel. On condition numbers and the distance to the nearest ill-posed problem.
Num. Math., 51(3):251-289, July 1987.

[19] J. Demmel. The probability that a numerical analysis problem is difficult. Math.
Comput., 50(182):449—480, April 1988.

[20] J. Demmel. CS 267 Course Notes: Applications of Parallel Processing. Computer
Science Division, University of California, 1991.

[21] J. Demmel. The inherent inaccuracy of implicit tridiagonal QR. Technical report,
IMA, University of Minnesota, 1992.

[22] J. Demmel. Specifications for robust parallel prefix operations. Technical report,
Thinking Machine Corp., 1992.

[23] J. Demmel, J. Dongarra, and W. Kahan. On designing portable high performance nu-
merical libraries. In 1991 Dundee Numerical Analysis Conference Proceedings, Dundee,
Scotland, June 1991.

[24] J. Demmel and N. J. Higham. Improved error bounds for underdetermined system
solvers. Computer Science Dept. Technical Report CS-90-113, University of Tennessee,
Knoxville, 1990. (LAPACK Working Note #23; to appear in SIAM J. Mat. Anal.

Appl.).

[25] J. Demmel and B. Kagstrém. Stable eigendecompositions of matrix pencils A — AB.
Institute of Information Processing Report UMINF-118.84, University of Umea, Umea,
Sweden, 1984.

[26] J. Demmel and W. Kahan. Accurate singular values of bidiagonal matrices. SIAM J.
Sci. Stat. Comput., 11(5):873-912, September 1990.

[27] J. Demmel and K. Veseli¢. Jacobi’s method is more accurate than QR. Computer
Science Dept. Technical Report 468, Courant Institute, New York, NY, October 1989.
(also LAPACK Working Note #15), to appear in SIAM J. Mat. Anal. Appl.

(28] J. D. Dixon. Estimating extremal eigenvalues and condition numbers of matrices.
SIAM J. Num. Anal., 20:812-814, 1983.

[29] J. Dongarra, J. Bunch, C. Moler, and G. W. Stewart. LINPACK User’s Guide. SIAM,
Philadelphia, PA, 1979.

[30] J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling. Algorithm 679: A set of Level
3 Basic Linear Algebra Subprograms. ACM Trans. Math. Soft., 16(1):18-28, March
1990.

17

[31] J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling. A set of Level 3 Basic Linear
Algebra Subprograms. ACM Trans. Math. Soft., 16(1):1-17, March 1990.

[32] J. Dongarra, J. Du Croz, S. Hammarling, and Richard J. Hanson. Algorithm 656:
An extended set of FORTRAN Basic Linear Algebra Subroutines. ACM Trans. Math.
Soft., 14(1):18-32, March 1988.

[33] J. Dongarra, J. Du Croz, S. Hammarling, and Richard J. Hanson. An extended set of
fortran basic linear algebra subroutines. ACM Trans. Math. Soft., 14(1):1-17, March
1988.

[34] J. Dongarra, G. A. Geist, and C. Romine. Computing the eigenvalues and eigenvectors
of a general matrix by reduction to tridiagonal form. Technical Report ONRL/TM-
11669, Oak Ridge National Laboratory, 1990.

[35] J. Dongarra and E. Grosse. Distribution of mathematical software via electronic mail.
Communications of the ACM, 30(5):403-407, July 1987.

[36] J. Dongarra, S. Hammarling, and D. Sorensen. Block reduction of matrices to con-
densed forms for eigenvalue computations. JCAM, 27:215-227, 1989. (LAPACK Work-
ing Note #2).

[37] J. Dongarra and M. Sidani. A parallel algorithm for the non-symmetric eigenvalue prob-
lem. Computer Science Dept. Technical Report CS-91-137, University of Tennessee,
Knoxville, TN, 1991.

[38] J. Dongarra and D. Sorensen. A fully parallel algorithm for the symmetric eigenprob-
lem. SIAM J. Sci. Stat. Comput., 8(2):139-154, March 1987.

[39] A. Dubrulle. The multishift QR algorithm: is it worth the trouble? Palo Alto Scientific
Center Report G320-3558x, IBM Corp., 1530 Page Mill Road, Palo Alto, CA 94304,
1991.

[40] P. Eberlein. A Jacobi method for the automatic computation of eigenvalues and eigen-
vectors of an arbitrary matrix. J. SIAM, 10:74-88, 1962.

[41] P. Eberlein. On the Schur decomposition of a matrix for parallel computation. IEEE
Trans. Comput., 36:167-174, 1987.

[42] K. A. Gallivan, R. J. Plemmons, and A. H. Sameh. Parallel algorithms for dense linear
algebra computations. SIAM Review, 32:54-135, 1990.

[43] F. Gantmacher. The Theory of Matrices, vol. II (transl.). Chelsea, New York, 1959.

[44] B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler. Matriz Figensystem Rou-
tines — EISPACK Guide Eztension, volume 51 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 1977.

[45] G. A. Geist. Reduction of a general matrix to tridiagonal form. Technical Report
ONRL/TM-10991, Oak Ridge National Laboratory, 1989.

18

[46] G. A. Geist and G. J. Davis. Finding eigenvalues and eigenvectors of unsymmetric
matrices using a distributed memory multiprocessor. Technical Report ONRL/TM-
10938, Oak Ridge National Laboratory, 1988.

[47] G. A. Geist, A. Lu, and E. Wachspress. Stabilized reduction of an arbitrary matrix to
tridiagonal form. Technical Report ONRL/TM-11089, Oak Ridge National Laboratory,
1989.

[48] A. J. Geurts. A contribution to the theory of condition. Num. Math., 39:85-96, 1982.

[49] D. Goldberg. What every computer scientist should know about floating point arith-
metic. ACM Computing Surveys, 23(1), 1991.

[50] G. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a
matrix. SIAM J. Num. Anal. (Series B), 2(2):205-224, 1965.

[51] G. Golub and C. Van Loan. Matriz Computations. Johns Hopkins University Press,
Baltimore, MD, 2nd edition, 1989.

[52] W. W. Hager. Condition estimators. SIAM J. Sci. Stat. Comput., 5:311-316, 1984.

[53] D. J. Higham and N. J. Higham. Backward error and condition of structured linear
systems. SIAM J. Mat. Anal. Appl., 13:162-175, 1992.

[54] N. J. Higham. A survey of condition number estimation for triangular matrices. SIAM
Review, 29:575-596, 1987.

[55] N. J. Higham. Algorithm 674: FORTRAN codes for estimating the one-norm of a
real or complex matrix, with applications to condition estimation. ACM Trans. Math.
Soft., 14:381-396, 1988.

[56] N. J. Higham. FORTRAN codes for estimating the one-norm of a real or complex
matrix, with applications to condition estimation. ACM Trans. Math. Soft., 14:381-
396, 1988.

[57] N.J. Higham. Experience with a matrix norm estimator. SIAM J. Sci. Stat. Comput.,
11:804-809, 1990.

[58] N.J. Higham. Iterative refinement enhances the stability of QR factorization methods
for solving linear equations. BIT, 31:447-468, 1991.

[59] E. Jessup. A case against a divide and conquer approach to the nonsymmetric eigen-
problem. Technical Report ONRL/TM-11903, Oak Ridge National Laboratory, 1991.

[60] W. Kahan. Paranoia. available from Netlib[35].

[61] W. Kahan. Accurate eigenvalues of a symmetric tridiagonal matrix. Computer Science
Dept. Technical Report CS41, Stanford University, Stanford, CA, July 1966 (revised
June 1968).

19

[62] W. Kahan. Analysis and refutation of the International Standard ISO/IEC for Lan-
guage Compatible Arithmetic. SIGNUM Newsletter and SIGPLAN Notices, 1991.

[63] W. Kahan. How Cray’s arithmetic hurts scientific computing. Presented to Cray User
Group Meeting, Toronto, April 10, 1991.

[64] A. S. Krishnakumar and M. Morf. Eigenvalues of a symmetric tridiagonal matrix: a
divide and conquer approach. Numer. Math., 48:349-368, 1986.

[65] J. Kuczynski and H. Woz#niakowski. Estimating the largest eigenvalue by the power
and Lanczos algorithms with a random start. Computer science department, Columbia
University, Argonne, IL, March 1989. (to appear in SIMAX).

[66] U. Kulisch and W. Miranker, editors. A new approach to scientific computing. Aca-
demic Press, New York, 1983.

[67] H. T. Kung. Technical report, Computer Science Dept., Carnegie Mellon University,
1974. Also in [20].

[68] R. E. Ladner and M. J. Fischer. Parallel prefix computation. JACM, 27(4):831-838,
1980.

[69] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subprograms
for fortran usage. ACM Trans. Math. Soft., 5:308-323, 1979.

[70] T.-Y. Li and Z. Zeng. Homotopy-determinant algorithm for solving nonsymmetric
eigenvalue problems. submitted to Math. Comp.

[71] C-C. Lin and E. Zmijewski. A parallel algorithm for computing the eigenvalues of an
unsymmetric matrix on an SIMD mesh of processors. Department of Computer Science
TRCS 91-15, University of California, Santa Barbara, CA, July 1991.

[72] S. Linnainmaa. Software for doubled-precision floating point computations. ACM
Trans. Math. Soft., 7:272-283, 1981.

[73] W. Mascarenhas. A note on J acobi being more accurate than QR. Technical report,
University of Minnesota, 1992. Submitted to STAM J. Mat. Anal. Appl.

[74] W. Oettli and W. Prager. Compatibility of approximate solution of linear equations
with given error bounds for coefficients and right hand sides. Num. Math., 6:405-409,
1964.

[75] M.H.C. Paardekooper. A quadratically convergent parallel jacobi process for diagonally
dominant matrices with distinct eigenvalues. J. Comput. Appl. Math., 27:3-16, 1989.

[76] M. Payne and B. Wichmann. Information technology - programming languages - lan-
guage compatible arithmetic. Project JTC1.22.28, ISO/IEC JTC1/SC22/WGll, 1
March 1991. First Committee Draft (Version 3.1).

20

[77] D. Priest. Algorithms for arbitrary precision floating point arithmetic. In P. Kornerup
and D. Matula, editors, Proceedings of the 10th Symposium on Computer Arithmetic,
pages 132-145, Grenoble, France, June 26-28 1991. IEEE Computer Society Press.

[78] A. Sameh. On Jacobi and Jacobi-like algorithms for a parallel computer. Math. Comp.,
25:579-590, 1971.

[79] G. Shroff. A parallel algorithm for the eigenvalues and eigenvectors of a general complex
matrix. Numer. Math., 58:779-805, 1991.

[80] R. D. Skeel. Iterative refinement implies numerical stability for Gaussian elimination.
Math. Comput., 35:817-832, 1980.

[81] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and
C. B. Moler. Matriz Eigensystem Routines — EISPACK Guide, volume 6 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 1976.

[82] D. Sorensen and P. Tang. On the orthogonality of eigenvectors computed by divide-
and-conquer techniques. SIAM J. Num. Anal., 28(6):17572-1775, 1991.

[83] G. W. Stewart. A Jacobi-like algorithm for computing the Schur decomposition of a
non-Hermitian matrix. SIAM J. Sci. Stat. Comput., 6:853—-864, 1985.

[84] G. W. Stewart and J.-G. Sun. Matriz Perturbation Theory. Academic Press, New
York, 1990.

(85] P. Swarztrauber. A parallel algorithm for computing the eigenvalues of a symmetric
tridiagonal matrix. Math. Comp., 1992. submitted.

(86] P. Van Dooren. The computation of Kronecker’s canonical form of a singular pencil.
Lin. Alg. Appl., 27:103-141, 1979.

[87] K. Veseli¢. On a class of Jacobi-like procedures for diagonalizing arbitrary real matrices.
Num. Math., 33:157-172, 1979.

[88] K. Veselié. A quadratically convergent Jacobi-like method for real matrices with com-
plex conjugate eigenvalues. Num. Math., 33:425-435, 1979.

(89] R. C. Ward. The QR algorithm and Hyman’s method on vector computers. Math.
Comp., 30(33):132-142, January 1976.

[90] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford,
1965.

21

