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Abstract

We present some numerical experiments with an overlapping additive
Schwarz method for the mixed finite element discretization of second order
elliptic problems in three dimensions, arising from flow models in reservoir
simulation. These problems are characterized by large uncorrelated varia-
tions in the coefficients of the elliptic operator, which make the problems
very ill- conditioned. The results confirm the theoretical bound on the con-
dition number of the iteration operator and show the advantage of domain
decomposition preconditioning as opposed to a simpler but less robust di-
agonal preconditioner.

1 Introduction

Domain decomposition methods are a major area of contemporary research in
numerical analysis of partial differential equations. The discretization of elliptic
problems arising in reservoir simulation and, more generally, in simulation of flow
in porous media, are characterized by large, sparse and very ill-conditioned linear
systems. This is mainly caused by rapid and large changes in the flow coefficients
of the ellipitic operator (in typical rock, changes in permeability of three to five
orders of magnitude over a few feet are not uncommon) as well as by the large scale
of the problem. In this paper, we solve these linear systems with an overlapping
additive Schwarz method (see Dryja and Widlund [6]), which has been proven to be

*Department of Computational and Applied Mathematics, Rice University, Houston, TX
77251. email: pavarino@rice.edu, marcelo@rice.edu.



very parallelizable, scalable and robust for three dimensional Galerkin problems,
see Gropp and Smith [11]. Here, we study the method applied to mixed finite
element problems. We refer to Cowsar (3], Ewing and Wang [8] and Mathew [12],
[13], [14] for the mathematical analysis of this approach.

This paper is organized as follows. In the next section, we introduce the elliptic
problem and its mixed finite element discretization. In Section 3, we briefly recall
the definitions and basic results for overlapping additive Schwarz methods and
then we introduce the algorithm implemented in this work. Some implementation
details are given in Section 4, while the numerical results are presented in Section

5.

2 The Elliptic Problem

Let 2 be a bounded domain in R® with piecewise smooth boundary I'. Given a
3x3 uniformly positive definite matrix A(z) (which represents the flow coefficient
tensor) and f € L?(Q2), we consider the elliptic problem

=V-A(z)Vp = f in Q (1)
Vp-n = 0 on T.
Introducing the new vector unknown u = —A(z)Vp, we can write (1) as
A'lu = -Vp in Q
V.u = f in Q (2)
Vp-n = 0 on T.

The variational formulation of this problem consists in finding (u, p) € Ho(div; Q) x °
L*() such that

-1 . - B 3 0
/QA u- vdr /an vdz =0, Vv € Hy(div; ), (3)

/9 V - ugdz = /Q fedz,  Vge L¥Q), (4)

where Ho(div; 2) is the kernel of the normal trace mapping of H(div; ) into L*(T).
In order to discretize (3) and (4), we introduce a triangulation 7}, of  into elements
of size h satisfying the usual regularity requirements. We also consider a coarse
triangulation of {2 into nonoverlapping subdomains §; of size H, each consisting of a
union of elements of 7,. A standard mixed finite element approximation of (3) and
(4) is obtained by introducing finite dimensional subspaces Wi (Q) C Ho(div; Q)
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and V4(Q) C L*(Q) associated to the triangulation 74: find (us,pr) € Wa(Q) x
Vi(9) such that

/ﬂA“uh - vidz — /Qphv -vidz =0, Vv, € Wi(Q), (5)

/ﬂV ‘Upqrdz = /Q fandz, Yaqn € Vi(92). (6)

We assume that this problem is well posed, i.e. the Babuska-Brezzi inf-sup condi-
tion holds, see Brezzi [2]. For a review of the most important mixed finite element
spaces, see Roberts and Thomas [15]. We eliminate the velocity unknown us by
introducing a discrete gradient operator Vj, : V4(2) — W;(£2) such that

LAﬂwmmyna=-L%v¢ma Yvi € Wi(Q). (7)

Problem (5) and (6) is then equivalent to the problem for the pressure unknown
Ph
a(pnaw) = [ fardz,  Van € (), ®)

where

a(pr, q») /A 'Valpr]Vilgnldz = —/ Vv - (Va[pa])dz.

We recall that by computing the integrals in (7) by special quadrature rules, the re-
sulting linear system is equivalent to a cell- centered finite difference discretization,
see Weiser and Wheeler [17]. We solve this linear system by an iterative method
using an overlapping domain decomposition preconditioner of additive Schwarz

type.

3 Additive Schwarz Methods
3.1 Abstract theory

For a detailed presentation of additive, multiplicative and hybrid Schwarz methods,
see Dryja and Widlund [7] and Dryja, Smith and Widlund [5] and the references
therein. Let V be a finite dimensional Hilbert space and a(-,-) : VXV — R a

selfadjoint, elliptic and bounded bilinear form. We are solving the problem:
find u € V such that
a(w,v) = f(v),  VweV. (9)

The space V can be decomposed into a sum (not necessarily direct) of N +1
subspaces

V=VotVit - +Va,
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where the first space V; is related to a special coarse discretization of the problem.
Let b(-,*) : Vi x V; = R be inner products and T; : V — V; be operators defined
by

bi(Tiu';v) = a’(uvv)v Vv € ‘/i
If b;(u,v) = a(u,v), then T; = P, the a-orthogonal projection onto V;. This choice
corresponds to the use of exact solvers in the algorithm. The additive Schwarz
operator is defined as

T=To+Ti+--+Tn.
The original problem (9) is replaced by the preconditioned problem

Tu=y, (10)
where the right hand side g = Y%, g: = =¥, Tiu is constructed by solving
bi(g,v) = a(u,v) = f(v), Vv € V..

This linear system is solved iteratively (with a method that does not require the
explicit construction of the stiffness matrix, but only its application to a given
vector) and the iteration is usually accelerated by a Krilov space method: if the
original problem is symmetric and positive definite, we can use the conjugate
gradient method, otherwise we can use GMRES or other methods for general
systems, see Freund, Golub and Nachtigal [9]. Dryja and Widlund proved the
following basic

Theorem 1 Let
(i) there ezists a constant Co such that for all u € V there ezists a decomposition
u=YN,u, u; € Vi, such that

N
Z bi(ui,u;) < Cga(u, u);

1=0

(i) there ezists a constant w such that fori=10,1,---,N

a(u,u) < wbi(u,u), Yu € V;;
(i) there ezxist constants €;;,1,7 = 1,---, N, such that
a(ui,u;) < C,’j(l(u,',Ui)1/2(l(Uj,1lj)l/2, Yu; € V;, Vu; € V.

Then T is invertible and

Cola(u,u) < a(Tu,u) < (p(e) + wa(u,u), Yue V.

N

Here p(¢) is the spectral radius of the matriz £ = {€;;}i5;-

4



In the applications, it is particularly important the case where (9) is the discretiza-
tion of an elliptic problem over a domain {2 decomposed into subdomains ;. In
the classic overlapping additive Schwarz method, each §; is extended a certain
number of elements beyond the boundary to a larger subdomain ;. The number
of elements used in this extension determines the overlap of the new decomposition
{9}, which is measured by

§ = min dist(99;\09, 00\ 00).
The space decomposition in the Galerkin case is given by

e V, = space of trilinear basis functions defined on the coarse mesh and satis-
fying the given boundary conditions;

o Vi= ‘/Ithé(Q:)1z =1,---,N.
Dryja and Widlund [6] proved the following
Theorem 2 When ezact solvers are used for the subproblems, the condition num-
ber of the additive Schwarz method satisfies
<(P) < CL+3),
where C is independent of H,h and 6.

Cowsar [3] proved that this result is valid also for problems discretized with mixed
and hybrid finite element methods.

3.2 The algorithm

We now describe an additive Schwarz method with minimal overlap for the discrete
problem (8). For each subdomain {;, let Q] be the extension with minimal overlap
(6 = h). The coarse and local subspaces are

o Vo = {¢ € Vi|¢ = interpolant at the Vj nodes of the trilinear basis functions
of Vg};

o Vi ={¢ € Vi|supp(¢) C %}

Applying the results presented in the previous section, in particular Theorem 7.2
in Cowsar (3], we have

Theorem 3 When ezact solvers are used for the subproblems, the condition num-
ber of this additive Schwarz method satisfies

k(P)<C(1+ %,—),
where the constant C is independent of H and h.
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4 Implementation

We have implemented this overlapping additive Schwarz solver on two distributed
memory architectures of the Intel family, the Caltech Touchstone Delta and the
Hypercube iPSC/860 and on the Connection Machine CM5. In this paper, we
report on results with the Delta.

A single-program-multiple-data (SPMD) programming model is used. Each
(overlapping) subdomain is assigned to one processor. In the preconditioned con-
jugate gradient method running on each processor, the four major computational
kernels are vector updates, inner products, matrix-vector multiply and precondi-
tioning. The vector updates and the inner products are easily parallelized; the
latter require communication for the global sum of the local inner products. Since
we discretize the problem with a 7 point cell-centered finite difference stencil,
the stiffness matrix has only 7 nonzero diagonals and can be stored in local one-
dimensional arrays. Therefore the matrix-vector products required in the conjugate
gradient iteration are trivially parallelizable. The additive Schwarz preconditioner
is naturally parallel. The only nontrivial choice concerns the coarse problem. In
our implementation, we use the simplest choice: we construct the coarse matrix in
parallel, but we store and solve the coarse problem on all of the processors. For a
large number of subdomains, this is not a good choice, since the coarse problem
will then dominate the total cost. In that case, we should use a more elaborate
implementation of the algorithm and solve the coarse problem in parallel or in a
multilevel scheme.

Our fortran implementation is not optimized at any level, since we are interested
in the scaling of the algorithm and not in maximizing its performance.

For an analysis of parallelism in domain decomposition, see Gropp [10]. For
a general discussion of parallelism in iterative and direct methods, see Demmel,
Heath, and Van der Vorst [4].

5 Numerical experiments

We present here the results of some numerical experiments comparing the over-
lapping additive Schwarz method (ASM) introduced in the previous section and a
conjugate gradient method with diagonal preconditioner (JCG). For other experi-
ments with overlapping additive Schwarz methods in three dimensions, see Gropp
and Smith [11], Bjgrstad, Moe and Skogen [1], Skogen [16] and Cowsar (3].

We discretize the elliptic problem (1) with cell-centered finite differences, which
is equivalent to using the lowest order Raviart-Thomas-Nedelec solid rectangular
elements with special quadrature rules, see Weiser and Wheeler [17]. We consider



solid rectangular domains 2. The discrete problem is solved iteratively using a
preconditioned conjugate gradient method (ASM or JCG) with zero initial guess.
The iteration is stopped when the [?-norm of the relative residual is less than 107°.
The condition number of the iteration operator is approximated by the Lanczos
method. The local and coarse problems in the ASM preconditioner are solved
directly with Linpack banded subroutines, which are expensive but very robust.
We are in the process of studying the use of approximate local solvers.

Scaling studies in domain decomposition are usually given by keeping the global
domain size fixed and increasing the number of processors by decreasing the subdo-
main size H/h. In this way, the algorithm is changed for every choice of subdomain
size and it is difficult to discern among the multiple effects of changes in subdo-
main size, aspect ratio and surface to volume effects. Moreover, the limitation
of the local memory of each processor can severely limit the minimum number of
processors used and the global size of the domain.

Another type of scaling consists in keeping the subdomain size H/h fixed and
increasing the number of processors by increasing the number of subdomains and
therefore increasing the size of the global problem. This is the type of scaling we
have chosen in the two following sets of experiments.

(a) "Planar” decomposition with subdomain size 10 x 10 x 10; § is decomposed
into (2,2,1),(4,4,1),---,(16,16,1) subdomains and the global size varies
from 4 - 10% to 256 - 10% unknowns.

(b) ”Cubic” decomposition with subdomain size 13 x 13 x 13; Q is decomposed
into (2,1,1),(4,2,2),---,(10,5,5) subdomains and the global size varies from
4,394 to 549,250 unknowns.

In both cases, we consider the matrix A diagonal and constant on each subdomain,
but varying 4 orders of magnitude across subdomains. More precisely, we ”slice”
the domain in the z-direction and define A = I on one slice and diag(A) =
(102,107, 10) in the next. When the matrix A is the identity (Poisson equation),
diagonal preconditioning is definitely faster for these problem sizes.

The results for set (a) are reported in Table 1 and 2, and in graphic form in
Figure 1, 2, 3, 4. The results for set (b) are reported in Table 3 and 4, and in Figure
5, 6, 7, 8. Each case was run several times to minimize the timing variations due
to factors like machine load, numbers of users, etc.. We have observed significant
variations (up to 10and we report here the minimum in each case. In the tables
and graphs, the total time is the sum of the initialization and iteration times; the
last one (iter) is further split into the times for preconditioning (local + coarse),
matrix multiplication (A-mult), inner products (lip = local inner product and




psum = parallel global sum). We have not timed the vector updates, since they
are completely parallel like the local inner products.

It is clear from the results that JCG does not scale well, while ASM scales
well until the point where the construction and solution of the coarse problem is
dominating. In case (a), this point is around 100 subdomains; in case (b), this
point is not yet reached, due to the larger subdomain size. The cause of the bad
performance of JCG is that the condition number (and therefore the number of
iteration) grows like 1/A2, while for ASM it only grows like H/h. Therefore, most of
the JCG time is spent iterating doing matrix multiply and global sums for the local
inner products, since the preconditioner is completely local (Figure 4 and 8). On
the contrary, the initialization time for ASM is considerable, (due to the expensive
exact factorization of the local problems and to the parallel construction of the
coarse problem, which involves communication) and the iteration time is mostly
spent preconditioning (Figure 3 and 7). Note the almost ideal curve for the local
part of the ASM preconditioner, while the cost of the coarse problem increases
with the number of subdomains. We have run ASM without coarse space in the
planar case with 256 subdomains: the condition number increased to 2,737 and
the number of iterations to 138, for a total running time of 50.67 sec. (iter = 27.15,
local = 23.61, coarse = 0). Therefore the coarse problem is essential if we want a
scalable algorithm. However, we again remark that the naive approach consisting
in solving the coarse problem on each processor, is not adequate for large problems
with many subdomains.

Further studies are being conducted for large heterogeneous problems, the use
of inexact solvers for the subdomain problems and nonsymmetric problems.
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N K # it | tot. time | iter. | local | coarse
4=2x2x1 2494 | 19 9.13 3.24 | 2.52 | 0.38
16=4x4x1 |61.34 | 36 16.27 791 | 6.31 | 0.99
36=6x6x1 | 79.59 | 43 18.08 9.57 | 7.49 | 1.32
64=8x8x1 | 87.92| 47 19.84 10.89 | 8.20 | 1.83

100=10x10x1 | 92.15 | 49 22.15 12.09 | 8.52 | 2.63
144=12x12x1 | 94.54 | 53 26.38 14.29 | 9.20 | 4.06
196=14x14x1 | 95.99 | 56 33.49 17.30 | 9.73 | 6.36
256=16x16x1 | 96.89 | 56 43.71 20.25 | 9.66 | 9.42

Table 1: Results for ASM

: planar decomposition, H/h = 10

N K # it | tot. time | prec. | A-mult | psum | lip
4=2x2x1 216,795 | 1,238 17.34 1.00 | 10.70 | 1.90 | 1.22
16=4x4x1 2,329 | 4237 2.15 | 25.63 | 12.77 | 2.91
36=6x6x1 3,213 | 60.63 2.97 | 35.22 | 19.83 | 4.09
64=8x8x1 4,122 | 80.55 3.83 | 45.20 | 28.22 | 5.18

100=10x10x1 4,734 | 111.13 | 5.05 | 56.85 | 51.03 | 7.08
144=12x12x1 5912 | 135.63 | 6.14 | 69.27 | 60.58 8.43
196=14x14x1 6,846 | 154.72 | 6.90 | 78.38 | 67.90 | 9.47
256=16x16x1 7823 | 174.63 | 7.65 | 88.31 | 75.33 | 10.47

Table 2: Results for JCG: planar decomposition, H/h =10




N K # it | tot. time | iter. | local | coarse
2=2x1x1 8.06 12 25.41 5.19 | 4.36 0.51
16=4x2x2 | 184.09 | 57 62.15 |32.34 | 27.71 | 2.60
54=6x3x3 |254.12 | 73 87.82 |[49.88 | 42.99 | 4.39

128=8x4x4 | 286.78 | 81 96.34 | 57.06 | 47.75 | 6.46
250=10x5x5 | 302.48 | 83 106.23 | 62.68 | 49.00 | 10.59

Table 3: Results for ASM: cubic decomposition, H/h = 13

N # it | tot. time | prec. | A-mult | psum | lip
2=2x1x1 1,092 25.21 1.62 15.62 1.15 | 2.13
16=4x2x2 | 2,323 72.73 3.98 | 46.80 | 12.69 | 5.40
54=6x3x3 | 3,411 | 123.83 | 6.17 | 77.60 | 32.50 | 8.38

128=8x4x4 | 4,232 | 171.17 | 7.63 | 99.32 | 60.80 | 12.13
250=10x5x5 | 5,137 | 220.92 | 9.25 | 126.48 | 85.31 | 14.48

Table 4: Results for JCG: cubic decomposition, H/h = 13
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Figure 3: Timings for ASM
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Figure 7: Timings for ASM
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