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Abstract. We derive a dual-porosity model of multidimensional, multicomponent, three-phase
flow in naturally fractured porous media from the (formal) mathematical theory of homogenization.
Special attention is paid to developing a general approach to incorporating gravitational forces and
effects of mass transfer between phases. In particular, general equations for the interactions between
matrix and fracture systems are obtained under homogenization by a careful scaling of these effects.
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1. Introduction. A naturally fractured porous medium has throughout its
extent a system of interconnected fracture planes dividing the medium into a series of
essentially disjoint blocks of porous rock, called the matrix. It has two main length
scales of interest: the microscopic scale of the fracture thickness (about 10~*m) and
the macroscopic scale of the average distance between fracture planes, i.e., the size
of the matrix blocks (about 1m). Since the entire porous medium is about 102-
103 m across, flow can be mathematically simulated only in some average sense. The
concept of dual-porosity [9, 27, 21] has been used to model the flow of fluids on its
various scales. In this concept, the fracture system is treated as a porous structure
distinct from the usual porous structure of the matrix itself. The fracture system is
highly permeable, but can store very little fluid, while the matrix has the opposite
characteristics. When formulating a dual-porosity model, it is critical to relate fracture
and matrix quantities, since they are defined on different scales.

The problem of modeling the simultaneous flow of multiple components with
change of phase in naturally fractured porous media is considered herein. In this
type of medium, various physical phenomena occur on disparate length scales, so it is
difficult to properly average their effects. Gravitational forces pose special problems.
Mass interchange between phases, which results in phase density (pressure) and phase
saturation changes, significantly complicates the interaction between the matrix and
fracture systems. The main purpose of this paper is to develop a general approach to
incorporating especially gravitational forces and effects of mass interchange between
phases in the dual-porosity concept.

Recently, the mathematical technique of two-scale homogenization [11, 23, 15]
has been exploited to model single phase miscible and two phase, immiscible flow in
naturally fractured porous media [4, 6, 7, 13]. The technique determines the proper
form of the dual-porosity model, including explicit formula for relating microscopically
defined fracture quantities to the macroscopic scale. The resulting macroscopic models
have proven to be quite accurate [5, 3, 14].
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The two-scale homogenization technique averages the detailed microscopic equa-
tions of flow, and yields simpler, macroscopic equations of dual-porosity type. This
is achieved by a careful scaling of the microscopic equations by the size of the matrix
blocks €, and then taking ¢ — 0. However, the derivation of the three-phase model of
compositional flow does not follow from the previously cited works, since mass transfer
between phases has not here-to-for been treated. In this paper an approach based on
chemical and mechanical equilibrium is introduced to derive the dynamical equations
of the interactions between the fractures and the matrix blocks. This approach is re-
lated to that taken by one of the authors in [4]. It is a physically consistent derivation
superior to that given in preliminary form by one of the authors and Douglas in [12].

The paper is organized as follows. In the next section we introduce some impor-
tant notation. We also make some remarks on the scaling of the microscopic model
that is needed to obtain a physically reasonable macroscopic model of the flow. In §3,
the scaled microscopic equations of compositional flow in a naturally fractured porous
medium are presented. In §4, the macroscopic model is stated. Formal homogenization
from the microscopic model to the macroscopic one is carried out in §5.

We close this introduction with a remark on two-scale homogenization. It can
often be made completely mathematically rigorous (in present case by means of “two-
scale convergence”-see, e.g., [6, 1]). However, it is a common practice to use only the
formal theory based on an assumed two-scale asymptotic expansion of the solution [23,
15]. This is done to simplify the homogenization and to gain intuition into the deriva-
tion of the macroscopic model. We use the formal theory, since our primary concern
herein is to find the correct mathematical form of the microscopic and macroscopic
models of the flow.

2. Geometry and Scaling Considerations. We idealize our naturally frac-
tured porous medium by assuming that the fractures form three sets of parallel,
equally-spaced planes (see Fig. 1) so that all matrix blocks are identical, and the
medium has a periodic structure. The homogenization technique starts from the mi-
croscopic model, which consists of the known physical equations of flow on this medium
defined on the microscopic scale. Let ¢ denote the homogenization parameter, which
we interpret to be the diameter of the matrix blocks. For simplicity, ¢ = 1 refers to
the physical medium. We embed this model in a family of similar models describing
flow on a fractured porous medium with matrix blocks that are ¢ times the original
size in any linear direction (see Fig. 2).

—

// Fractures
/ / / Matrix blocks

[ [ [/ /
L [ [/

Fig. 1. The idealized periodic medium {2.
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e=1 e=1/2

Fig. 2. The first two domains in our family of
porous media (the fractures are exaggerated).

Let {2 denote the entire medium, and let 2% and 2, be the fracture and matrix
part of the e-medium, respectively. The fractures give each e-medium a periodic
structure. Each period is congruent to ¢ times the unit reference cell Q. The fracture
part () ; completely surrounds the matrix part @,, (see Fig. 3). For simplicity, let the
centroid of @ be the origin and let @ be connected. The matrix-fracture interface is
indicated by 042,, and the outward unit normal vector to 8£2%, or 8Q,, is denoted
by v.

L) 1

Q

-~

Fig. 3. The unit cell @ and its relation to
a point £ = z% + ¢y in the e-medium £2.

In general, z will denote a position in §2, while y will indicate a position in Q as
measured from its centroid. Thus, z is a variable on the macroscopic scale, while y is
a microscopic variable. The period at a point z will be represented by Q¢(z) with its
centroid at z;(z). As shown in Fig. 3, we define y by z = z€ + ¢y.

The success of our homogenization depends heavily on the fact that the family of
scaled microscopic models we consider below satisfies the following four properties:

(P1) The correct microscopic model of Darcy flow is obtained if € = 1;
(P2) Within the e-medium, if any matrix block QZ, is expanded to unit size Q,,,
the transformed equations reflect Darcy’s law;
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(P3) If the fracture system is in chemical and mechanical equilibrium near a matrix
block, that block’s boundary conditions reflect this equilibrium;

(P4) If the entire system is in chemical and mechanical equilibrium in the vicinity
of a matrix block, there must be agreement between the total mass of each
phase in the matrix block as calculated from the perspective of the matrix
and fracture systems (or, equivalently, from the scaled and unscaled versions
of the governing equations).

As remarked in [4], property (P1) assumes that we stay above the Darcy scale,
so that Darcy’s law governs the system as ¢ = 1. This is well-known to be the correct
physical description of the matrix flow. It is also correct for the fracture flow by the
results of Witherspoon et al. [28]. Property (P2) is necessary to describe the physics
of the flow for ¢ < 1; that is, flow in the e-medium “looks like” flow in the original
system (¢ = 1). Property (P3) says that the matrix recognizes when the fracture
system is in chemical and mechanical equilibrium. We need to scale the governing
equations to obtain (P2); thus, property (P4) is introduced to ensure that our scaling
does not introduce changes in the total mass of any phase.

Since the point in this paper is to understand the flow in the interior of the porous
medium, we ignore outer boundary conditions on 342 in the following sections; likewise,
we ignore external sources/sinks. We also neglect to specify the initial conditions.

3. The Scaled Microscopic Model. In this section we state the microscopic
equations of multiphase flow with mass interchange between phases. See [10, 8, 19,
2, 25, 26] for general references on this subject. The fluid phases will be gas, oil, and
water, and they will be referred to by the subscripts g, o, and w. (A straightforward
generalization holds for more than three phases.) We consider the general case of N
chemical species, or components, each of which may exist in the three phases. Let ¢;,
denote the mass fraction of the ith component in the a-phase, and denote by p, phase
pressure, pa(Cias:** , CNaj Pa) density, pa(Cra,- * ,CNa) Viscosity, s, saturation, and
vy volumetric flow rate, @ = g,0,w and ¢ = 1,---, N. Denote by kro(Sgy S0, Sw) the
relative permeability to flow for the a-phase, and by D;,(v,) the diffusion coefficient
of component ¢ in the a-phase. We assume that only molecular diffusion occurs in the
fractures, so the microscopic fracture diffusion coefficients are of the form D7, ;- The
capillary pressure between phases @ and § is defined by

Peap(8gs 80y Sw) = Pa — Pg3-

Finally, let J;, denote the diffusive flux of the ith component in the a-phase such that
N
ZJiazoa a=g,0,w.
i=1

For medium and fluid properties, we use subscript f for fracture quantities and
m for matrix quantities. Let g be the gravitational, downward-pointing, constant vec-
tor, and let e; denote the standard unit vector in the jth Cartesian direction, with
e3 pointing in the direction of gravity. Denote by ¢} and k7 the fracture porosity
and absolute permeability defined on the microscopic, fracture thickness scale. Then
¢% =~ 1 and k} is very large (often this is assumed to be approximately the fracture
thickness squared divided by 12 [28]). The corresponding matrix quantities are de-
noted by ¢,, and k,,. For simplicity of exposition, we assume that the entire medium
is incompressible, i.e., ?} and ¢,, do not vary with pressure.
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We are now ready to state the microscopic model, which represents the Darcy law,
diffusion and dispersion, equations for the conservation of mass imposed over the entire
medium on the microscopic scale of the fracture thickness (with porosity and perme-
ability discontinuous across the interface 82%,), capillary pressure, and equations for
phase equilibria. The microscopic model is stated in three parts: the equations in the
fractures, the equations in the matrix, and the matrix-fracture interface conditions.

In the fractures, fori =1,---,N, a = g,0,w,and z € .Q;,

*kc
(1a) oGy == (VR = phss)
«@,
(3.1b) Jias = —Pa,sDia ;1 V4 15
. a w w
(3.1c) 157 2 (Cio.Pb.r55.0) + V - Y (5a,105,495, + I5p.0) = O,
B=g f=g
(3.1d) Pego, (85,12 56,1»Sw,1) = Pg.s = Po.1s
(3.1e) Peow,f (85,1 56,5>Sw,1) = Po.f = P 1>
w
(3.1f) Y oshi=1,
B=g

N
(3.1g) Y oy =1.
i=1

(When a given function, such as kr 4, fa, OT pa, has a superscript ¢, it refers to the
argument(s).)

It should be noted that there are more dependent variables than there are equa-
tions. To close the system, we assume that thermodynamic equilibrium exists between
the fluid phases, and that this equilibrium is expressed in a set of N constraints requir-
ing that the phase fugacities f;, are equal for each component. Namely, we use the

following relations to calculate the mole fractions x;q: fori = 1,--- ,N, a = g,0,w,
and z € 2%,
(31h) fiyg(XTg,f’ T ’Xi\lg,f;p;,f) = fi,o(Xio,jv e ,Xi\/o,f;pg,j)»
(3.1i) fi,g(Xig,f’ ) vag,ﬁl’;,f) = fi,w(XTw,fa RN X7Vw,f§Pfu,f),
N
(3.1j) St = WiXarr/ D (0iX5a,1);
j=1

where w; is the molecular weight of the ith-component (we have assumed constant
temperature). It can be seen that there are as many relations as there are dependent
variables: 9 + 9N. The system (3.1) is solvable if proper expressions for the fugac-
ities are given [19, 22]. The 6 + 3N primary unknowns are Xia,fr Sa,p> and pg g
alternatively, since

€ N e
e _ Siay Cja,f
Xia,f - K / AR
w; el

we may choose cj, ; as primary unknowns in place of Xio, -
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We remark that the phase fugacities can be obtained from, for example, the
Peng-Robinson equation of state [20]. A simpler example is to take

Xig,t = Kigo, (DG, 1>P5 1) X50,1>
Xig.r = Kiguw, £ (5, 1+ P% 1) X5w, 1>

where Kig, r and Kigw,s are the phase equilibrium constants.

We turn now to the matrix flow on the e-medium 2%,. The equations are the
same, except for the introduction of some scaling factors € in (3.2a)-(3.2c) below. For
t=1,---,N,a=g,0,w,and z € 2},

k k&
(323) vz,m = _%ﬂ (EVpg,m - p;,mg) ’
a,m
(3'2b) Jfa,m = —Ep;,mea,mvcfa,m’
9 w
(3.20) m g 2 (ComPhmShm) +EV D (€iomPhmBm + Jipm) =0,
B=g B=g
(3‘2d) cha,m(S;,m, sg,m’ sfv,m) = p;,m - Pz,m,
(328) pcow,m(-s;‘m ’ si,m? sfu,m) = Pﬁ,m - pteu,mv
w
(3.2f) D shm=1,
B=g
N
(3.2g) Y am =1,
J=1
(32h) fi,g(Xig,m? ) X?Vg,m; p;,m) = fi,O(Xfo,m’ o ’Xi\fo,m;pz,m)a
(321) fiyg(Xig,m’ T X?Vy,m;p;,m) = fi,w(X;w,m’ ) X?\’w,m;pfu,m)’
N
(32.]) c:':a,m = wina,m/Z(wjx;a,m)'

=1

To satisfy (P3), we need to treat pressure gradient effects on the same footing
as gravitational effects. This is easily done if we introduce the equilibrium pressure
distribution %, : [0,1]Y x R — R by

{ OYa/0z3 = pa(br, -+ ENiYalbas -+ EN; T3))g,
"/)a({la tee ’fN;O) = Po,a)

for some reference pressure pg o at z3 = 0 (as was done in [4]). If we assume that
&1, -+, &N are fixed and that 0p,/0p, > 0, this is solvable by the monotonicity; that

iS, d)a(é.la te 7£N; $3) satisfies

= IT349.

wa(elv"'va;z3) dﬂ-
/p pa(é.l’"'aEN;W)

0,x

The inverse of v, is denoted by ¥;(&,---,€N; - ), again for £, -+, €N fixed. Since

Pa = PalClas ** ,ENaiPa)s Y5 (€1as*** »CNaiPo) is the pseudo-potential [17] plus z3
under the condition that concentrations are constant.
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We define now the continuity equations on the matrix-fracture interface 8/2%,. An

explanation of the form of these equations will follow. For: =1,--- ,N, a = g,0,w,
and z € 0125,
w w
(3.3a) > (o, 105,10, + Tisg) v = Y (€l mPhmVim + Jiom) - Vs
B=g B=g
(33b) cfa,m = Cfa,f’
(330) pix,m = wa(c;a,m? T ’ci\fa,m; '/);l(c;a,j? tee ’ci\/a,f;pg,f)

ety + (€71 = 1)(z3 — 223))-

We also need to define the pressure distribution reference value Z, , on each matrix
block @f,(z). Any reasonable definition results in the macroscopic model presented

later; therefore, let us simply define ref,o O0 Q7,(z) such that, fori = 1,---, N and
a=4g,o0,w,
1
3.4a T = o ¢y (X, t)do(X
( ) a IaQ$n| 8Qs (z) ux,f( ’ ) ( )’
=€ 1 _ '
(34b) Za = Tane ] [¢a1(zia"" ’EfvoJPZ,f(X,t))-X?»] dO'(X),

10Q%.| Ja0s ()

(3.4c) /Q (=) ImPa(Clas s CNai YalClas TN as zi,a + 72 - :ef,a
mlz

47 (Xa - 254))) dX

= / ( )d)mpa(E;aa' o ’EcNa;lwa(Eia" . azfva;zfx + X3)) dX?
Q5n(z

where | - | indicates the volume or area of the given domain.

We close this section with three remarks. Firstly, in (3.1b) and (3.2b), we have
adopted an extension of the single-phase Fick’s law to multiphase flow for the diffusive
fluxes J;,. While the precise constitutive relations for these quantities in the case of
multiphase flow remain unknown at this time, from a practical point of view these
expressions have been in widespread use [10, 18, 24].

Secondly, our four properties are reflected in the microscopic model. If ¢ = 1,
Darcy flow is imposed over the medium in the standard way. Furthermore, Z7 , =0
in this case, so that we have the usual interface conditions; that is, (3.3a), (3.3b), and
(3.3c) enforce continuity of the mass flux, concentrations, and pressures across 9425,,
respectively. Thus (P1) holds.

The matrix equations have been scaled so that (P2) is satisfied. This can be easily
seen by means of a dimensional argument [4, 13] (it will be seen later in §5, as well).

If the fracture system is in chemical and mechanical equilibrium near a block,
then ¢, ; is constant and

£ £ £ .
Pa,s = wa(cla,f’ 9 CNa, 1 T3 + zref,:})

for some constant reference depth z,er3. Then (3.3b) implies that the matrix fracture
interface is in chemical equilibrium, and (3.3c) implies that there

£ _ £ € € € -1 £
Poaym = wa(cla,m’ "y CNa,mi T3 + Tref,3 — Zref,a +e€ (23 - xc,3))‘
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This is a scaled mechanical equilibrium; when expanded to unit size, we have actual
mechanical equilibrium on the interface. Thus (P3) holds. Moreover, in this case,
(3.4) tells us that for z € 942,

Efa = cfa,f = cfa,m = constant,
72 = Tref,3-
Hence, (3.4c) is simply
/ ¢mpa(c§a,m’°" ’cf\la,m;P;,m)dX = ¢mp°‘(ciﬂt»f"” ,C%a,f;Pi,f) dX.
Q5.(z) Q5. ()

This says that if the entire system were in chemical and mechanical equilibrium, then
the amount of mass in the matrix block Q%,(z) from the perspective of the matrix and
fracture systems agree, giving (P4).

Finally, we make a remark on the solvability of (3.4c). Let

Zha = 1o 1)(X3 -
La= &?f(z)(e (X3 — zc3),
Zz,a = Xergi‘:,l(z)(s—l - 1)(X3 - :Ec,3).

By the monotonicity assumption on the densities (i.e., 9po/dpa > 0), there is a unique

ref,o Detween Z; o and Z; 4 solving (3.4c), unless the a-phase fluid is incompressible

(then set Z7; , = 0, since its value is immaterial).

4. The Macroscopic Model. Define the auxiliary functions w;(y),7 = 1,2, 3,
as () s-periodic solutions to the problems

(4.1a) Viw; =0, yedly,
(41b) Vywj V= —€;-v, (NS an,

and a tensor A whose (j,£) component is dw,/dy;. For a function or tensor ¢, define
a local average as

1
?=—= [ ¢(y)dy.
Q| Jq, (

Let
(4.2a) o= 1y,
Q| —] .
.2b — | =S
(4.2b) ks [IQII+A k%,
(42()) Dicx,f = [%I'I'*'Z:I ;a,f’

where [ is the identity tensor. We call ¢4, ks, and D, ¢, respectively, the macroscopic
fracture system porosity, the macroscopic permeability, and the macroscopic diffusion
coefficient of component ¢ in the a-phase. These are the effective macroscopic pa-
rameters derived by homogenization in the next section and defined in terms of the
physically measurable microscopic quantities.
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Homogenization (¢ — 0) of the microscopic model leads to the following macro-
scopic model. The fracture system is defined on 2. The matrix system is defined
on 2 X Qn; that is, at each point z € f2, there is a matrix block Q,, (albeit “in-
finitely small”). In the fracture system, we have the usual equations except for the
introduction of g, ; in (4.3c) and defined in (4.3k). Fori = 1,---,N, a = g,0,w, and
z €,

kfko
(4.3a) Vot = ==L (Vo 1 = p5.59)
Pa,s
(4.3b) Jia,t = =Pa,1Dic,1 V2 1
a w w
(4.3¢c) ¢ 5 D (2,105, 159.0) + Va o > (2 105 05,5 + Jig 1) = Gmis
B=g B=g
(4.3d) Pego.s (5,5, 50,1, Sw,1) = Po.s = Po 1
(4.3¢) Peow,1(,1 50,13 Su,1) = Po s = Puu, 15
w
(4.3f) Y shy=1,
B=g
N
(4.3g) Y Sus=1,
=1
(4.3h) fi,y(X?g,fs Tt aX(I)Vg,f;pg,f) = fi,o(X?o,f, Tt ,X?Vo,f;pg,f)a
(4.31) fisOQg 10 s XN 11 P9 1) = FieOwigs s XN, 13 % )
N
(43.]) c?a,f = wfxga,f/ Z(wjxga,f)’
ji=1
1 0 <
(4.3K) imi= =1 [ Omze D (b )
Q| Jg,, Ot gt
In the matrix system, fori =1,--- ,N, a = g,0,w, and (z,y) € 2 X Qp,
K kO
(443‘) vg,m = _Loﬂ (vyp(c]x,m - p(c)r,mg) )
Ho,m
(44b) Jiooz,m = —pg,m D?a,mvyc?a,ma
a w w
(44C) ¢ma Z(C?ﬁ,mp%,m‘g%,m) + VZJ . Z(c?ﬁ,mp%,mvg,m + sz,@,m) = 0’
B=g B=g
(4.4d) pch,m(sg,m’ sg,ma S?U,m) = Pg,m - pg,ms
(4.4e) pcoW,m(sg,ma 32,m7 S?U,m) = pg,m - p?u,m’
w
4.4f .. =1,
( B,m
B=g
N
(4.4g) > Sam =1,
Jj=1

(4‘4h) fi,y(X(l)g,m, R X(I)Vg,m;pg,m) = fi,o(xtl)o.m? R X?Vo,m; pg,m)’
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(441) fi,g(xgy,m’ R} X(J)V.qvm;pg,m) = fi,w(x(l)w,m’ ) X(}Vw.m;p?u,m)’
N

(4'4j) c?a,m = wiX?a,m/ Z(wjxg'a,m)'
ji=1

The matrix boundary conditions are defined as follows: fori =1,---,N, a = g, 0, w,

and (z,y) € 2 X 0Qm,

(4.5a) Coom (2, 9,8) = ¢y £(2,1),
(4.5b) pgym(z, Y, 1)

0 0 -1/,.0 0o ..0 0
= "/)a(cla,f’ " 9CNa,f ¢a1(c]a,f’ o ’cNa,f’pa,f) - Zref,a + yS)’
where the pressure distribution reference Z0 , is given by

1
(4.5¢) |Q—T o ¢mpa(6(1)a,f, cee, C(J)Va,f; ¢a(c(l)a,f’ e ,c?\;a,f;
m m

0
1 (C(lja Jr7° ’c(])\fa,f;pgt,f) - Zref,a + y3)) dy
= d’mpa(c(l]a,fa Tt acNa,fa pa,f)'

Again, the monotonicity assumption ensures a unique solution to (4.5c) for Zref o
a = g,0,w (for incompressible a-phase fluid, we set Z° ref,a = 0)-

The macroscopic model says that the fracture system, being highly permeable,
quickly comes into chemical and mechanical equilibrium on the fracture spacing scale
locally. This equilibrium is defined in terms of the concentrations and the “chemical
equilibrium pseudo-potential,” and it is reflected in the matrix equations through the
boundary conditions (4.5a) and (4.5b). Note also that mass is conserved between the
matrix and fracture systems, since fluid flow out of the matrix appears in the fractures
through the integral in (4.3k).

5. Formal Homogenization. In this section we consider the formal homoge-
nization from the microscopic model to the macroscopic one. Many of the techniques
have been used in [4, 7, 12, 13, 16, 23, 15]. We recall the asymptotic relations

(5.1) g=zi(z)+ey, V~elV,+V,.

The solutions are then assumed (formally) to have the asymptotic form

(5.2a) (z,8) ~ Zee‘l’ (z,9,1), (z,9)€2xQy,

(5.2b) Ve (z,t) ~ ZEW (z,9,t), (2,9) € 2 X Qm,

for generic functions V5 and ¥7, associated with the fracture and matrix systems,

respectively. Each of the functions \Il§ is assumed to be periodic in y € Q. The
functions we need to expand are p,, sS4, and c¢;,. Functions of \Il'} or V7 can be
expanded by Taylor’s Theorem as

(5.3) P(€°) = p(%) + ¢ (E°)(E5 = €°) + --
= () +ep +eQP 40, €=V o0r U,
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for some ¢!, %, ---. Finally, by the change of variables X = z5(z) + ey,

i) [ ) ax=e [ oleetn) +en)dy

m

~ €3 /Q,,. (¢(€°(z,y))+gs‘soe(w,y))dy,

(5.4b) / PEX)do(X) = ¢ /8 | AEGE) + e)do(o)

L3
m

~ 2 0:1: S ¢ ea: o .
. /aqm (w(E( DRI ,y))d ()

We substitute the formal asymptotic expansions given by (5.1)—(5.4) into (3.1)-
(3.4) and equate coefficients of like powers of ¢. The process is rather long and
somewhat tedious, but it leads to our macroscopic model, which is the set of equations
for the leading terms in the expansions. The derivation of the equations (4.3d)—(4.3j),
(4.4a)-(4.4j), and (4.5a) is straightforward and therefore omitted. (We remark that
the matrix equations are of the usual form because of (5.1) and our scaling, i.e.,
Property (P2)). Special emphasis is placed on obtaining the equations (4.3a)—(4.3c),
(4.3k), and (4.5b)—(4.5c¢).

From the e~!-terms of (3.1a), (3.1b), and (3.3a), and the ¢ ~2-term of (3.1c), we
have

k% kO
(5.5a) vl = —-Lrelg 0 (z,9) € 2 xQy,
“a,f
(5.5b) Ji:xl,j = ‘Pg,foa,nyC?a,/’ (2,y) € 2 X Qy,
(5.5¢) Vy D (b iy + 15 =0, (z,9) € 2xQy,
B=g
(5.5d) D (s ph 05 +I5) v =0, (2,y) € 2 X IQm.

B=g

This, together with (4.3d)—(4.3j), is a steady-state system without sources and gravity.
For a physical meaningful set of data, the periodic solution of this system is clearly

constant in y; that is, fori=1,---,N, a = g,0,w,
(5.62) Ph.s = # s(o,1) only,
(5.6b) sg,f = sg’f(:c,t) only,
(5.6¢) s = c?a'f(:v,t) only,

and then, by (4.3j), (5.5a), and (5.5b),

(5.6d) Xia,s = Xta,7(2,1) only,
(5.6e) vyl =0,
(5.6f) J, =0
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Therefore, all terms containing Vyp), ;, Vys? ;, and V¢, ; drop out in the analysis
below. This considerably simplifies the rest of our calculations.

From the °-terms of (3.1a), (3.1b), and (3.3a), and the e~!-term of (3.1c), we
observe that

k%k°

(5:72)  ofy ==L (Vyph 4 Varl = 40 s0), (3,9) € 2% Qy,
o,/
(5.7b)  Jfas = =P sDias (Vyela s + Vacla ) » (z,y) € 2 xQy,
(5:7¢) Yy D (el sPp,s%,s + Jip.g) = O, (z,y) € 2 x4y,
B=g
w
(5.7d) > (c¥5,1P%, 198, + Jis.s) v =0, (z,9) € 2 X Q.

B=g

Therefore, for ¢ = 1,---, N and with

d k%k?
(5.8a) Fi(z,y,t) = Z (C?a,fp%,f Lrllph o + p%,fD:ﬁ,fc}ﬁ,f)’
ﬁ:g ”ﬁvf
by (5.6), we have
(5.8b) VzFi(:L‘,y,t) =0, (z,y)€ Nx Qy,
S 0 0 k}kg.ﬁ,f 0 0
(5.8¢) VyFi-v=—3 %5 L5 (Vo — £3,59)
B=g Hp.1

+ p%’fD:ﬁ,fvrc?ﬁ,f> ‘v, ((L’, y) € -Q X 6Qm.

Apply (4.1) to see that the solution can be written as

w k*ko apo
fhr.B, B, f
(5.9) Fi(z,y,t) = Z Z (cgﬂ’fpg,f ; f( 5z, " p%,fgj>

j=1p=g Hp, s
0 * ac?ﬁyf
+ 51D, |wiy) +8i(z, ),
j
for some functions 6; of z and ¢, s = 1,---, N. Since only y-derivatives of F}(z,y,t)

will be needed below, 6; need not be evaluated.
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From the £°-term of (3.1c) and the ¢!-term of (3.3a), we see that

* 0 - 0 0
(5.10a) b5 57 2 (cVs,1P8.155,1)
B=g
w
0
+ Vo D (clo,1P5,1%,1 + €l,1Pb, 10,1 + el 105,181 + Tls.p)
B=g
w
+ Vo D (el 100, 10,s + Tip,s)
B=g
=0, (-’E,'y)GQXQf,
w
0 0 0 1 0 0 1
(5.10b) D _(cl,105,1%,1 + €U, 1Pb, 08,1 + clo 0%, 198, 1 + Tl 1) - v
B=g

= Z(c?ﬁ,ml’%,m”g,m + Jﬁ m) Yy (2,9) € 2 X 0Qm.
B=g

Locally average (5.10a) and use the definition of ¢, (4.2a), to obtain

(5.11)

a - 0 0
S5 Z(Ciﬁ,fp%,fsﬁ,f)

|Q|/ Vy Z(Czﬁﬂ’ﬁf“ﬁf+°waﬁf”ﬂf"‘czﬁfpﬁf”BfJszﬁf)d
B=g

Ve (lQI/ Z 'ﬁfpﬁfvﬁf+‘]zﬁf)dy)—0

Qs p=g

We now apply the divergence theorem to the first integral of (5.11), use (5.10b), make
a second application of the divergence theorem, and use (4.4c); that is,

(5.12)
|Q|/ Vy E(Cm 13,181 + Ci8,1PB.19B.1 + Clp,1PB V51 + Tl 1) dy

B=g

1

19l 8q Z(Ctﬁ 1PB.1V8.1 + €6,1Pb 1V8,1 + Cip, 1P, 10B.; + Il 1) - v do(y)
Qs p=g

= / Z tﬁmpﬁmvpm‘f'c],gm) I/da'(y)
"1l Joo,, 2=

1
= _@/Q V.U ) Z(C?ﬁ,mp%,mvg,m + J. 1B m)dy
m B=g
w

1 / a 0 0 0
== [ o> (FmhSmShm)dy
1@l Jg,, "7 0t &

= —qm,i-
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Here, we have used periodicity to see that no contribution arises from the integral
over 0@, the outer boundary of @, and the fact that the outer normal to 9Q; \ 9Q
is opposite to that of 8Q,,. This defines g, ; as in (4.3k).

For the second integral of (5.11), note that, by (5.7a), (5.7b), and (5.9), the jth

component of the vector is

w
(5.13) Y (c%,70%,19B,7.; + I35, 1.5)

B=g
OF; (0 0 k?kgﬁf(apgf 0 ) 0 e ac?ﬁf)
= —— C-’p, bt} ’_p'gj +p’D., 2
ayj ﬁ;g i8,fFB,f /J'%,f 3:7:]' B,f B, fH48,f azj
w 3
ow
=23 (5 )
p=ge=1 \OYi
k* k0 Y, 0c?
0 0 .f ryﬁ)f p’f 0 0 * 1ﬁ9f
x - D: .
(czﬁ,f/’ﬁ,f iy ( Bz, /’B'fgf) +P8.17i6.0 5, )

If we recall definitions (4.2b) and (4.2c) for k; and Dj, ¢, and if we define v, s and
Jia,f by (4.32)—(4.3b), then we have that

w

1 w
(5.14) @/ Z(C?B,f/’%,f”g,f + szﬁ,f) dy = Z(cgﬁ,fp%,f”ﬁ,f + Jig,z)-
Qs p=g B=g

Now (4.3c) follows from (5.11), (5.12), and (5.14).

Finally, we consider the matrix boundary conditions. Clearly, (4.5b) follows from
(3.3c), since (™! —1)(z3—z¢3) = (1—¢)y. As for (4.5c), note that from (3.4a)~(3.4b),
and using (5.4b),

— 0 y — —
ia"cia,fv z—l,---,N,a—g,o,w,

—E€ 1 p— £
Lo~ T W2 (@0 TN PY f) — 255 — €y3] do(y) + O(e).
|0@Qm]| Jagq,,

o4

Since z{ + ey = z,
-0 -1/=0 0 ..0
Za=1/)a (cla"”7CNompa,])—z3’

and (4.5¢) follows from (3.4c) using (5.4a).
This completes our formal derivation of the macroscopic model by homogenization
of the microscopic model.
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