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Abstract.

In this work we define a trust region algorithm for approximating zeros of the nonlinear
system F(z) = 0, where F : R® — RR" is continuously differentiable. We are concerned
with the fact that n may be large. So we replace the £ norm with arbitrary norms in the
objective function and in the trust region constraint. In particular, if polyhedral norms are

_used, then the algorithm can be viewed as a sequential linear programming algorithm. At each
iteration, the local trust-region model is only solved within some tolerance. This research is
an extension of El Hallabi and Tapia (1993) for nonlinear equations, where an exact solution
of the local model was required. We demonstrate that the algorithm under consideration is
globally convergent, and that, under mild assumptions, the iteration sequence generated by
the algorithm converges to a solution of the nonlinear system. We also demonstrate that,
under the standard assumptions for Newton’s method theory, the rate of convergence is ¢-
superlinear. Moreover, quadratic convergence can be obtained by requiring sufficient accuracy

- in the solution of the local model.

Key Words: Nonlinear systems, Trust-Region, Inexact N ewton’s method, Global
convergence, superlinear convergence, quadratic convergence.
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1. Introduction. In this paper we consider the problem of solving the nonlinear
" system of equations

(1.1) F(z) =0,

where F : R®™ — IR" is a continuously differentiable function. We will be concerned
with the fact that the Jacobian of F at z, say F'(z), may be sparse.

Locally, problem (1.1) is often solved by Newton’s method, which is known to have

fast convergence. We refer the reader to Chapter 10 of Dennis and Schnabel(1983)[3]

' for details. The most popular trust-region globalization strategy for Newton’s method

is the Levenberg-Marquardt strategy which, starting from a remote point Zo, attempts
to solve the problem

minimize,err f(x) = ||F(x)||§
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At each iteration, given a current estimate z; and a current trust-region radius &y,
the trial step s is obtained as the solution of the local model subproblem

(1.2a) minimize ||F(zx) + F'(zx)s||2

(1.2b) subject to  ||s]|? < 6.

The Karush-Kuhn-Tucker conditions for Problem (1.2) are equivalent to
-1

(1.32) s(w) = = [F'(e)" F'(a) + pl| F(2)7 F(ai)

(1.3b) p20 and [s(u)3 < &.

Because s = 0 is never the solution of (1.2) (unless F(z) = 0), these conditions are both
necessary and sufficient. In general, the robust Hebden-Moré implementation of the
Levenberg-Marquardt algorithm described in Moré (1977)[10] is used to solve (1.3a)
and (1.3b) for the unique nonnegative uy such that ||s(uk)||2 = 6k, unless ||s(0)||2 < 6%,
in which case s(0) = s}, i.e. the Newton step for (1.1) is the solution.

The Levenberg-Marquardt algorithm is known to be globally convergent, i.e. any
accumulation point of the sequence {z;} generated by this algorithm, starting from
an arbitrary zo, is a stationary point of the objective function. However, for larger

_systems, it has the disadvantage that the matrix F”(zx)T F'(z) in (1.3) may mask the
sparsity present in in F’(zx) along with the possibility that the computation of s(u)
may require several iterations.

To avoid solving (1.3) at each iteration, the dogleg (Powell (1970)[12]) or the
double dogleg (Dennis and Mei (1979)[2]) can be used to obtain a good approximation
to the solution of Problem (1.2). However, we cannot expect the dogleg strategies to be
as robust as the Levenberg-Marquardt algorithm. In fact, Reid (1973)[13] adapted the
dogleg method to the sparse case, and reported finding examples for which the method

" did not converge, but the standard Levenberg-Marquardt method did converge. This
suggests the use of a Levenberg-Marquardt type algorithm that does not hide the
sparsity pattern of F'(z). This can be accomplished by using polyhedral norms instead
of the {2 norm.

The use of norms different from the ¢; norm in (1.2a) and in (1.2b) has been
suggested and investigated by many authors. Madsen (1975)[9] uses the £.,-norm.

Powell (1983)[13], and Yuan (1983)[15][16] also considered a trust-region algo-
" rithm for minimizing h(F(z)), where F : R™ — IR™, n < m, is continuously differen-
tiable and & is any coercive continuous convex function. Their local models are

(1.4) mi(s) = h(F(ax) + F'(zx)s) + %ST Bis

where { B} is a bounded sequence of symmetric matrices.

El Hallabi and Tapia (1993)[6] use arbitrary norms in IR™ in (1.2) for the trust-

_region globalization strategy of Newton’s method. The same approach is taken in

Eisenstst and Walker (1993)[4] where the authors propose a trust-region globalization
strategy for an inexact Newton’s method.

In the present work, we extend the work of El Hallabi and Tapia (1993)[6] to the
inexact minimization of the local model subproblem.
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Consider the optimization problem
(1.5) minimizexer= ||F(X)||a

“where || || denotes an arbitrary, but fixed, norm in R™. We propose a globally con-
vergent trust-region algorithm for approximating solutions of (1.5). At each iteration,
we solve, to within some tolerance ¢, the following (local model) trust-region problem:

minimize mg(s) = ||F(zk) + F'(zk)slla

(LMTR) = {subject to |Islle < 6k

where || ||s is an arbitrary but fixed norm on R", and | |la is the norm selected in
(1.5). In Section 2 we review the optimality conditions for solving (1.5), and recall
“from El Hallabi and Tapia (1993)[6] that stationary points z., for which the linear
system F(z.) 4+ F'(z.)s = 0 is consistent, are solutions of F(z) = 0. The inexact
trust-region algorithm is described in Section 3. In Section 4 we demonstrate that
the inexact trust-region algorithm is globally convergent. In Section 5 we prove that
this algorithm converges to a solution of F(z) = 0 whenever the iteration sequence
has an accumulation point z, such that F’(z.) is nonsingular. The g-superlinear
convergence of the algorithm is demonstrated in Section 6; so is the fact that if more
accuracy is required in the minimization of the local model subproblem, then the rate
" of convergence is g-quadratic. Finally, in Section 7 we present a summary and some
concluding remarks.

2. Optimality Conditions. In this section, we present optimality conditions
for problem (1.5) and characterize the solutions of F(z) = 0 where F : R* — R"
is C1, i.e. continuously differentiable. To this end, we need some subdifferentiability
properties of f = || F||q.

The composite function f = ||F||s, is locally Lipschitz (see Clarke (1983)[1]).
* Therefore, at any z and in any direction s in IR", its generalized directional derivative
denoted f°(z;s) and defined by

(2.1) fo(a:;s) = lim sup fly+ tst) — f(y)
y—z
tl0

Also its generalized gradient at =, denoted 8f(z) is the subset of IR™ defined by
f(z) = {g € R™ | f°(z;8) > gTs, Vs € R"}

Moreover the usual one-sided directional derivative of f exists, and is defined by

I e o) — 13 f(m+t'5)-f(z)
(22) f/(s55) = lim : .

It is obvious that
(2.3) f'(z;8) < fO(s;s)  VseR™.

A function for which (2.3) is an equality is said to be regular at z ; moreover if (2.3)
holds for all z in some X C IR™, then f is regular on X.
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In our case, since the norm is a regular function and F is a C' function, we have
that f is regular on IR".

We should mention that when the || ||, is the £;- norm

fl(z;8) = E sign Fi(z) - sTVFi(z) + Z |sTV Fi(z)|
i¢A(z) i€A()

where
A(z) = {i| Fi(z) = 0}.

Moreover when || ||, is the {o-norm
e g) = i (2)sI VF:
f(z;5) = max {sign Fi(z)s"VF(z)}
where
M(z) = {i| [Fi(2)| = | F(z)lloo } -

The following lemma shows that the local model m, and the function f have the
same descent directions. This is important from an algorithmic point of view.

LEMMA 2.1. [El Hallabi and Tapia (1993)[6]]. Let z and s be any points in R",
F:R™ — IR™ a continuously differentiable function at z, and f = ||F||. Then

f'(z58) = my(055),
where

(2.4) me(s) = ||F(z) + F'(2)s]la.

The standard definition of a stationary point z, of a real-valued function f in
unconstrained nonsmooth optimization is that 0 € df(z«). In our case, the function
f is regular, therefore this characterization is equivalent to

fl(za;8) >0

for all s in IR™. The following proposition relates the definition of stationarity to the
. set of minimizers of the local model.

PROPOSITION 2.1. [El Hallabi and Tapia (1993)[6]]. Let f = ||F|| where F :
IR™ — IR" is continuously differentiable. Then z. € R™ is a stationary point of f if
and only if for all s € R™

I1F(z)lla < [1F(24) + F'(4)s]la

or equivalently mz,(0) < my,(8) for all s € R™ where m; is given in (2.4).

i From Proposition 2.1 it is obvious that any solution of the nonlinear system (1.1)
is a stationary point of f = ||F||,. In the following theorem, we establish a necessary
and sufficient condition for a stationary point of f to be a solution of the nonlinear
system (1.1).



THEOREM 2.1. Let . be a stationary point of f = ||F||. Then z. is a solution
of the nonlinear system

(2.6a) F(z,)=0
if and only if the linear system
(2.6b) F(z.)+ F'(z)s=0

is consistent.

Proof. It is obvious that if (2.6a) holds then the linear system (2.6b) has a
solution. Now assume that the linear system (2.6b) has a solution s., i.e.

F(z.) + F'(z4)sx = 0.

Since z. is a stationary point of f, we conclude from Proposition 2.1, that F(z.)=10.0

3. The Inexact Trust-Region Algorithm ( ITRA): In this section we define
our general trust-region algorithm for approximating a solution of the nondifferentiable
optimization problem

minimizezer» f(2) = ||F(2)|la

where F : R* — IR™, is continuously differentiable and where || ||, is an arbitrary
norm on IR".

DEFINITION 3.1. Consider z € R", ¢ > 0, and pu > 0. Also let || ||l and || ||s be
any two norms on R™. We say that s. is an e-solution of the local model trust-region
subproblem

minimize m(s) = ||F(z) + F'(z)s|la
subject to ||s|ls < p.

if s. satisfies
mz(8s) — mz(0) <0 and my(s.) < ma(s) +€

for all s satisfying ||s||s < p.
Inexact Trust-Region Algorithm (ITRA).

Let ¢;, i=0,...,5, 8, 8;in, 60, and B be constants satisfying :

0<c1<ep<1<ec3 O0<cy<es<1
0<f<l1 0<6min
0 < éo 0 < fo

Let zo be any point in IR™, and let || ||, and || [|» be any two norms on R" and R"
respectively.

Suppose that z and 6 are the iterate and the trust-region radius determined
by the algorithm at the kth iteration. The algorithm determines zx41 and dx+1 in the
following manner:

STEP 1. Set ux = 6 and nx = Pk




STEP 2. Obtain an e-solution, with

ek = M min (||sells, | F(zk)lla) »
of the local model trust-region subproblem

(LMTR) = {minimize mi(s) = || F(zk) + F'(2x)sla
- subject to ||s|ls < pk

STEP 3. If f(zk + sk) < f(zk) + c1[ma(sk) — f(z)]

set Try1 = Tk + Sk,

go to STEP 4.

Else
choose pj such that
callsells < e < esllsklls

choose 0 < 7 < Oy,

and go to STEP 2;

STEP 4.If f(zk + sk) < f(zk) + ea[mi(sk) — f(zk)]
choose 6x41 so that
Bk < Gkq1 < max(pg, cal|sklls),
Else
choose dx4q such that
. callsklls < k41 < csllsklls;
STEP 5.Set 5k+1 = max(6k+1,6m,'n),
and choose 0 < By < 00%.

REMARK 3.1. Observe that, in the process of solving subproblem (LMTR), if
for some feasible step si, the gap between the primal value and the corresponding
dual value is less than e, then si is an €x-solution of subproblem (LMTR).

DEFINITION 3.2. The couple (pr,ni) defined in STEP 1, for which a solution

_ 8k of the local model subproblem in STEP 2 satisfies the test in STEP 3, is said

to determine an acceptable step sy with respect to (zi,0k,Bk). Moreover the iterate
Tk41 = Tk + Sk will be called a successor of zy.

4. A Fundamental Property of Trust Region Algorithms. In this section
we will demonstrate that trust region algorithms enjoy the satisfying property that as
the radius of the trust region approaches zero the approximate solutions, in the sense
of Definition 3.1, of the model trust-region problem approach directions of steepest
descent of f. The directions are steepest with respect to the norm used in defining

" the trust region. This result will play an important role in the convergence analysis
developed in this paper.

THEOREM 4.1. Let w : R™ — IR be locally Lipschitz and let = € IR™ be such
that the one-sided directional derivative w'(z;s) ezists for all s € R™. Also let {6}
and {Bi} be sequences of real numbers decreasing respectively to 6 = 0 and 8 = 0.
Consider a sequence {si}, where sy is an e;-solution, with €, = B min (||sk||,w(z))
of the problem -

minimize w(z + s)
subject to ||s|| < dk.

If sk # 0 for allk € IN, then any accumulation point d. of {dy = si/||sk||} is a steepest
descent direction for w at z with respect to the norm || ||.
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Proof. Let s be any vector of norm one, and let d, be any accumulation point of
{dx}. By choosing a subsequence, if needed, we can assume without loss of generality
that {dx} converges to d.. We have

1 1
(41) Toxll [w(z + k) - w(z)] < ol [w(z + llsklls) = w(@)] + Br

By substituting the quantities di = si/||sl| and tx = ||sk| into (4.1) and rewriting we
obtain
w(z + tkctl,.) - w(z) + w(z + trdy) ; w(z + trdy) < w(z + tkti) - w(z) + B
k

which implies, because w is locally Lipschitz and {Bk} converges to zero,
W'(z,ds) < W'(z58) .

This inequality shows that d, is a steepest descent direction for w at z with respect
to the norm || || . O

REMARK 4.1. In our application the function w will be either f or equivalently
m, (see Lemma 2.1).

5. Global Convergence of the Inexact Trust-Region Algorithm. In this
section, we will establish global convergence of the Inexact Trust-Region Algorithm
defined in Section 3. Throughout this section, unless otherwise mentioned, €x(sk,Bk)
is defined by

(5.1) ex(sk, Br) = Beman||sklle, | F(z)lla]-

PROPOSITION 5.1. Consider (z,6,3) where § > 0, 8 > 0, and z is not a
- stationary point of f. Then the Inezact Trust-Region Algorithm cannot loop infinitely
often between STEP 3 and STEP 2.

Proof. We prove the contrapositive. Suppose that the algorithm loops indef-
initely. Let {z;} be the sequence generated by letting z; = = + s; where s; is a
solution within €;(s;,7n;) of the following model trust-region problem

minimize m4(s) = ||F(z) + F'(z)s||a
subject to ||s||s < ;.

Observe that ||sj4+1]] < pj1 < cqfls;]| for all 7 € IN, 0 < mjpq < 0n;,0< 6 <1, and
that 0 < ¢4 < 1, so the sequences {||s;||s} and {n;} are decreasing to zero. Under our
hypothesis the test in Step 3 fails for all j € IN, thus, because m;(s;)—f(z) 2 f'(z; 85),
we have

(5.2) f(z + 85) > f(2) + e f'(z; s5)-
- Since s; # 0, we set

d; and  t; = ||s;le-

_ 8
lls;lle



Let d. be any accumulation point of {d;}. Without loss of generality, we can assume
that the sequence converges to d.. Therefore, from (5.2) we obtain

flz+1tids) — f(z)  f(z +tide) — f(z +t5d;)
tj tj

> e1f'(z; d;),
which implies, since f is locally Lipschitz and f/(z; -) is continuous, that
f'(z;d.) > 0.

But from Theorem 4.1 we obtain that d. is a steepest descent direction for f at z.
Consequently, for all d € R™ with norm one, we have

f'(z;d) > 0,

which implies that z is a stationary point of f. O

PROPOSITION 5.2. Consider a sequence {(zk, 6k, Bx)} converging to some (z, 6.,0)
where z is not a stationary point of f and 6§ > 0. If (uk,nk) determines an acceptable
step sy with respect to (z, 0k, k), then there ezists a positive scalar u(z,8) such that
any accumulation point of {ur}, say p., satisfies the inequality

| (5.3) px > p(z,0) .

Proof. Let u. be any accumulation point of {u}. Without loss of generality, we
can assume that {ui} converges to p.. It follows that ug < 8. We consider two cases:
Case i) We suppose that there exists a subsequence {ux,k € N’ C IN} such that
Mk = Ok in which case we have p, = §. Consequently we obtain (5.3) with u(z, ) =
§/2.

Case ii) Suppose that ur < 6; for all sufficiently large ¥ € IN. Therefore, for
_sufficiently large k, (6k,Bx) never gives an acceptable step. Let 3; be the last non-
acceptable step obtained by decreasing §; and Bi. Observe that 3 is a solution of the
local model subproblem within €x(3k,7x) for some 0 < nr < Bk. Since 6 > 0 and z
is not a stationary point of f we have, by Proposition 2.1, that 5 # 0 and ux > 0.
Also we have for large k € IN

(5.4) call3kllk < pr < call3k]|x-

Assume that p, = 0. Let s; € argmin{mg,(s) | ||s|| < pr}, and let d* be any
" accumulation point of {d} = s}/|s;|ls}. Without loss of generality we can assume
that {d}.} converges to d*. Since {0 < u,} converges to zero, we obtain from Theorem
4.1 and Lemma 2.1 that d* is a steepest descent direction of f at z.

Let aj be a positive scalar such that ||agsk||s = ||3k||s- Since 3¢ is an ex(3k, 7k)-
solution, we have

mi(8k) — f(ax) o ma(arst) — f(ax)
(EAI - lloksills

(5.5a) + k.

Let us set tx = ||5k|ls = ||aksills, yf = aksi and

- Sk

Yk Sk
di = =
lyzl



Therefore (5.5a) becomes

m(tede) = f(zk) my(ted}) — f(zk) + k.

(5.5b) ” ”

From inequality (5.4) we obtain that {t;} converges to zero. Since 3 is not acceptable,
we have

(5.6) f(zx + tedi) — f(zi) > erlmi(tedi) = f(zk))-
On the other hand, because F' if continuously differentiable, we haveforalli=1---n
Fi(zi + tedi) = Fi(zk) + te VEi(zr)di + te[VFi(&) - V Fi(zx)]T di
where §; € (zk, Tk + trdy), which implies that
Fzk + ted) = F(zx) + eV F(ze)dk + th Ak, 5k)dk

where A(zk, tk(fk) is a matrix whose it* row is [V F}(&;)—V Fi(z)]. Since {z} converges
to ., and {tx} converges to zero, we have

kl{rfoo A(zk, tkdr) = 0.

Therefore we obtain

(5.7a) mi(tedi) = F(zx) = llo(lltells)lla < F(zk + teds) — f(zk)
and
(5.7b) F(zr + tedi) — f(zx) < mi(tedi) — f(zk) + [lo(l1tklls)lla-

;From (5.6), (5.7b) we obtain
(1= 1) f(ex + tedi) = f(zx) > =llo(lltells)lla
and since 0 < ¢; < 1, this implies that

(5.8) 0 < lim sup f(ze + thk) — f(xk).
. T k—+o0o k

Similarly to (5.7a), we obtain

(5.9) my(ted}) = f(zk) < f(zk + tedy) = f(2x) + [lo(ltkllo)la-

Using (5.7b) and (5.9), we rewrite (5.5b) as

f(zk + tedi) — f(zx) _ flzk + tedy) — f(z) |, o(tk)
7 < t: + =t

or

fzi + tedi) = f(zi)  flzx +ted”) = f(2)
tk - ke
9
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flze + tkd}:) - f(zk + ted™)  o(tk)
tk + k +

Because {d;} converges to d*, {tx} and {mx} converge to zero, and f is Lipschitz
continuous, we obtain from ( 5.8) and (5.10)

0 < lim sup fzg + tpd*) - f(zx)
k—+00 173

which implies, together with the regularity of f and the definition of f°, that
0 < f(z;d%),
and since d, is a steepest descent direction of f at z, we conclude that
0< fl(z;8) V seR™,

which contradicts the hypothesis that z is not a stationary point of f. Therefore there
exists a positive scalar u(z, §) such that any accumulation point of the sequence {u},
say p«, satisfies (5.3). O

PROPOSITION 5.3. Let {(zk,uk, M)} be a sequence converging to (Z.,p«,0),
- where z. and zj are not stationary points of f, and where yuy and u. are positive. Let
sk be an ex(sk, nK)-solution of the local subproblem

(5.12a) minimize mg(s) = ||F(zk) + F'(2z,)3|la
(5.12b) subject to ||s||s < uk-

Then any accumulation point of {sr}, say s., is an ezact solution of the local sub-
_problem

(5.13a) minimize mg,(s) = ||F(z«) + F'(z.)s]la
(5.13b) subject to ||s|lp < px

Proof. Since {ux} converges to p. and ||sk|ls < px for all k, the sequence {si} is
bounded. Consider any accumulation point s, of this sequence. We prove that

(5.14) 1F(22) + F'(z2)sulla < |1F(22) + F'(22)slla

holds for all s such that ||s||s < g, i.e. s« is an exact solution of (5.16). Let s satisfy
l|slle < px. We consider two cases:

i) Assume that ||s||s < p.. Therefore, since {ur} converges to p. ||s|| < px holds for
sufficiently large £ € IN. Consequently, because si is a solution within ex(sk,nx) of
the local subproblem (5.12), we obtain

-(5.15) 1F(zk) + F'(zk)sklla < |1F(zk) + F'(z)slla + ek (sks M)

which implies that (5.14) is satisfied.
ii) Assume that ||s|l = p.. Consider for all £k € IN yx = rﬁﬁ;s, which satisfies

10



lluxlls = p. Because sy is a solution within €(sk,7x) of the local subproblem (5.12),
we obtain

(5.16a) | F(zx) + F'(zk)sklla < 1F(zk) + W%ﬁ_bF’(zk)-s”a + €x( Sk, Mk)-

By passing to the limit when & — +o00, we obtain

(5.16b) IF(z.) + F'(z)salla < [|F(z2) + ,ﬁ;r(z*)sua.

Since ||s||s = px, this implies (5.14).0

THEOREM 5.1. Consider (z.,?.,0) where §, > 0 and z. is not a stationary
point of f. Then there ezists a neighborhood N. = N.(z.,06x,0) and a positive scalar
px = Pu(Tuy6a) such that for any (z,6,5)

(5-17) f(z*) < f(z4) = pa
holds for any successor (z*,6%, %) of (z,6, ).

Proof. We prove the contrapositive. Then there exists a sequence {(zk, 6k, Br) }
converging to (Z., 6, 0), a sequence {p;} converging to zero, and a sequence {(=F, 68,85}
| where (xl',ﬁ,‘:',ﬂ,‘:') is a successor of (z, 0k, Bk) such that

(5.18a) fla) 2 f(za) = e
holds for all k£ € IN. Therefore, for all k¥ € IN, there exists an eg-solution si, with
ex = Meman(||sklle, | F(zklla))

of the subproblem
minimize  ||F(zk) + F'(zk)s|l,
subject to  ||s|l, < mk,

where 0 < pr < 8k and 0 < mg < Bk such that

e} = sk + sk

satisfies (5.18a). Because z',:' = 8 + Sk is a successor of z, we have
f(z) < f(=zk) + ca[mi(se) = f(zk)]-

;From (5.18a) and (5.18b) we obtain

(5-19) f(@a) = pr < flzk) + ex[mr(sk) — f(zx)]

which implies that

(5.20) lim sgp[mk(Sk) = f(zi)] 2 0.

Because ||sils < & and {6x} converges to &, the sequences {si} is bounded. From
(5.20a) we obtain

(5.21) 1F(z)lla = [1F(22) + F'(22)50la.
11 '



for any accumulatuion point s. of {st}.

Because 0 < pi < 6 and {6k} converges to 6., the sequence {4} is bounded. Let .
be any accumulation point of {u}. Since {(z, 6k, Sk)} converges to (z.,6.,0) and z,
is not a stationary point of f, we have, by Proposition 5.2, that u, > 0. Also, because
Sk is a solution within e, we obtain from Proposition 5.3, that s, is an exact solution
of the subproblem

minimize Mg, (s) = ||F(z«) + F'(24)s]|a
subject to ||s|ls < La-

which, together with (5.21), implies that
(5-22) IF(ze)lla < [|1F(zs) + F'(z4)s]la

for all s such that ||s|| < .. By Proposition 2.1, (5.22) contradicts the hypothesis
that z, is not a stationary point of f. O

It is standard in trust-region convergence theory to assume that the level set
Xo={z € R* | f(z) < f(z0)} is bounded. The following lemma shows that this
hypothesis implies that the trust-region radii are uniformly bounded.

LEMMA 5.1. [El Hallabi and Tapia (1993)[6]]. Let zo be any point € R™. If the
subset of R™ Xo = {z € R" | f(z) < f(20)} is bounded, then there exists a positive
scalar 6,4, such that the trust-region radius 8y satisfies

(5.23) 0 < 6k < Omaz VEk € IN.

In the following theorem, we demonstrate that the Inexact Trust-Region Algo-
rithm described in Section 3 is globally convergent.

THEOREM 5.2. Consider a continuously differentiable function F : R™ — R™.
Let || ||la and || ||s be arbitrary norms on IR™, let zo be an arbitrary point in R", and
finally let f(z) = ||F(z)||s. Assume that the level set Xo = {z € R"|| f(z) < f(z0)} is
bounded. Then any accumulation point of the sequence {z\} generated by the Inezact
Trust-Region Algorithm using zo as initial point is a stationary point of f.

Proof. Let z, be an accumulation point of the sequence {z;} generated by the
algorithm. Without loss of generality (by considering a subsequence if necessary), we
can assume that the sequence converges to z.. The sequence {(zk, 8k, Bx)} is bounded.

" Let {(zj,6;,8;)} be a subsequence that converges to (., 6.,0). Because the sequence
{f(zk)} is strictly decreasing, we have

f(z;) < f(ze) Vi2k,
which implies that
(5.24) f(z.) < f(zx) Yk € NN.

" Suppose that z, is not a stationary point of f. Since in (2., d.,0), z. is not a stationary
point of f and 6, > 0, by Theorem 5.1, there exists a neighborhood N, = N.(z., é.,0)
and a positive scalar p, such that for any (z,é,3) € N.

f(z%) < f(z2) = pu
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holds for any successor z+ of z. Now since the sequence {(zj,6;,B;)} conerges to
(Z., 64, 0), there exists an integer j« such that (zj,6;, ;) € N, for all 7 > j.« and

(5.25) f(zj+1) < f(z*) = Px v ] Z j*,

which contradicts (5.24). Consequently, any accumulation point of the sequence {zx}
generated by the algorithm in Section 3 is a stationary point of f = ||F|l,. O

REMARK 5.1. Actually, Theorem 5.2 is can be obtained as an application of
Theorem 5.1 and the work of either Huard (1979)(8] or Polak (1970)(11] dealing with

the global convergence of conceptual algorithms. We choose to give a direct proof
because that proof is not long and contributes to the cohesiveness of the presentation.

6. Convergence to a Solution of F(z) =0. In this section we demonstrate
that under standard assumptions for Newton method theory, the iteration sequence
generated by the Inexact Trust-Region Algorithm actually converges to a solution of
the nonlinear system (1.1).

THEOREM 6.1. Assume the hypothesis of Theorem 5.1. Then either the linear
systems

(6.1) F(z.)+ F'(zs)s=0
" are inconsistent for all stationary points z. of f, or
(6.2) F(z.)=0

for any accumulation point z. of f. Moreover, if the sequence {zi} generated by the
Inezact Trust-Region Algorithm has an accumulation point, say Z., such that F'(z.)
is nonsingular, then F(z.) = 0 and {z;} converges to Z..
Proof. Since the sequence {||F(zx)||o} is decreasing, it is constant on the set of ac-
- cumulation points of the iteration sequence {zx} (see El Hallabi and Tapia (1993)[6]).
Let z.. be an arbitrary accumulation point of {z;}. By Theorem 5.2, Z.. is a sta-
tionary point of f = ||F|la- Assume that (6.2) holds for z... Then F(z.) = 0 for any
accumulation point z. of {zx}, and obviously the linear system F(z.) + F'(z.)s =0
is consistent. On the other hand, assume that the linear system (6.1), where z, is
an arbitrary accumulation point of {zs}, is consistent. Then, by Theorem 2.1, (6.2)
holds for z., and consequently any accumulation point is a solution of the nonlinear
system F(z) = 0.

Now assume that F’(z.) is nonsingular. Then the linear system
F(z.«)+ F'(z4)s=0
is consistent, which, by Theorem 2.1,implies that
F(z.) = 0.

- Finally the convergence of the sequence {zx} to z. follows from Theorem 3.3 of Eisen-
stat and Walker (1993)[4].0

7. Convergence Rate of the Inexact Trust-Region Algorithm. In
this section, we prove that the Inexact Trust Region Algorithm is g-superlinearly
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convergent and that it is g-quadratically convergent if either B = O(||F(z¢)||) or
B = O(llsell) -

THEOREM 7.1. Assume the hypothesis of Theorem 5.1. Also assume that the
sequence {zr} generated by the Inezact Trust-Region Algorithm has an accumaulation
point, say z., such that F'(z.) is nonsingular and F' is Lipschitz near z.. Then the
iteration sequence converges superlinearly to z.,.

Proof. By Theorem 6.1, the iteration sequence converges to z,. To prove that the
algorithm converges superlinearly to z., first we need to establish that the trust-region
radius cannot be decreased for sufficiently large k, i.e.

(7.1) f(Zr+1) < f(zk) + co[mi(sk) — mi(0)],

- where s is an ex(||sk[ls, || F(z||a)-solution, is satisfied for sufficiently large k. Since F
is continuously differentiable and {z;} converges to z., we have

f(zk + s) = |F(zk) + F'(zk)sk + o(l|sklls)lla
(see (5.6)) and therefore
(7.2) f(zk) = f(zk + k) 2 f(z) = (mi(sk) = llo(llsklls)]]a)-
"Because f(zx) — my(sk) > 0, this implies

flae) = floetse) oy _lo(llsells)lla
f@e) —mi(sk) —° f(zk) — me(sk)

or equivalently

f(ze) = flzetsk) o _ lollsklle)lla llsklls

flze) = mie(se) ~ llsells  f(zx) — mr(sk)

(7.3)

Let us show that the ratio

f(zk) — mi(sk)

llsklls

is bounded away from zero. Since {zx} converges to z., F'(z.) is nonsingular, and
F is continuously differentiable, there exists k. in IN and a positive constant A, such
. that F'(z) is nonsingular for all £ > k, and

(7.4) | F'(zk)dlla > Aslldlls Vd € R® and Yk > k..

Consider (z, &, Bk) for k > k.. Denote by si¥ the Newton step, i.e. the solution of

F'(zi)sy + F(zi) = 0.
First assume that ||sg|| < [|s||. Set

(7.5) ag =
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Since 0 < ai < 1, we have

(1 - @)l F"(z)sy lla

mi(8k) =
= (1= a)llF(ze)lle

(7.6)

" Because ||3k||s = ||sklls and sk is an ex(sk, Bx)-solution of the local model, we have
(7.7) f(zx) = mi(3k) < fzk) = mi(sk) + €x(sk, Br)-
;From (7.6), (7.7) and ||sk|ls = [|3«||s we obtain

1P @)s¥ e Flox) = ma(si)
B T T P

Therefore, since {8;} converges to zero, we obtain from (7.4) and (7.8)

(7.9)

A o flzn) = ma(se)

(7.9) 2 <7 el

for all sufficiently large k, say k > k. for convenience.

Now we assume that ||s [|s < ||sklle. Since mi(sy) = 0 and sx is an ex(sk, Bk)-
- solution of the local model, we have

f(or) = mi(si) 5 [1F(ells _ g

llskllo = lsklls

’

or equivalently

fzk) = ma(sk) o [1F(zk) = Flz)lls _
llsklls - llsklle

Bk

Also, since F’(z.) is nonsingular, we have for sufficiently large k,

(7.10) f(‘”k)”;lelTZk(sk) > .Al(”*)“z’f|s—k|i*“b _ 4

for some 0 < Ai(z.). Because {f(zk)} is decreasing, we have

1F(zk41) = F(z)lla < |F(2k) = F(z4)lla-

On the other hand, for all 2 = 1,---, m, we have

Fi(gk1) = Fi(2s) = VFi(€kr1)T(@h41 — 22)y  Ekt1 € (Tha1, )
or
Fi(zks1) — Fi(za) = VEi(2a)T (2k1 = 22) + [VFi(Er1) = VE (2] (ka1 = 22)-
" This implies that

(7.11) F(zi41) = F(za) = [F'(22) + A(Tet1, 22)(Ths1 — Z4)
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where A(Zk+1,2.) is a matrix whose i** row is [V Fj(€x41) — VFi(.)]T. Since F' is
continuous and F’(z.) is nonsingular, we obtain fron (7.11) and a similar equality for
T that

(7.12) Liflekss = zulle < Loflzi — 2ally

for some constants 0 < L; < L, depending ov z,. We claim that there exists a
constant 0 < M; such that

lzk — .l

(7.13) Tsels

> M.

Assume the contrary. Then

llsklls

7.14 __Msklls  _
(7.14) keN—oo 2k — z.|ls oo
for some N C IN. But we have
(115) lsslls  _ Uoker = 20) = (@ = @)l llowss =zl |
lzk — z«llo lzk — z«lls ek = zalls

- ;From (7.14), (7.15), and the convergence of {3;} to zero, we obtain

loass =zl _
kEN—+oo ||Tk — Tu||b
This contradicts (7.12). ;From (7.10) and (7.13) we obtain

flor = fze+sk) M,
Il sk ls -

(7.16)

for all k > k. such that ||s{|la < ||sk|le. Consequently, we obtain from (7.9) and (7.16)
that

f(zr = f(zk + sk)
lIskle

for all k£ > k.. Inequalities (7.17) and (7.3) imply that for £ > k. we have

(7.17) > M.

for = fant o) o ;1 llolsell)l
fE —me®) = M. sl

On the other hand, there exists an integer, say k. for convenience, such that

| (7.18a)

1 flo(llsliol
7.18b 1l ">
(7.18b) M fsels

for all ¥ > k.. From (7,18a) and (7.18b), we obtain that equality (7.1) holds for
k > k.. Also, since 0 < ¢; < cg, we have

c1 [mi(sk) — f(zk)] 2 e2 [mi(sk) — f(zk)],

16



which, together with (7.1), implies that &% determines an acceptable step with respect
to (zk, Ok, Bk), i-e. pk = 6 for all k > k.. Consequently the trust-region radius 6 is
updated according to the rule

6k < 841 < max(k, callsklls)s
which implies that

(7.19) Ok > Omin VYV k2 k..

We now prove that the algorithm converges g-superlinearly. We have

lim sy = —F'(zx)" ' F(zx) = 0,
k—+oc0

which implies that, say for k > k. for convenience, the Newton step sg is feasible for
the subproblem (LMTR), i.e.

(7.20) llstlls < &-
We have for k > k.

F(zi) + F'(ze)se = F(zi) + F'(zk)(sk - sNY + F'(zg)sy

. (721) — F’((Dk)(Sk _ Siv)

Since s is an €x(sk, B¢)-solution of the local model, we obtain from (7.20) and (7.21)

(7.22) IF"(zk)(sk = sk Mlla < Biemin(llsklls, [| F(2x)lla)

and consequently

A8 F(zi)lla
A8kl F(zk) = F(z4)lla
L.Brllze — zllo

for some constant L, depending on z.. On the other hand we have

‘ llsk = s¥ lla
(7.23)

ININIA

Tk — Tx + Sk

(zk—za+5§) + (sk—sp)
(zk + s —z.) + (sk—s7)
(x;cv+l - T.) + (se—s%)-

Thk+1 — Tx

nwuw

Observe that :z:f:g_1 is the Newton step obtained from zi, an iterate generated by the
ITRA algorithm. Therefore we have

(7.24) lzksr = zallo < l2fn = 2alls + llsi = 5l
;From (7.23) and (7.24), we obtain
(7.25) zke1 = zalls < lzR41 — @allo + LaBellzi — zall-

Consider D, a convex neighborhood of z. contained in the domain of the g-quadratic
convergence of Newton’s method for some constant L (see Dennis and Schnabel
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(1983)[3]). Since {zx} converges to z., there exists an integer , say k. for conve-
nience, such that zx € D, for all kK > k,. Then we have

(7.26) 2ty = zulls < Lollze — zall} ¥V k2> k.
(From (7.25) and (7.26) we obtain

(7.27) lZk+1 = zulle < Lallzk = 2ullf + LoBllzk — zals.
Therefore, because {8} converges to zero, (7.27) implies that

los = 2.l _

k=too ||zg —zulls

(7.28)

i.e. theiteration sequence {z} generated by the algorithm converges g-superlinearly.O

Theorem 7.2. Assume the hypothesis of Theorem 7.1. Then
i)if Br = O(|| F(zk)||) or Be = O(||skl|), the iteration sequence converges g-quadratically
to z., and
ii) if Bx = 0 for sufficiently large k, . is the Newton iterate for the nonlinear equation
F(z) = 0 and consequently the rate of convergence of {zx} to z. is q-quadratic.

Proof. Assume that

(7.29a) Bk = O(IF(zk)lla)
or
(7.29b) B = O([Isklla)-

(From (7.28) we obtain

llsklle

7.30 e e = ],
(7.30) 2 ok — zalls

Since F(z.) = 0 and F is continously differentiable, we have

1 F(zk)lla |1 F(zk) = F(z)lla

7.31 =
(7.31) < Laflok - 2.l

- (From (7.29a) and (7.31) or (7.30) and (7.29b), we obtain
(7.32) Bk = O(|lzk — z«lls)-
Therefore (7.27) becomes

(7.33) l2kt1 = zulls < L*||zk — 2.ff

i.e. theiteration sequence {z} generated by the ITRA algorithm converges ¢g-quadratically
to ..

Now asume that Gy = 0 for £ > k., which means that we are solving the local
model trust-region (LMTR) exactly. The proof is similar to the one given for Theorem
8.1 of El Hallabi and Tapia (1993)[6].0
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8. Summary and Concluding Remarks. A successful trust-region algo-
rithm for approximating the solution of the nonlinear system of equations F(z)=0is
the well-known Levenberg-Marquardt trust-region algorithm. The model trust-region
problem in the Levenberg-Marquardt algorithm has the form

(8.1a) minimize  ||F(z) + F'(z)s|3

(8.1b) subject to  ||s||2 < 4.

where || || denotes the é;-norm on IR™ in (8.1a) and (8.1b). But this globalization
formulation of the problem is not adequate for large nonlinear problems.

A much better formulation of the problem is to consider the optimization problem

(8.2a) minimize  ||F(z) 4+ F'(z)s||norm
(8.2b) subject to  ||s]leo < 6,

where norm can be the ¢; or {o, norm or a convex combination of these norms on IR™.
The subproblem (8.2) can be solved using linear programming techniques and allows
one to take advantage of sparsity patterns in F’(z). This formulation is a special case
of the Inexact Trust-Region Algorithm presented in this paper, where the norms in

/(8.2a) and (8.2b) can be arbitrary norms in R". This special case can be considered
as an SLP algorithm for solving large nonlinear equations.

It is satisfying to us that we have been able to demonstrate that our Inexact
Trust-Region Algorithm converges g-superlinearly under mild assumptions and that
it converges g-quadratically if more accurate minimization, but not exact, of the local
model is performed.
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