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Abstract

We discuss a new version of an existing algorithm for reordering the eigenvalues on the
diagonal of a matrix in real Schur form by performing an orthogonal similarity transformation.
A detailed error analysis and software description are presented. Numerical examples show the
superiority of our algorithm over previous algorithms.

1 Introduction

The problem of reordering the eigenvalues into a desired order along the (block) diagonal of a quasi-
triangular real matrix arises in several applications: computing an invariant subspace corresponding
to a given group of eigenvalues, estimating condition numbers for a cluster of eigenvalues or their
associated invariant subspace [18, 2], computing partial eigenvalues of a large nonsymmetric matrix
by the simultaneous iteration method [14], computing matrix functions [4, 11], solving the linear
quadratic control problem [10], and so on. These problems can be solved in two phases: the first
is to compute the Schur decomposition of the given matrix, and the second is to reorder a group
of specified eigenvalues to appear at the upper left corner of the matrix. In this paper we describe
an algorithm and its implementation for this reordering problem. The software is available in
LAPACK [1], a public domain numerial linear algebra library.

Specifically, for a real matrix A, there is a real orthogonal matrix @ such that
A=QTQT, (1)

where T is a real upper quasi-triangular matrix, called the real Schur form. This means that T
is block upper triangular with 1 x 1 and 2 x 2 blocks on the diagonal. The 1 x 1 blocks contain
the real eigenvalues of A. The eigenvalues of the 2 x 2 diagonal blocks are the complex conjugate
eigenvalues of A. The real Schur form may be computed using subroutine HQR from EISPACK
[13] or subroutine SHSEQR from LAPACK [1]). Here @ provides an orthonormal basis for the
invariant subspaces of certain subsets of eigenvalues of the matrix A. If we partition @ and T
conformally as

Q=[Q1)Q2]’ T=[T61 g;;],

then from (1) we have
AQr =T (2)
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and hence @, gives an orthonormal basis for the invariant subspace of A corresponding to the
eigenvalues contained in T7;.

Unfortunately, the T}, given by the QR algorithm will not generally contain the eigenvalues
in which we are interested. We must therefore perform some further orthogonal similarities that
preserve block triangular form but reorder the desired eigenvalues of A to the upper left corner of
the Schur form T. The crux of such a reordering is to swap two adjacent 1 X 1 or 2 X 2 diagonal
blocks by an orthogonal transformation. Formally, let A;; be a p X p matrix, A2 be a ¢ x ¢ matrix,
p,q = 1 or 2; we want to compute an orthogonal (p + ¢) X (p + q) matrix @ such that

T| An A2 Ay Ay
9 [ A22]Q [ An} ®)

where A;; is similar to A;;, i = 1,2, so that the eigenvalues are unchanged but their positions are

exchanged along the (block) diagonal.

To this end, Stewart [15] has described an iterative algorithm for swapping consecutive 1x 1 and
2 x 2 blocks of a quasi-triangular matrix, which we refer to as algorithm EXCHNG. In his method,
the first block is used to determine an implicit QR shift. An arbitrary QR step is performed on both
blocks to create a dense (p+ ¢) X (p + q) matrix. Then a sequence of QR steps using the previously
determined shift is performed. Theoretically, after one step of QR iteration, the eigenvalues of the
first block will emerge in the lower part. But in practice, two or even more QR iterations may still
fail to reorder the eigenvalues for some hard problems. This use of QR iteration has been extended
by Van Dooren [19] to reordering the eigenvalues of a generalized eigenvalue problem using QZ
iteration.

Another algorithm to be further developed in this paper is the so-called direct swapping method,
which was originally motivated by the work of Ruhe [12}, and Dongarra, Hammarling and Wilkinson
in 1983, although the paper was finished later (1991) [7]. Ng and Parlett [11] also developed a
program to implement the direct swapping algorithm. A similar idea has also been published by
Cao and Zhang [6].

This previous work still does not solve the problem satisfactorily. The iterative swapping al-
gorithm has the advantage of guaranteed backward stability, since it just multiples the data by
orthogonal matrices. But it may be inaccurate and even fail to reorder the eigenvalues in ill-
conditioned cases. On the other hand, the direct swapping algorithm is simple and can better deal
with ill-conditioned cases. But there are examples where these implementations fail to be stable.

In this paper, we further improve the direct swapping algorithm. Various strategies have been
designed at each stage of the algorithm to improve its accuracy and robustness. A detailed analysis
of the algorithm shows that backward instability is possible only in very ill-conditioned cases, so
ill-conditioned in fact that we have been unable to construct a case where it fails. Our goal was
to have an absolute stability guarantee, however; we achieved this by directly and cheaply testing
for instability and rejecting a swap if it would have been unstable. This can occur only when the
eigenvalues are so ill-conditioned as to be indistinguishable in a certain reasonable sense. Numerical
experiments show the superiorities of our direct swapping algorithm over previous implementations.

The rest of the paper is organized as follows: §2 describes the direct swapping algorithm. The
error analysis of the algorithm is carried out in §3. The software implementation and numerical
experments are reported in §4. §5 draws conclusions. All software including test software for the
algorithms in this paper can be found in the LAPACK library [1].

We assume that any 2 x 2 diagonal block in the quasi-triangular matrix is in standardized form.
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This means that its diagonal entries are equal and its off diagonals nonzero and of opposite sign:
a p
[7 a], By < 0. (4)

For any 2 X 2 block with complex conjugate eigenvalues, we can easily compute an orthogonal
similarity transformation to standardize the block.

2 Direct Swapping Algorithm

As we described in the introduction, the crux of reordering the diagonal blocks is to interchange
the consecutive diagonal blocks A1 and Aj; in the following block matrix

_ | An A
e[ .

where Ay; is pX p, A2 is¢X q,p,g=1or 2. Throughout this paper, we assume that A;; and Ag2
have no eigenvalue in common, otherwise, they need not be exchanged. It is seen that the block
matrix (5) can be block diagonalized as

Ay Ap | _ | L, =X Ann O I, X
0 Ax | | 0 I 0 A 0 I |’
where X is the solution of the Sylvester equation
AuX - XA22 = A12. (6)

Since it is assumed that A;; and Aj2 have no eigenvalue in common, the solution X exists and is
unique. If we choose an orthogonal matrix @ such that

o8]

and conformally partition @ in the form
Q= Qu Q12
Qn Q2 |’

QT -X L |_|R QL .
I 0 0 Q%
Since both matrices on the left are invertible so are R and Q7;. Thus
T | An A | X || An O I, X
Q[o Agz]Q—Q[O I, 0 An||o0 I, |9
_ [R QR ][ 42 o |[R -R7QHQT
| 0 QT 0 Au 0 o
RAzzR—l "RA22R-1Q’11‘1 l_T + Q?IAIIQ;Z;T
i 0 QLANQT
Ap 412
t 0 An

then
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where A;; is similar to A, 7 = 1,2, so that the eigenvalues are invariant, but their positions are
exchanged. Furthermore, we have the following theorem to specify such orthogonal transformation:

Theorem 1 (Ng and Parlett [11]). An orthogonal (p + q) X (p + q) matrix Q swaps Ay and

Ags if and only if
| =X R
= 7
[ 7 ]=[3] @

for some invertible ¢ X ¢ matrix R where X is defined in (6).

In the presence of rounding errors, the biggest concern is solving the Sylvester equation (6). It
could possibly be ill-conditioned if A;; and Az; have close eigenvalues. In the extreme case, if A1
and A,; have the same eigenvalues, the Sylvester equation is singular and the solution X may be
infinite. To prevent possible overflow, we instead solve the equation

AnX — XAz = 7412 (8)

or the corresponding linear system
Kz =~b (9)

where v is a scaling factor (y < 1), and K = I; ® A1 — AT, ® I, ® is the Kronecker product,
z = col(X), b = col(Asz). col(W) denotes the column vector formed by taking columns of W
and stacking them atop one another from left to right. Possible overflow of X is taken care of by
choosing a small scaling factor y. In the extreme case, when A;; and Aj; have the same eigenvalues,
we choose 7 = 0. Because the linear system (9) can only be 1 X 1,2 X 2 or 4 X 4, it does not cost
too much to use Gaussian elimination with complete pivoting to solve it with better numerical
properties (in particular, the pivots are within a modest factor of the singular values of the 4 by
4 matrix, so setting tiny pivots to a chosen tiny value controls the conditioning of the system and
norm of the solution). Applying standard results from [20], a straightforward analysis shows that
for the computed solution X of the Sylvester equation:

| Ellr < pem(|Aullr + | A22llF)
1 XIlr ~ sep(An, A22) ’

where E = X — X, pis a small constant of order O(1), ep is machine precision, and sep(A11, A22) =
Omin(K) is called the separation of the matrices A1y and Ags.

In the following error analysis of the algorithm, we will see that the numerical stability is
essentially governed by the residual Y = A5 — A1 X+ X Ags = —AnE+ EAj,. Applying standard
error analysis of Gaussian elimination [9], we have

(10)

IY|lF = 412 — A1 X + X Azz|lF < pem(llAnillr + [|A22|F)[| X [|F- (11)

Note that the bound does not involve sep(A11, A22).
Next we form the QR factorization of the matrix (~XT,vI)T by Householder elementary re-

flectors, so that
“x)_s[R

where Q = Q + 6Q, ||6Q|| = em, QTQ = I. In other words, the computed matrix Q is orthogonal
to machine precision [20].
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In the next section, we will show that in some pathological cases, the norm of the (2,1) (block)
entry of QT AQ may be larger than O(en||Al)), i-e., it may be backward unstable if we are forced
to treat QT AQ as block upper triangular by setting the (2,1) entry to zero. Therefore we propose
to perform adjacent blocks swapping tentatively; if the norm of the (2,1) (block) entry of QTAQ
is less than or equal to O(em||All), we swap the blocks, otherwise we return without performing
the swap. This gives an absolute guarantee of backward stability. We can fail to swap only if the
eigenvalues A;; and Az are so close that a small perturbation of the matrix could make them
identical. If p = ¢ = 1, then swapping will always succeed.

If the two blocks are exchanged, then an orthogonal similarity transformation is performed on
the 2 x 2 blocks (if any exist) to return them to standard form.

Finally, since the nonsymmetric eigenvalue problem is an ill-conditioned problem, a small per-
turbation to a 2 x 2 block (complex conjugate eigenpair) could cause a large perturbation of its
eigenvalues. In the extreme case, a 2 X 2 block could split into two 1 x 1 blocks if its complex
conjugate eigenvalues become real. Carefully designed standardization steps will detect and report
such phenomena. All above considerations are summed up in the following algorithm.

Direct Swapping Algorithm SLAEXC

| T The _ | An Az |,
1. CopyAtoT.T—[ 0 Tn]«—A—[ 0 Azz]’

2. Use Gaussian elimination with complete pivoting to solve
TuX — XT2z = 7Tha,

where v is a scaling factor to prevent overflow. If there is a small diagonal element during
Gaussian elimination, set it to roughly machine precision (times the norm of the matrix).

3. Compute the QR factorization G = (=X T,~I)T = QR by Householder transformations.

4. Perform swapping tentatively: if the norm of the (2,1) (block) entry of QTTQ is less than
O(eml||T|lm), go to the next step, and otherwise exit;

5. If the swap is accepted, replaced A by QTAQ and set the (2,1) (block) entry of QTAQ to
zero.

6. Standardize 2 x 2 diagonal block(s) if any exist.

In our implementation of SLAEXC in LAPACK, we have chosen 10eps||Allm as the stability
criterion in step 4, where ||A|lM = max; ;|a;;|. Finally, we note that we also provide a subroutine
STREXC in LAPACK which calls SLAEXC to reorder all the eigenvalues into a user selected order.
In particular, the user may select any subset of the spectrum which will be reordered to appear at
the top left of the matrix using the fewest possible calls to SLAEXC.

3 Error Analysis

In this section, we give an error analysis of the direct swapping algorithm SLAEXC described in
the last section. We assume that p = q = 2, i.e., we only consider swapping two 2 X 2 blocks,
the hardest case of the problem. In addition, for the sake of exposition, we also assume that the
computation of QR factorization and the similarity transformation QT AQ are exact, and the scaling



Swapping Algorithm 6

factor ¥ = 1. Including these rounding errors does not change the conclusion of the analysis, but
makes the exposition appear more complicated.

Let X be the computed solution of the Sylvester equation, where X = X + E, X is the exact
solution, and E is an error matrix. By the argument of (12), and a result of Stewart [17] on the
perturbation of the QR factorization, we know that under mild conditions (such as [|G1||2 || E[|F < 1),
the QR factorization of (—=XT,I)T can be written as

[T+ [ 7)o [ ] -or-@em [ %57 )

where W and F are the perturbations of the orthogonal matrix ¢ and the triangular matrix R,
respectively, and @ = Q + W is orthogonal. |W||r and || F||r are essentially bounded by the terms
of order |G|z || E|lr. iFrom (Q+W)T(Q+W) = I, up to the first order, we have QTW = -WTQ.
When Q = Q + W transforms A, ignoring the second order perturbations we have

QTAQ (Q+W)TAQ+ W)

QTAQ + WTAQ + QTAW + WTAW
A+WTQ-QTAQ +QTAQ-Q™W

= A+AQ™W -QTWA.

Defining Z = QTW and partitioning it conformally with A in the form

Zn Zio
Z = ,
[ Zyn Zay ]

we have . _

- - A A E E

TA = 22 -12 22 12 , 14

@ A4Q [0 A22:|+|:E21 En] (14)

where

En = AnZa— ZnAn — Znhn,
Ess = AZi - Z11Ax + A12Z2,
En = AnZan — ZnAzs.

Ey; and Eg; perturb the eigenvalues directly and do not affect stability. E3; is of interest because it
measures the numerical stability of swapping. Ej; is the error in the block Aj,. Tt is not of interest
since it neither affects the numerical stability of the algorithm nor perturbs the eigenvalues. The

task is to give bounds on the norms of E11, Eo2 and Ej;. To do so, let us first express Z;; in terms
of the blocks Q;; of Q, E, F and R. From (13), we have

R+F -X -E R -QLE
(I+QTW)[ 0 ]=QT[ I ]+QT[ 0 ]=[0]+[_Q%E].

Postmultiplying by (R + F)~! on both sides of the above equation, and noting that Z = QTW, we
get

(I+2) [ g] = [ R_Q‘%%E ] (R+F)™,
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so that
Zn = -I+(R-QLE)R+F)™,
Zn = -QLER+F),
and up to the first order perturbations, we have
Zu = -QLER™'-FR™, (15)
Zn = -QLER™. (16)

To express Zo2, again from (13),

v 575wl ] o[ 4] [ F]0[ 1)

By canceling (-X7T,T )T from both sides of the equation, and premultiplying by QT, we obtain

e[ [E e E]

By inserting QTQ = I in the left side of the above equation and noting that WTQ = —QTW = -Z,

T e e [5]- (2]

Thus the “bottom” equation is

ZnR - ZnQ’lrlE' - ZzzQ?zE = "Q};E»

by (16) and assuming that error matrix E is nonsingular, we get

Zy = -ZnQhQ1S = QLERT'QLQL (17)
;From expressions (15), (16) and (17) of Z11, Z12 and Za3, the Eq1, E92 and E;; are recast as
En = QLAnQITQLERT'QLQT - QLER'QLQIT QL ANQT

+QLER(-RA»R'QLQ1; T +QhAnQL)
QL(AnE - EA22)R_1Q11Q12

= -QLYRT'QLQL,
and
Ey = —RAng‘l(QTlER‘I +FR)+(QLER™+ FR)RAnR™!
—(~RA»R'QLQIT +QF AquT)leER'
= QN (-AnE + EAg)R™ — AppFR™ + FR™ Ag
= QTLYR™ - ApFR™' + FR™ Ay,
and

En = -QLAnQTQLER™ + QLER'RAnR™
—Q%L(-AnE + EA)R™!
QLYR™.
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We see that E;;, E;; and Ej; are essentially related to the residual vector Y of the Sylvester
equation solver, R and the subblocks Q1; and @, of Q. Furthermore, rewriting (7) as

FIRERAE

Qa1 =R!

we see that

and
RTR=T+XTX.

Let 0(C) denote the set of singular values of matrix C, and A(C) denote the set of eigenvalues of
matrix C, then

o*(R) = A(RTR) = \I + XTX) = 1+ A\(XTX) = 1 + o*(X).

Therefore .

) 18
T+ A7 -
where g;(X) > g2(X) > 0. Now to estimate the norm of the blocks @;; of @, we use the following
CS decomposition of a partitioned orthogonal matrix, which was introduced by Stewart [16]. A
proof of the existence of the decomposition can be found in [18].

1Q21ll2 = |1R7)|2 = az(lR) -

CS Decomposition: Let the orthogonal matrix Q € IR?¥%2k be partitioned in the form
k k
Q= E(Qu i .
E\Qn Q2
Then there are orthogonal matrices U = diag(Uy, Usz) and V = diag(Vh, V) with Uy, V1 € IRkxk

such that
k k

o k(C S
UQV"k(—S C)’

C = diag(cy,ca,---,ck) 2 0, S = diag(s1,52,...,8k) >0, C*+8%=1

where

By the CS decomposition of @ and (18), we have

UI(X)
(1 4o} (X))/2

1Qull2 =

and
1Q12ll2 = |Q21ll2;  1Q22llz = [|Q@11ll2;

Thus, for E;;, we have

< T -1 T 2 = ——-———al(X) .
1Bullz < 1Qu2ll2 1Y llr 1R 2 1Q1ill2 19327 ll2 = U%(X)HYHF
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Similarly, for Es, from [17], we have |FR™!||r < 2||G!||2|| E||F, therefore

- - _ o1(X
1Exall < 105 I ¥ e 1R 12 + 21 Aaclloll FR e < —2C5)

—2 Y 4||A G| E|lr.
< 1+a§(x)|| llF + 4ll A22ll2lIGlI2l| EllF

Finally, for E2;, we have
1
< ||oT Y= _|IY|lp.
1zl < 1QT I 1Yl 1Bl = Ty 1Y e

Hence we have the following theorem.

Theorem 2. Let Y = Ayz — A1n.X + X Agz, where X = X + E is the computed solution of the
Sylvester equation (6), assume that the error matrix E is nonsingular, let the QR factorization of

(=XT,I)T satisfies )
-X W
7 ]=e[3)

aron | Ay A E;; E
TAD = 22 Anz 22 Erz
Q@ AQ | 0 A11]+[E21 En]’

then

where A;; is similar to A, i = 1,2, and up to the first order perturbation O(||E||2):
01(X)

|Enullz2 < —_—_—1+0‘§(X)"Y”F’ (19)
a1(X) 7
| E22llz < ———1+ag(x)||Y||F+4||A22||2“Gf||2||E||F (20)
1
< ——— .
|Eallz < 1+0%(X)||Y||F (21)

Three remarks are in order:

Remark 1. From the theorem, we see that the departure ||Eq||; from upper block-triangular
form (the measure of numerical instability) is bounded by [|Y[|r/(1 + 02(X)). It is easy to see that

Arz|lr
Xl < —Au2llE
Xl sep(A11, A22)’
where the equality is attained when col(A;2) is a left singular vector of K corresponding to the
smallest singular value min(K) = sep(A11, A22). Combining (22), (11) and (21), we have

Ml A1 llF + || AzzllF) || ArzllF
(1 + 03(X))sep(Am, A2)

Logically, the above bound indicates that the numerical instability will occur if we have small
sep(A11, A22). But in practice, numerical experiments show that this upper bound is very pes-
simistic. Small sep(A11, A22) does not imply instability. We will discuss this further in the following
section.

(22)

£
[ Eallz < &

Remark 2. Iterative refinement applied to the Sylvester equation will improve the accuracy of
computed X, (unless the Sylvester equation is too close to singular), but it need not improve 1Y |,
at least when Gaussian elimination with complete pivoting is used to solve the Sylvester equation.
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Remark 3. The factor 01(X)/(1+ 02(X)) that affects ||Eqy||z and || Ez;)|; is interesting, since
it warns that large and ill-conditioned X may endanger accuracy, because of (11) and
a(X) _ K(X)
1+03(X)  op(X) +071(X)’

where k(X) = 01(X)/02(X). How k(X), sep(Ai1, A22), and the accuracy of the swapped eigenval-
ues are related in practice needs further investigation.

4 Software Development and Numerical Experiments

In this section, we first discuss the development of software for the swapping algorithm SLAEXC.
Then we discuss numerical experiments to show the capability of our software to deal with ill-
conditioned cases, compare with Stewart’s swapping algorithm EXCHNG, and finally demonstrate
the sharpness of our perturbation bounds.

4.1 Software development

A set of FORTRAN subroutines has been developed to implement the direct swapping algorithm
described in Section 3. It is part of LAPACK project [1]. As with other LAPACK routines, this
algorithm was designed for accuracy, robustness and portability.

The main subroutine is called STREXC. STREXC moves a given 1 X 1 or 2 X 2 diagonal block
of a real quasi-triangular matrix to a user specified position. On return, parameter INFO reports
whether the given block has moved to the desired position, or whether there are blocks too close to
swap, and what is the current position of the given block. The subroutine STREXC is supported by
subroutine SLAEXC, which exchanges adjacent blocks. The subroutine SLAEXC is an implementation
of the algorithm SLAEXC described in Section 3, where the subproblem of solving the Sylvester
equation (8) by Gaussian elimination with complete pivoting is implemented in subroutine SLASY2,
and the subproblem of standardizing a 2 x 2 block is implemented in subroutine SLANV2.

In the interest of simplicity, we also used some other subroutines from LAPACK and the BLAS
to perform some basic linear algebra operations, such as generating Householder transformations,
computing the 2-norm of a vector and so on.

Finally, a test subroutine has been written to automatically test the subroutine SLAEXC. There
are nested loops over different block sizes, different numerical scales, and different conditionings of
the problem.

4.2 Numerical experiments

Backward stability test: To measure the backward stability of a swapping algorithm, we need
to test (I) how close the matrix @ is to an orthogonal matrix, and (II) how close QAQT is to the
original matrix A, where A is the computed A. In other words, we need to test whether the two
quantities o o
Eq= Ir-Q™lh 5 _ A= QAQT|

EM ’ emllAll
are around 1, where £)s is machine precision. To check the changes among eigenvalues is not
required to judge the correctness of an algorithm, since we know that there must have at least
an order of O(en||A||) perturbation to the original matrix after swapping, and the nonsymmetric
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eigenvalue problem is potentially ill-conditioned. However, for reasonably conditioned matrices,
the changes in the eigenvalues do measure the accuracy of a swapping algorithm. For this reason,
in the following numerical examples, we also compare the eigenvalues before and after swapping,
besides checking quantities Eg and E4.

All numerical experiments were carried out on a SUN sparc station 1+. The arithmetic is IEEE
standard single precision, with machine precision ey = 2723 &~ 1.192 X 10-7.

We have done extensive testing on matrices with various mixtures of the block sizes, scales and
closeness among eigenvalues. More specifically, we show the algorithm SLAEXC on the following
four types of matrices:

Test Matrix 1: good separation of A;; and Agz, the eigenvalues before swapping are

A1 = 0.2000000F + 01 + 0.2085666 E + 02,
A2 = 0.1000000E + 01 £ ¢0.2017424 F + 02,

Test Matrix 2: moderate separation separation of A1 and A2, the eigenvalues before swapping

are:
A; = 0.1000000E + 01 + 70.1732051F + 01,

A2 = 0.1001000F + 01 £ ¢0.1732916 E + 01.

Test Matrix 3: close eigenvalues, the corresponding the Sylvester equation is very ill-conditioned,
the eigenvalues before swapping are

A1 = 0.1000000E + 01 + ¢0.1000000E + 01,
A2 = 0.1001000F + 01 + 20.1000000E + 01.

Test Matrix 4: the extreme case, where the eigenvalues of A;; and Aj; are the same, and
theoretically, the Sylvester equation solution is infinite. This matrix is used to test the robustness
of our software against overflow,

A; = 0.1000000EF + 01 +10.1732051 E + 01,
A2 = 0.1000000EF + 01 £ ¢0.1732051F + 01.

Table 1 summarizes the results of algorithm SLAEXC, where sep(A11, A22) is computed by
MATLAB, and included here for the sake of theoretical analysis. From Table 1, we see that both
the backward stability and accuracy of the algorithm SLAEXC are satisfactory.

Comparison with Stewart’s algorithm EXCHNG: We have done numerical comparisons
between the direct swapping algorithm SLAEXC and Stewart’s swapping algorithm EXCHNG
[15], which uses QR iteration. Both algorithms perform well in most cases, but in certain cases,

the algorithm EXCHNG is inferior to algorithm SLAEXC. For example, let

7.001 -87 394r 22.21
5 7.001 -12.27 36.07
0 0 7.01 -11.7567 |’
0 0 37 7.01

A(r) =

where 7 is a parameter. The matrix A(7) has the same eigenvalues for all 7:

A1 = 0.7001000F + 01 =+ :0.2085666 E + 02,
A2 = 0.7010000F + 01 % 10.2085660E + 02,



Swapping Algorithm

12

Table 1: numerical tests of algorithm SLAEXC

Test matrix sep(A11,A22) | Eq E, | eigenvalues after swapping
2 -87 -=20000 10000
5 2 -20000 -=10000 -1 0.1000001 E 4 01 % 10.2017424F + 02
1 0 0 1 =11 3.337x 10 0.260 | 0.197 0.2000000E + 01 + $0.2085665E + 02
1] 0 37 1
1 -3 3576 4888 4
1 1 -88 -1440 - 0.1001000E + 01 £ 10.1732917E + 01
2 /] 0 1.001 -3 8'442 X 10 0°625 0'423 0.1000000E + 01 #* 10.1732051FE + 01
)] 0 1.001 1.001
1 -100 400 -1000 7
0.01 1 1200 -10 - 0.1000996E + 01 + 10.1000360F + 01
3 /] (1] 1.001 -0.01 2.000 X 10 0'417 0'001 0.1000003F + 01 % :0.9995396 E + 00
0 o 100 1.001
1 -3 3 2
1 1 9 0 0.9999987E + 00 + 10.1732051E + 01
4 1] 0o 1 -3 o 0.687 0.241 0.1000002E + 01 + i0.1732051E 4 01
1] 0o 1 1

and sep(Aj1, Azz) = 0.0024. When 7 = 1, the output matrix of the algorithm SLAEXC is

0.70100012F + 01 —0.86993660F + 02 —0.39390938FE + 02 —0.22241005E + 02

i= 0.50003409FE + 01  0.70100012E + 01  0.12191071E+ 02 -0.35999401F + 02
~ | 0.00000000FE + 00  0.00000000E + 00  0.70009995E + 01 —0.11755549F + 02
0.00000000E + 00  0.00000000E + 00  0.37003792E + 02  0.70009995FE + 01

The eigenvalues after swapping are

2
M

0.7010001F + 01 £ 0.2085661F + 02,
0.7000999F + 01 £ :0.2085665E + 02,

I

which are accurate to machine precision. However, the output of algorithm EXCHNG after 8 QR
iterations is!

0.28140299F + 02 —0.81122643E + 02 —0.39849255E + 02 —0.15834051F + 02

A= 0.10856283F + 02 —0.14087547E + 02 —0.23942078E + 02  0.32877380F + 02
~ | 0.00000000F +00 0.00000000E+ 00  0.19211971E+ 02  0.21227583E+02 |’
0.00000000E + 00  0.00000000FE + 00 —0.27540298FE + 02 —0.52427406F + 01

which has eigenvalues

A2 = 0.7026377E + 01 % i0.2085408 F + 02
A1 = 0.6984615E + 01 £ i0.2085919E + 02

They only have two decimal digits correct.

Table 2 shows the numerical results with different choices of parameter 7, where when 7 = 10,
it takes 17 QR iterations to converge. It clearly shows the superiority of algorithm SLAEXC. In
particular, we note that algorithm EXCHNG is nonconvergent when 7 = 100. It means that the
eigenvalues are not able to be exchanged by algorithm EXCHNG. But the algorithm SLAEXC
has no difficulty. This convergence difficulty may reflect recent work of Batterson (3], who has
discovered classes of nonsymmetric matrices where QR iteration fails to converge, or converges
quite slowly.

1where the stopping criterion used in QR iteration is eps = 1.2 x 10™7.
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Table 2: comparison of algorithms SLAEXC and EXCHNG

T SLAEXC EXCHNG

1 | % = 0.7010001F + 01 £ 0.2085661E + 02 | Az = 0.7026377E + 01 + i0.2085408E + 02
%, = 0.7000999E + 01 + i0.2085665E + 02 | A; = 0.6984615E + 01 & i0.2085919F + 02
10 | &; = 0.7010000 + 01 & i0.2085660E + 02 | A = 0.7063053E + 01 & 10.2086175E + 02
3; = 0.7000999E + 01 & i0.2085665E + 02 | A; = 0.6947970F + 01 + i0.2085144F + 02
100 | A, = 0.7009999E + 01 =+ i0.2085660E + 02 not convergent

A; = 0.7000999E + 01 + 0.2085665E + 02 after 30 QR steps

On the upper bound of ||Ez||z: Finally, in the interest of theoretical analysis, we discuss the
sharpness of the bound on || E2 ||z, which controls the numerical stability of algorithm SLAEXC. In
most of the test examples, we see that the bound (21) of ||Ez||2 is very pessimistic. However, we
do find some examples indicating that the bound in (21) can roughly be attained. Let us consider
the following example:?

2 2 1.0000E + 00 —1.0000E + 02 1.9900E+04  1.0201E + 02

a2 (Au Am) | 1.0000E-02 1.0000E+00 1.0000E+02 —1.9800E + 00
2\ 0 Apn)” 0 0 1.0100E+00 —1.0000E-02 |’

0 0 1.0000E+02 1.0100E + 00

where sep(A11, A22) = 2 X 10—6. The A;2 block of A is designed so that

X = 1.0000E + 00 —2.0000FE + 02
~ \ 1.0000E+00 -—1.0000E + 00

is the solution of the Sylvester equation. Note that o;(X) = 200.01, o2(X ) = 0.99498. We used
MATLAB to compute the different quantities in the bound (where machine precision is doubled
EM = 2.2204 X 10-16). First the norm of the residual matrix Y for computed solution X of the
Sylvester equation is

Y[l = [l A1z — A1 X + X Ana|lp = 4.0272 x 10712,
which almost reaches the estimated bound (11) of Y:
» em(|Anllr + || A22|lF)l| X ||lF = 8.8830 x 10712,
Furthermore, the observed norm of (2,1) block Ao, after swapping is
| A21]l2 = 1.2973 x 10712,
which also roughly attains the bound (21) for || Ezl2:

1
Eallz € ———==|IYllr = 2.023 -12)
| Eallz < T a%(x)ll lle 7x 10

Note that for this example, the algorithm is still backward stable, since

1nl> = 1.2973 x 107 < epl| Allr = 4.4189 x 107*%.

2For brevity, only five digits are displayed for all the data in this section though we did run in double precision.
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After setting A3; = 0, then the measures of backward stability are Eqg =23 and E4 =1.8.

;From Remark 1 after Theorem 2, we might worry that a huge || X||r or tiny sep(A1i, A32)
could cause numerical instability. However the following example illustrates how in practice a
small separation of A;; and A2, does not necessarily lead to instability. Let

1 -10-%
Ap = 1 1 y A = An + Veml,

then the separation of A;; and Aj; is tiny; that is sep(Ai1, Azz) = 2.9802 x 10~14. Let A;2 be
chosen such that col(A;3) is the left singular vector of K corresponding to the smallest singular
value opin(K), so that the norm of the solution X of the Sylvester equation A;; X — X Az = A;2
reaches its upper bound (22), that is

| As2llF
X|p = —AulF
1l sep(A11, Az2)

and x(X) = 10°. Hence the estimated bound of the norm of residual Y is

= 3.3554 x 1013

em(|Aullr + | Az2[lF)[| X ||F = 2.5810 x 1072,

However in practice, the observed residual norm ||Y||p = 3.7253 x 10~°. After swapping, it turns
out that
|AzillF = 7.3985 x 10~2* < epr||Allr = 5.8747 x 1071,

So the swapping is perfectly stable!

5 Conclusions

In this paper, we have developed a direct swapping algorithm which reorders the eigenvalues on the
diagonal of a matrix in real Schur form by performing an orthogonal similarity transformation. A
complete set of FORTRAN subroutines has been developed and included in the LAPACK library
[1]. The algorithm is guaranteed to be numerically stable because we explicitly test for instability
and do not reorder the eigenvalues if this would be unstable; this can only happen if the eigenvalues
are so close as to be numerically indistinguishable. Unfortunately there is no proof of the backward
stability of the algorithm without this explicit test, even though we have not seen an example where
instability would occur. The detailed error analysis and numerical examples show how well it deals
with ill-conditioned cases, whereas the alternative stable algorithm EXCHNG may occasionally fail
to converge.
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programs during our initial work on the subject. The valuable comments of G. W. Stewart and
B. Parlett during the development of software are gratefully acknowledged. The authors are also
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