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Simulating flow in porous media requires the solution of elliptic or parabolic par-
tial differential equations. When the computational domain is irregularly shaped,
applying finite element methods with triangular elements offers great flexibility.

The mixed finite element method has proven useful for solving flow equations. The
difficulty with mixed methods in general is in solving the linear algebraic systems that
arise. On rectangular elements, the mixed method with lowest-order approximating
spaces can be reduced to a simple finite difference method in the primary variable,
thus reducing the linear system to a sparse, symmetric, positive (semi-)definite ma-
trix, for which many solution techniques are known. This type of reduction is not
straightforward for triangular elements. In this paper we outline new mixed type
methods which generalize finite differences in a manner suitable for use with triangu-
lar elements. Numerical examples illustrate the accuracy and efficiency of these new
methods.

INTRODUCTION

Simulating flow in porous media requires the solution of elliptic or parabolic partial
differential equations. In this paper, we discuss several variants of the mixed finite
element method for solving elliptic equations of the form

-V - (K(x)Vp(x)) = V-u(x) = f(x), x€Q, (1)

where the aquifer region is represented by a polygonal domain (2 in IR? partitioned
into triangular elements, and K is a general tensor. We remark briefly on tetrahedral
meshes defined on © C IR® at the end of the paper. For simplicity, we assume the
boundary condition

p(x) =0, x€9Q, (2)

but the methods apply to general boundary conditions. We solve (1) and (2) using
the lowest-order Raviart-Thomas approximating spaces (RTy) on triangular elements
[8]. A C++ package which implements all of the methods presented here has been
developed by the third author [6].




The mixed finite element method (MFEM) for solving elliptic equations was first
described in [8]. The MFEM is especially useful in groundwater flow problems because
mixed methods approximate the velocity u and the pressure p to the same order of
accuracy. Furthermore, the approximate velocity calculated by the mixed method
is locally mass conservative, satisfying V - u = f almost everywhere. In contrast,
Galerkin finite element methods only conserve mass globally.

On rectangular elements, if K in (1) is a scalar or a diagonal matrix, one finds
that numerical quadrature reduces the mixed method to a five-point finite difference
method for pressure [10]. The new AWYM (Arbogast-Wheeler-Yotov method) ex-
tends these results to general coefficient tensors [2, 3, 4]. On triangular elements,
however, the linear system arising from the MFEM is sparse but indefinite, making
it expensive to solve. We have developed a cell-centered stencil method (CCSM)
which reduces the MFEM on triangular elements to a ten-point finite difference type
stencil. This provides a locally conservative finite difference method on triangles that
is efficient and simple to implement. The CCSM is based on the AWYM with spe-
cial quadrature rules and reduces to the usual finite difference method when applied
to rectangular elements. The method is highly accurate on smooth triangulations.
In more general cases the method loses accuracy, which can however be avoided by
adding Lagrange multipliers on element faces where the discontinuities appear.

THE NUMERICAL MODELS

This section briefly defines some variants of the mixed method. See [1] for more

details.
Let (-,-) denote the L?(Q) inner product: for functions ¢ and 1,

(8:9) = [ $e(x)dx and LX) = {¢: 4]l = (4,6)/* < oo}.

Let H(div;Q) = {v € (L*(Q))? : divv € L*Q)}. Let W, C L*) and V; C
H(div; Q) be the lowest-order Raviart-Thomas (RTp) [8] approximating spaces de-
fined on a triangulation of 2 into elements with maximum diameter A > 0. We note
that W, consists of functions that are constant on each element in the triangulation.
Any function v € V} is completely determined by the values of v - on the edges of
the triangulation, where 7 is the unit normal to an edge. In the standard MFEM, we
seek U € V;, and P € W, that satisfy

(K7'U,v) = (P,V-v)=0, veW, (3)

(V-U,w) =(f,w), we W,. (4)

It is well-known that for the RT; spaces on rectangular elements, numerical quadra-
ture can be used in (3) to reduce the linear system of equations to a sparse, symmetric
system in P only. Below we describe similar approaches for triangular elements.



The variants of the mixed method we investigate are based on a new formula-
tion developed by Arbogast, Wheeler, and Yotov [2, 4]. In this approach, a mesh-
dependent matrix function s, and an additional variable y are introduced, with

S5 = -Vp, (5)
s;u = s, Ks,y, (6)
V-u=gq. (7)

If s,(z) is invertible, (5)~(7) is equivalent to (1). Let T' denote any triangle in 74,
and let T. denote a reference element, which we assume is the equilateral triangle
with vertices at (—1,0), (1,0), and (0,v/3). Let Dr denote the Jacobian matrix of
the affine mapping between element T and Tr.r, and let Jr = | det Dr|. On T, define
sg by

s,|r = Jr(Dr)" Dr.

Note that s, on each element is symmetric and positive definite. We approximate y
by Y € Vi, u by U € V}, and p by P € Wy, where Y, U, and P satisfy

(s,Y,v) = (P,V V), VEV4 (8)
(SgUaz) = (ngngaz)? z€ Vh’ (9)
(V-U,w) = (f,w), weW,. (10)

In matrix form, (8)-(10) can be written as

s o -B[Y 0
c -5 o |[|T|=]0 (11)
o BT o J|P F

Reducing to an equation in P only, we find
Aa,wymp = (BTS—ICS-IB)P = R.

One advantage of the AWYM over the MFEM is that it does not require calculating
K-', and thus is definable in cases where K(z) = 0. For time-dependent problems
where K = K(-,t), the AWYM has the advantage over the MFEM that only S-!
is needed in the computation, not M~!. Unlike M, S is not time-dependent and
hence can be factored once at the beginning of the computation, whereas M must
be factored at each time-step. In general, however, the computational.expense of the
AWYM and the MFEM are roughly equivalent.

For the two methods described above, assuming the RTp approximating spaces are
used, the pressure and velocity are globally first order accurate. Superconvergence
of pressure to second order is observed at the center of mass of each cell, and for



rectangular meshes, superconvergence of velocities to second order is observed at
certain Gauss points [2, 3].

We note that if S were a diagonal matrix, then Aawym would be sparse. Recently
we developed the cell-centered stencil method (CCSM) for triangular meshes [1] which
reduces S to a diagonal matrix by numerical integration of the left side of (8). In two
space dimensions, the resulting matrix has at most ten nonzero entries on any row.

On any triangle T, let v, denote the basis function of V), associated with edge k,
denoted by ex, k =1, 2, 3. Assume that e is mapped into edge k of Tif, denoted by
€k Define the Piola transformation [9] on vectors by

Vi = JrDrve, k=1,2,3. (12)
It can be shown that

/I‘ (ngk) Vi dz = / \Afk . \71 da:, (13)

ref

for k,1 =1, 2, 3. Moreover, from (12), one can show that vy is a scalar multiple of
the standard basis function for V}, corresponding to edge k of Tie.
Using these facts, we define a quadrature rule Q@7(g) on T by

0r(0) = 2 [o-1.0) +501,0)+.0,V8) + 39 (0, 7). (19

It has the two properties that Q7(g) is exact for polynomials of degree one, and
QT(\A'k . \71) =0 for k 75 l. Thus, by (13),

. 0, k#1,
/T (S6vi) - Vi de = Qr(Vi - ¥1) = { % (length(ex))?, * i L (18)

Let Sp denote the diagonal approximation to S determined by the quadrature rule
given above. Then the CCSM reduces to finding P which satisfies

AccsmP = (BTSp'CS;'B)P = R. (16)

Note that Accsm is a sparse approximation to Aawym.

The CCSM has been implemented for elliptic problems in two space dimensions
[1] and compared to the results given by the AWYM and MFEM. Recall that the
AWYM and MFEM give O(h?) errors for pressures at element centers and O(h)
global L? errors for velocities. For smooth triangulations, the CCSM gives the same
orders of convergence, but for domains where a smooth triangulation is not feasible,
these errors can be reduced by a full order of k. The reason is that the function s, can
be nonsmooth across element edges, depending on the triangulation. In these regions,
the accuracy of the quadrature rule is reduced by one order (from A? to k). leading
to a corresponding loss of accuracy in the solution. Thus it appears the CCSM may



not be useful for totally unstructured, nonsmooth meshes, however, for meshes with
some structure, we can modify the CCSM slightly to regain accuracy.

One way to regain accuracy in the solution is to smooth the mesh as it is refined.
If this is for some reason not possible, one can use the Enhanced Cell-Centered Stencil
Method (ECCSM) [1], which is a combination of the CCSM with the standard mixed-
hybrid finite element method (MHFEM) [5]; in particular, pressure unknowns are
added at element edges where s, is not smooth. The result is a system of equations
in velocity unknowns Y and U and pressure unknowns P and X, where ) represents
pressure unknowns on element boundaries. This system can be reduced to an equation
for P and ) only. Depending on the structure of the mesh, the ECCSM lies somewhere
between the MHFEM and the CCSM in total number of unknowns. For domains
which can be divided into a relatively small number of regular domains, where smooth
triangulations can be used, the ECCSM is roughly equivalent in number of unknowns
to the CCSM.

As mentioned above, the purpose of introducing the boundary pressures is to
regain the accuracy in the numerical solution lost by the CCSM on nonsmooth meshes.
We have implemented the ECCSM for problems where the CCSM lost accuracy
and observed O(h?) errors for pressure at cell centers and O(h) global L? errors
for velocity [1], which are the same rates obtained by the MFEM, MHFEM, and
AWYM. Moreover, numerical experiments indicate that a new postprocessing scheme
developed by Keenan [7] can improve the convergence rate for the velocities almost

to O(h?).

NUMERICAL RESULTS

We created a large suite of test problems to examine the behavior of the numerical
methods described above. We varied the shape of the domain, the coefficient tensor
K, and the analytic solution. In each case, the boundary conditions and the forcing
term f were constructed to match the prescribed solution. We report in detail on
one typical case and then summarize the results from the full test suite.

Among the domains considered was the one shown in Figure 1. This figure illus-
trates the initial decomposition of the domain into elements. The domain is neither
simply connected nor convex; moreover we chose to use both rectangles and triangles
in subdividing it, to illustrate the flexibility of the C++ program.

In the convergence study, the domain was refined uniformly to generate progres-
sively finer meshes. Each application of uniform refinement replaced each triangle or
rectangle with 4 smaller but geometrically similar ones. The finest mesh had 2432
elements. Uniform refinement generates hierarchical meshes: each new mesh contains
all the edges of the previous one. However, discontinuities in the geometry mapping
across edges of the original coarse triangulation are not smoothed out by refinement.

In Tables 1 and 2, we give detailed results for a test problem using Dirichlet
boundary conditions, a non-diagonal tensor, and a known analytic solution. We




Figure 1: Example Domain

h ECCSM | CCSM | MHFEM | MFEM
0.16 | 0.59 0.48 0.39 0.39
0.08 | 0.11 0.12 0.11 0.11
0.04 | 0.026 0.043 0.029 0.029
0.02 | 0.0062 0.019 0.0076 0.0076
Rate | A2 h1-4 h? h?

Table 1: {2 error in p for domain in Figure 1

report the /2 norm of the error in the pressure p and the flux K Vp. (The {2 norm is
the discrete two-norm taken at the centers of elements.)

In the full test suite, the condition number of the linear system for most methods
was O(h™'), as estimated by the number of conjugate gradient iterations used. How-
ever, the ECCSM combined with uniform refinement produced better conditioned
systems, with condition numbers around O(h~%?). Using a conjugate gradient solver
with no preconditioning, the MFEM took much longer than the other three methods
(approximately 50 times longer than the MHFEM on 2000 elements). On a typical
smooth mesh problem the CCSM took approximately half as much CPU time as the
MHFEM. The ECCSM was somewhat slower than the MHFEM on coarse meshes,
since it solves for both pressures and Lagrange multipliers. By around four levels of
mesh refinement it had caught up to the MHFEM, since it did not need Lagrange
multipliers on every edge, and it should outperform it when additional refinement is
used.



h ECCSM | CCSM | MHFEM | MFEM | Post-Proc
0.16 { 6.4 . 9.3 6.0 6.0 6.4

0.08 | 3.5 5.9 3.1 3.1 1.8

0.04 (1.6 3.7 1.5 1.5 0.60

0.02 | 0.80 2.5 0.77 0.77 0.20

Rate | A o€ h h h16

Table 2: 12 error in K'Vp for domain in Figure 1

The error in the pressure converged approximately like O(h?) for all methods
except the CCSM in situations like the domain of Figure 1, where the geometry
matrix changes discontinuously because of uniform refinement. Similarly the error in
the flux converged like O(k), except for CCSM with geometry discontinuities. Using
smooth mesh refinement the CCSM achieved the same convergence orders as the
other methods.

On rectangles one finds that the velocities are superconvergent at special points
and can be post-processed to yield second order accurate vector approximations ev-
erywhere. Empirical evidence indicates that a new post processing scheme developed
by the third author can recover close to second order accuracy for the velocities on
triangular meshes as well [7]. The postprocessing method can be applied to any of
the mixed method variants. The “Post-Proc” column in Table 2 shows the errors
obtained with the ECCSM when post processing was used. The convergence rate for
the post processed flux is generally between h!* and h'®, depending in part on the
smoothness of the mesh refinement process.

The C++ program can handle three dimensional elements such as bricks and tetra-
hedra. We observed numerically that the stencil approach breaks down on tetrahedral
meshes. This appears to be due to the fact that regular tetrahedra do not fill space,
whereas equilateral triangles do tile the plane. This means that the geometry matrix
s, is unavoidably discontinuous everywhere, no matter how much one attempts to
smooth the tetrahedral mesh. Therefore, the MHFEM seems to be the best choice for
tetrahedral meshes. The CCSM could however be used with prismatic elements on
meshes constructed from the tensor product of a triangular mesh in two dimensions
and a one dimensional collection of intervals.

CONCLUSIONS

The CCSM is an accurate and efficient method for smooth meshes of triangular
elements, which appears to be about twice as fast as competing methods. On meshes
of tetrahedral elements, however, the CCSM loses accuracy, so the MHFEM should
be used instead.
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