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Abstract

Compiling irregular applications written in a data parallel, HPF-like language presents a challenging
problem of growing importance. A project addressing this problem is the extension of the FORTRAN D
compiler at Rice University to handle such codes. Crenerality and robustness have been major design objectives
throughout this extension, allowing for arbitrary control flow and irregular accesses to multidimensional arrays.
Even though this project is still in progress, it can already handle real-world codes fairly well, such as for
example the non-bonded force calculation routine which is critical to molecular dynamics.

This paper is a first report on the experiences gained from extending the FORTRAN D compiler for irregular
problems. Since the theoretical background underlying this project has already been described to some degree
in previous publications, this paper focuses on the practical aspects of the implementation.

1 Introduction

Several research projects have aimed at providing a “machine independent parallel programming style,” in which
the applications programmer uses a dialect of sequential Fortran and annotates it with high level distribution
information. Examples include High Performance Fortran (HPF) [Hig93], Vienna Fortran [CMZ92], and FoR-
TRAN D [FHK*90]. A prototype FORTRAN D compiler targeting MIMD distributed memory machines has been
under development at Rice University as part of the PARASCOPE programming environment [CCH*88]. For
regular problems, i.e., applications with relatively simple array subscript functions and fixed communication
requirements, this compiler has had considerable successes [HKK*91, Tse93]. However, irregular problems, such
as molecular dynamics or unstructured mesh codes, have proven to be significantly harder to parallelize [SHI1].
Some of the obstacles encountered are:

e Lack of compile time knowledge about where and which data have to be communicated.
e Limited access locality.

e Large communication requirements.

e Poor load balance.

A number of strategies have been developed to address at least a subset of the difficulties mentioned above.
For example, the inspector-ezeculor paradigm allows to message-vectorize low-locality data accesses, even in the
absence of compile time knowledge. First, an “inspection phase” determines what data have to be communicated
within a certain loop and generates a communication schedule. Then, an “execution phase” (repeatedly) performs
the actual computation and uses the communication schedule to exchange data [MSS*88, KMV90]. The PARTI
communication library was designed to simplify schedule generation and schedule based communication [BS90].
PARTI has also been used to implement user-defined irregular distributions [MSSt88] and to provide a hashed

cache for non-local values [MSMB90]. The feasibility of automatically generating inspectors/executors for simple
loop nests has been demonstrated by the ARF [WSBH91] and KaLl [KM91] compilers. Run time iteration graphs
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can assist in improving load balance and access locality when distributing data across processors [PS(:93). Slicing
analysts is a technique for generating inspectors and pre-inspectors for multiple levels of indirection [DSvH93].
The GIVE-N-TAKE framework is a generalization of partial redundancy elimination techniques that can be used
for analyzing data access requirements and for efficient communication placement in the presence of arbitrary
control flow [HK93]. Examples of SIMD specific work are the Commaunication Compiler [Dah90] for the Connec-
tion Machine and the loop flattening transformation to allow efficient execution of loop nests with varying inner
loop bounds [HK92].

These projects have laid important ground work towards compiling irregular problems under a data parallel,
machine independent programming paradigm. However, they tended to be limited either in their generality or in
the degree to which they were implemented and practical difficulties were addressed. What appears to have been
missing so far is a general recipe for transforming an HPF-like program that exhibits complicated array access
and control flow patterns into an executable parallel program.

To overcome this deficiency, the FORTRAN D compiler prototype has been extended to efficiently handle the
programming constructs typical to irregular applications. This is a joint project with the University of Maryland
that is still under way; for example, slicing analysis is currently being implemented at UM, and support for
irregular distributions is still being developed at Rice. However, major parts of it have been completed and
valuable insights have been gained. In particular, communication generation, management of inspectors and
executors, name space transformations, and the handling of variable-sized arrays have been implemented and
proven their effectiveness with real world codes, including a non-bonded force routine taken directly from the
GROMOS Molecular Dynamics program.

This paper is the first detailed account of the techniques and algorithms used in this prototype compiler. Most
of the theory underlying the current implementation, like for example the GiVE-N-TAKE data flow framework
used for communication generation, has already been described elsewhere. Therefore, this paper emphasizes the
practical implementation issues of this project, pointing out technical aspects that may seem minor in theory but
may have a significant impact on the overall design of a robust compiler. The rest of this paper is organized as
follows. Section 2 introduces Molecular Dynamics as an example application that will be used to illustrate the
general compilation process. Section 3 describes the analysis phase of the compiler, and Section 4 covers code
generation. Section 5 concludes with a brief summary.

2 An example application: Molecular dynamics

Molecular dynamics (MD) simulations are computational approaches for studying various kinetic, thermody-
namic, mechanistic, and structural properties of molecules [CM90]. There exist several MD packages (such as
GROMOS, CHARMM, or ARGOS) that are heavily used to simulate biomolecular systems over a broad range
of problem sizes and time scales. However, despite the relative maturity and growing importance of MD, it
still presents computational challenges. These stem mainly from the complexity and irregularity of the underly-
ing physical problem, and from various optimizations that speed up the simulations but further complicate the
computation [CHK*92]. Consequently, parallelizing MD codes by hand is still an active field of research, and
automatic parallelization within a data parallel framework presents an even bigger challenge.

Typical MD programs have a broad range of functionality, and each simulation consists of several different
phases. However, most MD runs perform the bulk of the work (around 90%) in one routine, namely the non-
bonded force (NBF) routine. Figure | shows an abstracted version of a sequential NBF calculation. This kernel
presents the following problems:

Varying inner loop bounds: The NBF intensities decay very rapidly with increasing distance between the
atoms involved. This locality is exploited by using a cutoff radius, Rcu:, beyond which the NBF interactions
are ignored. This reduces the number of atom pairs for which the NBF has to be computed, but due to
the varying density of the simulated molecule, the number of neighbors within R.,; may vary from atom
to atom.

Irregular off-processor accesses: One common mechanism for exploiting data parallelism is to attempt loop
bounds reduction based on the owners of the data computed in each loop. In the NBF kernel, a compiler
may try to reduce the bounds of the outermost loop based on the owners of j, force, f(i), and f(j). Even
though scalars are replicated by default, j and force can be recognized as private and therefore will not
prevent loop bounds reduction in any way. However, for a single iteration (7, p), a compiler using a strict
owner computes rule would consider both the owner of f(7) and the owner of f(j) as participants. If these
are different processors, then this iteration would be executed on both of them.



doi= 1yNatoms
do p = 1, inb(1)
j = partners(i, p)
force = nbforce(z(i), z(J))
f(@) = f(%) + force
£(3) = £(3) — force
enddo
enddo

Figure 1: Sequential version of the NBF kernel. Ngioms is the total number of atoms, inb(i) is the number of
atom pariners that are close enough to atom i to be considered for the NBF calculation. The coordinate and
force arrays, ¢ and f, are shown only one dimensional.

In some cases this behavior might be desired, in particular if computation is cheaper than communication.
In this case, however, an extra call to nbforce() is typically more expensive than communicating an extra
datum. An alternative suggesting itself is therefore to first perform the computation on the owner of f(2),
and then, in case this processor does not own f(§) as well, communicate force to that processor. This,
however, would result in the communication of many small messages, which is typically more expensive then
sending few, large messages. Therefore, if we are willing to assume that floating point addition is associative
and commutative (an assumption that we are already at least partially relying on by parallelizing a code),
we would rather first perform the assignment to each f(j) locally, and then merge all non-owned f(j) back
to their owners at the end of the computation.

Making this kind of decision might be beyond the reach of current compiler technology. However, we would
still like to have at least the option to guide the compiler with a language construct (such as the on_home
directive) to express how the iteration space should be distributed.

Indirect array accesses: The subscript j is itself an array lookup. Consequently, z(j) and f(j) represent
indirect array accesses. Since j is not known at compile time, this constitutes another reason to not apply
the owner computes rule for the assignment to f(§). Furthermore, it complicates message vectorization,
i.e., the combination of communicated data into few, large messages. There exist communication libraries
to handle these cases effectively, as for example the PARTI communication routines. However, the compiler
still has to first recognize the need for calling such libraries, then it has to generate all necessary parameters
and call a suitable routine.

To illustrate how the compiler handles such a code in practice, we will use the Fortran D program nbf
in Figure 2 as a running example. This program is a condensed version of the 340-line GROMOS subroutine
nonbal.f, enhanced with some data initialization. Although this program is very simplified, it still presents
similar difficulties as the original code with respect to the compiler. FORTRAN D directives (regularly) distribute
pairlist, positions, and forces, and they override strict owner computes in the NBF calculation itself via an
on_home directive. The program generated by the FORTRAN D compiler is shown in Figure 3. This code, linked
together with the PARTI communication library and a memory allocation library, can be run on a message
passing architecture after compiling with the machine’s native compiler. The nbf program, annotated with
output statements not shown here, has been compiled and run successfully on both a Sun workstation and, after
feeding it through the FORTRAN D compiler, on an iPSC /860 hypercube.

3 Analysis phase

The FORTRAN D compiler can be divided into two phases: the analysis phase and the code generation phase.
The analysis phase parses the program, builds internal data structures, and analyses the program, but does not
modify it yet. The code generation phase performs the actual code transformation by modifying the Abstract
Syntax Tree (AST) and generates the final program by unparsing the AST. This implies that the same AST can
be used for both source and target language. On the one hand, this strict separation might in some cases slightly
increase intermediate storage and run time requirements. On the other hand, not touching the source code until
achieving full knowledge about the transformation to be done lengthens the validity of intermediate analyses,




program nbf

integer i, j, p, natoms, maxp, timesteps

parameter (natoms = 8000, maxp = 200, timesteps = 10)
integer inb(natoms), partners(natoms, maxp)

real force

real x(natoms), f(natoms)

decomposition atomD(natoms), partnersD(natoms, maxp)
align inb, x, f with atomD

align partners with partnersD

distribute atomD(block)

distribute partnersD(block, :)

aaaaan

Q

Generate some test data
do i = 1, natoms
x(i) = i
inb(i) = maxp
do p =1, inb(i)
partners(i, p) = mod(i + p - 1, natoms) + 1
enddo
enddo

C Initialize forces
do i = 1, natoms
f(i) =0
enddo

po1s

C Do the actual computation h ————-!
do t = 1, timesteps '_-22...:
[o] execute (i) on_home f(i) —

16
do i = 1, natoms j
dop =1, inb(i) 3= 17
j = partners(i, p) '.-21.-:
force = (x(i) = x(j§))**(=6) )

£(i) = £(i) + force
£(j) = £(j) - force
enddo
enddo
enddo 20

end

Figure 2: FORTRAN D version of nbf program and corresponding flow graph GG. The loop nesting level in G
increases from left to right. Node 0 is the root of G. Header nodes have their children attached to the right.
Synthetic nodes, which do not directly correspond to statements in nbf, are dashed.

such as the control flow graph (CFG), static single assignment information (SSA), value numbers, and their
links into the AST. This potentially decreases the need for reanalysis after intermittent code transformations,
which in turn can speed up the overall compilation process. Most importantly, however, the clean separation
enhances modularity of the compiler itself. This benefits the development and debugging process, and it allows
easy integration into an interactive environment where the user wishes to make queries about a program without
actually modifyingit. The rest of this section discusses the analysis phase in more detail, followed by a description
of the code generation phase in the next section.

3.1 Symbolic analysis

Even though the FORTRAN D compiler can be used in batch mode as a stand alone tool, it is part of the
PARASCOPE programming environment. Therefore the compiler not only can be used within PARASCOPE, but
it also takes advantage of the information and utilities provided by this environment. Besides basic facilities
such as file [/O, lexing, parsing, and symbol table management, the environment also provides more advanced
features, such as a framework for deriving interprocedural symbolic analysis. One simple example of the use of
symbolic analysis in the nbf program is the proper handling of the symbolic constants natoms and maxp in array
declarations, FORTRAN D directives, and loop bounds. Of particular importance with respect to the algorithms
presented in this paper is the following information derived from a FORTRAN D program, P, that is handed to
the compiler.



The control flow graph, (¢ := (N, E), with nodes N and edges E. Among other functions, (7 serves as a
basis for the CiiVE-N-TAKE data flow analysis framework and therefore has to meet certain criteria, such
as reducibility and lack of critical edges (i.e., edges from a node with multiple successors to a node with
multiple predecessors). Furthermore, (7 has to be annotated with Tarjan interval information to guide the
data flow phase. Figure 2 shows G for nbf; note that the current implementation generates one node for
each statement instead of summarizing information for basic blocks.

Value numbers, VN := { vn | e an expression in P, vn = val(e), the value number of e.}. Value numbers
are computed for both constant and non-constant expressions and are closely related to the SSA infor-
mation [Hav93]. They provide for example information about whether an expression is an immediate or
auxiliary induction variable or a linear combination thereof. Each array reference’s value number is a pair
(state,(subl,...,subm"k)), where state represents the internal state of the array that gets altered with
every modification of the array, and sub; is the value number of the i-th subscript. This means that the
array is viewed as a scalar with respect to modifications, but the actual subscripts are taken into account
when comparing array expressions.

3.2 The regular part of Fortran D compiler

Just as there are distinct analysis and code generation phases, there is also a fairly clean separation between
those parts of the compiler that apply to both regular and irregular features of an application, and those parts
that are specific to either kind. For brevity, the phases specific to irregular applications will be referred to as the
“irregular compiler,” whereas the rest of the FORTRAN D compiler that applies to all or just regular programs
will be called the “regular compiler.”

The irregular compiler performs its analysis after the regular compiler has performed interprocedural analysis,
but before the regular compiler’s intraprocedural analysis. An important interprocedural information provided
by the regular compiler is reaching decomposition analysis, which propagates FORTRAN D specific decomposition
information from callers to callees [HHKT92].

3.3 The data flow universe for communication analysis

In preparation for analyzing the communication requirements of P, the irregular compiler first determines IREFS,
the set of both regular and irregular references to arrays that are accessed irregularly somewhere, and then
computes KEYS, the data flow universe. Crucial to this phase is symbolic analysis, which can for example
determine the equality of expressions even if they are syntactically different, across loops and other control flow
constructs. Symbolic analysis is also used to determine whether a subscript is irregular or not; the current
heuristic classifies all subscripts that are not linear combinations of induction variables as irregular.

More formally, the following information is computed.

IARRS := {z |z is referenced irregularly in P.}
IREFS {z(subs) | = € IARRS, subs = (s1, ..., 5r) a subscript list.}

SUBS := {s|3=z(...,s,...) €eIREFS.}
SUB_VALS := {vn|wvn is value number of some subscript s € SUBS.}
KEYS := {(st,vns,dist,iset) | for some reference z(subs) € IREFS, it is

st := symbol table index of z,
vns := value number of subscript list subs,
dist := distribution of z at point of reference,

iset := computational distribution of reference (e.g., an iteration set).

}
REFS_KEY(key) := set of references that match key € KEYS.
REFS_LKEYS := set of REFS_LKEYs.

Note that to allow irregular references to multidimensional arrays, SUB.VALS contains value numbers of in-
dividual subscripts, whereas KEYS considers value numbers of whole subscript lists. Furthermore, in order to
determine when messages can be combined, or when buffered data become stale because of non-local assignments,
etc., the data flow universe must be based on the comparison of actual memory locations, not values. Therefore,




KEYS does not use value numbers for classifying data arrays, but instead their symbol table index. This is
equivalent to syntactic comparisons plus aliasing and formal/actual parameter resolutions.

In nbf, the j’s are considered irregular subscripts, resulting in [ARRS = {x,£}. Therefore, all references to
x and £ are collected to build the data-flow universe.

3.4 Communication analysis

The communication model used by the FORTRAN D compiler is that each datum, d, has an owner, owner(d). A
processor p referencing d does either own d, in which case p is assumed to have a valid copy of d at the point of
reference, or it does not own d. In the latter case, p might either have to receive d from owner(d), which together
with the corresponding send of owner(d) is considered a global READ operation, or p might still have buffered
a valid copy of d. An option not considered here is that p might receive d from any processor that has a valid
copy of d [GS93].

Since the owner computes rule is not strictly applied, any processor p may define d. If p # owner(d) and d
will be referenced by some processor ¢, ¢ # p, then p has send d to owner(d) after defining d. This, together
with the corresponding receive of owner(d), is considered a global WRITE. Under these constraints, the objective
of communication placement is to communicate as little and as infrequently as possible. Small messages are
combined into larger ones, and data buffered locally (due to proceeding READs or local definitions) are reused as
long as they are valid.

The data flow framework uses a binary lattice and represents its variables as bit vectors, one bit for each
key € KEYS. The position within the bit vector constitutes the id for each key. In the following, the “id of ref”
denotes the id assigned to the key matching a reference ref. Similarly, the definition, use, etc. of an id refers to
the definition, use, etc. of a reference with the key corresponding to id.

The following information is computed for each node n € N:

REF(n) := {id | n references id},
DEF(n) := {id|n defines id},
ADD(n) := {id|n adds to id},
MULT(n) := {id|n multiplies to id},
RED(n) := ADD(n)U MULT(n),
IND(n) := {id|n redefines the subscript dependence set of id}.

Here the subscript dependence set refers to the data that a subscript depends on. This can be thought of
as the set of data that are referenced when inspecting for a subscript; a more detailed discussion can be found
elsewhere [DSvH93]. For example, a subscript that is itself an indirection array lookup depends on the indirection
array. In nbf, it is x(j) € REF(18), IND(6), and £(j) € REF(20), DEF(20), ADD(20), RED(20), IND(6); there
are additional entries for the x(i)’s and £(i)’s.

Based on this local information, several instances of GIVE-N-TAKE are solved, one instance for each kind of
communication. The communication types considered are global READs (or GATHERsS), global WRITEs (SCAT-
TERs), and global ADD and MULT reductions (SCATTER-ADD, SCATTER_MULT). The extension towards
additional reduction types is straightforward. Separating SEND and RECYV operations for each type of commu-
nication can expose opportunities for hiding communication latencies by overlaying them with computation. The
GIVE-N-TAKE mechanism accommodates that by providing both an EAGER and a LAzY solution for all com-
munication instances, where one solution indicates where to place the SENDs and the other computes where to
place RECVs. However, the PARTI communication library generates SENDs and RECVs internally and presents
them as monolithic entity; i.e., a single PARTI call spawns off SEND/RECYV pairs.

Each instance is initialized by assigning bit vector values to the variables TAKE;ni;, STEALjni¢, and GIVE p;;
for each node n € N. For example, the READ instance is initialized as follows.

READ.TAKE;nit(n) := REF(n)\ RED(n), // READ what is referenced and not reduced
READ.STEAL;nit(n) := IND(n)UDEF(n)°, // Redefining data or indirection arrays blocks READs
READ.GIVE,,ie(n) := DEF(n)". // READs come “for free” from local definitions

Here DEF(n)° and DEF(n)" are the data that are either partially or fully enclosed by references in DEF(n)
[HKK*92]. For example, since i and j cannot proven to be disjoint subscript ranges in nbf, it is {x(i)}° =

{x(1),x(3)}-



After initialization, each instance is solved as either a FORWARD G1vE-N-TAKE problem, which places com-
munication before computation (as needed for READs), or as a BACKWARD problem, which places communication
after computation (WRITEs and reductions). The results of the data flow analysis reside for each node n € N
in RES;n(n), which contains all references that have to be communicated on entry to n, and RES,u:(n), on
exit from n. The actual data flow equations, formal correctness and optimality criteria, etc., are described
elsewhere [HK93].

A minor, but in practice interesting point is that in some cases communication might be placed at synthetic
nodes, i.e., nodes that correspond to not-yet existing basic blocks. For example, if there is an IF-THEN without a
matching ELSE, then breaking critical edges generates a synthetic node corresponding to an empty ELSE branch.
This requires in some cases creating new basic blocks during code generation. However, this can sometimes be
avoided at no extra run time cost by shifting communication from synthetic nodes to other nodes. For example,
if a loop is guarded by a condition, then synthetic nodes are introduced for the ELSE branch and between the
loop and the merge after the condition; any subsequent READ that is blocked by the loop will be placed on both
of these synthetic nodes instead of the merge after the guard. To take advantage of such opportunities for code
simplification, an additional data flow phase post-processes the RES;n/out results into new variables, GEN;n/out,
that try to move results to non-synthetic nodes and to minimize the need for additional basic blocks.

Another interesting problem is that while global READs are shifted up and global WRITEs are shifted down,
they should not be moved past each other if they communicate non-disjoint data. This can be satisfied by first
solving the READ problem, and then initializing the WRITE problem as follows:

WRITE. TAKE;.;; := DEF\RED,
WRITE.STEALinit := (READ.GEN;, UREFURED)’,
WRITE.GIVE;ni: = 0.

As an example for a reduction initialization, we have

ADD.TAKE;ni: = ADD,
ADD.STEALini: = (READ.GEN;, U (REF \ ADD))°,
ADD.GIVE;n:: = 0.

In nbf, it is for example x(j) € READ.{TAKE;nit(18), STEALinit(3), STEAL;nit(6), RES{29°(8), GEN;?°"(9)},
and 2(3) € ADD{TAKEnit(20), STEALinie(6), STEALnie(10), RESES"(23), GENS**"(12)}.

3.5 Inspectors

Inspectors have to be generated whenever runtime resolution is required for determining which data have to be
communicated. In the current prototype, inspector generation and placement are sufficiently robust to handle
simple cases like the NBF kernel, but overall they are still done in an ad hoc fashion. In particular, only one
inspector is allowed per subscript value number, and inspectors are hoisted out of loops only as far as the
communications are moved out; both assumptions might result in unnecessary re-inspections.

The set of inspectors is computed as follows. For each vn € SUB_VALS, let target(vn) be the least common
ancestor of all nodes n € N at which communication involving a subscript with value number vn is generated. Let
INSP(n) be the set of all subscripts s for which target(val(s)) = n. Let INSPS := {(n, INSP(n)) | INSP(n) # 0};
in nbt, it is INSPS = {(9, {i D}

3.6 Executors

Executors are slightly modified versions of regions in P that contain irregular references. Part of the modifications
is to replace irregular subscripts by references to trace arrays [DSvH93]. These arrays contain traces of the
subscripts encountered during inspection, localized from global to local name space. Trace arrays are one of
several possible options to perform the name space conversion. In the presence of high subscript reuse, for
example, hash tables would be a more complicated but also more space efficient alternative.

The use of trace arrays requires insertion of counters for indexing. For generating code to initialize and
increment counters and for eliminating duplicate counters, executors are collected as follows. For each s € SUBS,
let limit(s) = n € N s.t. n corresponds to the beginning of the inspector for s. This node may for example
be the header of the outermost loop enclosing s that will be copied into the inspector. Let EXEC(n) be the
set of all subscripts s with limit(s) = n. Let EXECS := {(n, EXEC(n)) | EXEC(n) # 0}; in nbf, it is EXECS
= {(14, j’s in nodes 18 and 20)}.



4 Code generation phase

After the compiler has finished the analysis phase, the AST is modified to transform the FORTRAN D program
into a message passing node program.

4.1 The regular compiler

An important transformation performed by the regular compiler is the conversion of global name space references
to distributed arrays into local name space references to local arrays. In most cases, this can be achieved by loop
bounds reduction, which is also a convenient and efficient way to exploit data parallelism. In the nfb code, this
transformation is applied to all i loops, whose upper bound is reduced from natoms (= 8000) to 2000. This
corresponds to using four processors, which is the default but can be overridden by initializing n$proc in the
FORTRAN D input program. Note how the explicit use of induction variables in reduced loops may necessitate
the need for adding a processor dependent offset. For example, in the initialization loop of£$0 (= my$p*2000)
is added to i before using it to initialize x(i).

An additional task currently performed by the regular compiler is the communication generation for regular
subscripts (none such communication is needed in nbf). This process does not make use of the GIVE-N-TAKE
analysis yet, one of the reasons being that GIVE-N-TAKE so far does not include dependence analysis. That alone
could be changed relatively easily [HK93], but there are also other issues that deserve special attention when
generating regular communications from the information provided by GivE-N-TAKE. For example, message
tags have to be generated for matching separate sends and receives, which might require the construction of
SEND/RECYV equivalence classes in case of complicated control flow. Furthermore, if the analysis indicates that
data are sent together but received separately, data have to be grouped accordingly.

4.2 Inspectors
The inspector code has to perform the following tasks:

1. If the size of a subscript trace is not known at compile time, then a counting slice has to be generated and
the trace array has to be allocated. A significant implication of this scenario is the need for dynamically
allocatable memory. For example, in nbf the size of the pairlist storing all pairs of atoms within Ry
depends on the physical properties of the molecule to be simulated and is not known at compile time.
Therefore, a counting slice is generated to compute j$ent (= Z§2$° inb(i)) and to allocate trace arrays
for both the global (j$glob) and local (j$1loc) name space.

2. Collect subscript traces, in global name space.

3. Generate PARTI calls to reglocalize() for computing a communication schedule (x$sched), for counting
the number of non-local elements (x$offsize), and for transforming the subscript trace from global to

local name space.

4. Resize the data arrays subscripted irregularly (x and £) to accommodate the non-local data, as computed
by reglocalize().

Apart from generating the code slices for computing the subscript traces (which in the current prototype
is only implemented for relatively simple cases without complicated internal control flow), most of the code
generation is relatively straightforward. A few implementation details are given below.

e For each inspector INSP(n) € INSPS, let INSP_VNS be the set of value numbers of subscripts inspected.
To avoid duplicate code and storage, only one subscript trace will be generated for each vn € INSP_VNS.
For example, in nbf the subscript j has the same value number in x(j) and £(j), and therefore only one
trace will be collected.

e When merging the code for generating multiple traces (which is not an issue in nbf), transformations such
as loop fusion are applied if possible.

e As with all variables generated by the compiler (indicated by a $ as part of the name), the identifiers for
schedule, subscript trace, etc. must not collide with earlier declarations. Furthermore, on the one hand
they should resemble the variables they are related to in the original program, and on the other hand,
they should be reused as much as possible. For example, in nbf the communication schedule x$sched and
off-processor count x$offsize are used for both x and £.



o Another issue related to compiler generated variables is the use of trace indices and counters providing the
trace size for localization. A variable holding the size of the trace is needed if the number of iterations of
the slice is not known. An auxiliary induction variable for indexing the trace array is required in case the
loop is nested or not in normal form. The slice for j$loc needs both, since the size of the pairlist is not
known, and since the slice is a nested loop; j$cnt is used to serve both purposes.

e Comments are generated to delineate the generated inspectors and the subscripts they are inspecting
(similarly for counting slices, executors, and buffer initializations). This kind of information is not only
useful for making the generated output more readable, but also for later debugging support. Subscripts
occurring more than once are annotated with a count in brackets.

4.3 Communication statements.

For each node n € N, the GEN sets of the different GiVE-N-TAKE instances indicate the communication to
be generated. Here we have to distinguish between communication to be prepended (indicated by GEN;, for a
FORWARD problem and GEN,y; for a BACKWARD problem) and communication to be appended (GEN,y: and
GEN;,, respectively). Furthermore, if we wish to generate separate SENDs and RECVs, then we have to consider
both GEN®#9°" and GEN'®*¥. For example, the SENDs to be prepended to n are given by the communicatlion set

PREPEND send(n) = READ.GEN;;?*"(n) U WRITE.GEN'®¥ (n) U ADD.GEN %Y (n) U MuULT.GEN!%¥ (n).

For each generated communication set, the data to be actually communicated are indicated by the st and vn
components of the keys contained in the bit vector, where st indicates the data array and vn gives a range of
subscripts to communicate. For irregular communications, vn is annotated with the name of the communication
schedule to use. Since irregular references are communicated using the PARTI routines, SENDs and RECVs are
not separated, and just the EAGER solution is used for placing communication.

In nbf, the generated communications are PREPEND(9) = REaD({x(j)}) and ApPEND(12) = ADD({£(j)}).
This translates into an fgather of x(j$loc(1:j$cnt)) before the force initialization and an fscatter_add of
£(j$loc(1:j$cnt)) after the executor.

An optimization that is not implemented yet but at least conceptionally fairly straightforward is to use
incremental schedules for pruning messages in case at least some of the data covered by a reference are already
locally available [DPSM91, HKK*92]. The information about what data are already available is stored for each
node n € N in READ.GIVEN(n).

4.4 Reduction initialization

An issue specific to reduction communications (like ADD and MULT) is the need for initializing buffer space for
non-local data (assigning 0 for ADD, 1 for MULT). The heuristic used for placing this initialization code for a
reduction instance of GIVE-N-TAKE is as follows. Let the “local reduction” of a node n € N be the variables
that are affected by a reduction operation in n itself or in one of the children of n (i.e., in a statement in a loop
headed by n). The local reduction is computed in the GIVE-N-TAKE variable TAKE(n). Let TAKEpeader(n) be
the local reduction of the header node of the loop directly enclosing n, if n is in a loop, let it be 0 otherwise. The
set of data for which initialization code should be prepended to n is then given by TAKE(n) \ TAKEheader(n)-

In the nbf example, it is £(j) € ADD.TAKE(20). However, since £(j) is not “stolen” within the enclosing
p loop, it is also £(j) € ADD.TAKE hader(20) = ADD.TAKE(16). Similarly, £(3) is in the local reduction sets
of the headers of the enclosing i and t loops. The t loop is outermost, therefore £(2001:2000+x$offsize) is
initialized there.

4.5 Executors

The major tasks when generating executors are the conversion of irregular subscripts to trace array lookups, and
related to that the generation of counters (the subsubscripts) to index the trace arrays. The current strategy for
generating subsubscripts is as follows. Pick an executor EXEC(n) from EXECS, and a subscript s € EXEC(n).
If n is the header of a loop in normal form and s is enclosed by n directly, then use the induction variable of n as
subsubscript. Otherwise, an explicit counter is needed. If there already exists a counter at n for the loop directly
enclosing s, then use it as subsubscript, otherwise generate a new one to use as subsubscript. After determining
the subsubscript, the value number of s determines which trace array to use, and the subscript can be converted.
Note that we might need several counters for one executor, for example for different, imperfectly nested loops, or
for references at different loop nesting levels. Note also that in order to allow the use of such indexing variables



program nbf

integer i, j, p, natoms, maxp, timesteps

parameter (natoms = 8000, maxp = 200, timesteps = 10)
integer inb(2000), partners(2000, maxp)

real force

C ==<< Fortran D variable declarations >>--
common /FortD/ n$p, my$p, my$pid
integer n$p, my$p, numnodes, off$0

C --<< Fortran D/irreg variable declarations >>--
integer i$wrk(1000000)
integer x$sched, x$offsize, j¥cnt, i$, $init, $newsize,
. i$type, ialloc, iresize, f$type, falloc, fresize,
. j$glob$ind, j$glob$size, j$loc$ind, j$loc$size, x$ind,
. x$size, f$ind, f$size
parameter (if§type = 1, f$type = 2)
real f$wrk(1000000)

C --<< END Fortran D/irreg variable declarations >>--

C --<< Fortran D initializations >>--
call iputsize(1000000, i$wrk)
call fputsize(1000000, f$wrk)
x$size = 2000
x$ind = ialloc(f$type, x$size) - 1
f$size = 2000
f$ind = ialloc(f$type, f$size) - 1
n$p = numnodes()
if (n$p .ne. 4) stop
my$p = mynode()
off$0 = my$p * 2000

C Generate some test data

do i =1, 2000
i$glo = i + off$0
f$urk(x$ind + i) = i$glo
inb(i) = maxp
do p =1, inb(i)

partners(i, p) = mod(i$glo + p - 1, natoms) + 1

enddo

enddo

C ==<< Inspector for [3*]j$loc(1:j$cnt) >>--
C =--<< Counting slice for j$cnt >>--

j$cnt = 1

do i = 1, 2000

j$cnt = j$cnt + inb(di)

enddo

j$glob$size = j$cnt

j$glob$ind = ialloc(i$type, j$glob$size) - 1

j$loc$size = j$cnt

j$loc$ind = ialloc(i$type, j$loc$size) - 1
C =--<< END Counting slice >>--

j$cnt =1
do i = 1, 2000
do p = 1, inb(d)
j = partners(i, p)
i$wrk(j$glob$ind + j$cnt) = j
j$ent = j$cnt + 1
enddo
enddo
call reglocalize(1l, 8000, x$sched, i$wrk(j$glob$ind + 1),

. i$wrk(j$loc$ind + 1), j$cnt, x$offsize, 2000, 1)

$newsize = 2000 + x$offsize

x$ind = iresize(f$type, x$ind + 1, x$size, $newsize) - 1
x$size = $newsize

$newsize = 2000 + x$offsize

f$ind = iresize(f$type, f$ind + 1, f$size, $newsize) - 1
f$size = $newsize

==<< END Inspector >>--

call fgather(f$wrk(x$ind + 2001), f$urk(x$ind + 1),

. x$sched)

Initialize forces

do i =1, 2000
f3wrk(£f$ind + i) = 0

enddo

--<< fscatter_add initialize {f(j$loc(1:j$cnt))} >>--
do $init = 2001, 2000 + x$offsize
f3wrk(£f$ind + $init) =0
enddo
Do the actual computation
do t = 1, timesteps
--<< Executor for x(j), [2#]1£(j) >>--
i$ =1
do i =1, 2000
do p =1, inb(i)
j = partners(i, p)
force = (f$urk(x$ind + i) - f$wrk(x$ind +

. igwrk(j$loc$ind + i$))) *x (-6)

f3wrk(f$ind + i) = f3wrk(£f$ind + i) + force
f3urk(f$ind + i$wrk(j$loc$ind + i$)) =

. f$wrk(f$ind + i$wrk(j$loc$ind + i$)) - force

i$ = ig + 1
enddo
enddo

enddo
call fscatter_add(f$wrk(£$ind + 2001), f$wrk(£$ind + 1),

. x$sched)

call free(i$type, j$glob$ind + 1, j$glob$size)
call free(i$type, j$loc$ind + 1, j$loc$size)
call free(f$type, x$ind + 1, x$size)

call free(f$type, £$ind + 1, f$size)

end

Figure 3: NBF kernel, output of FORTRAN D compiler.

within loop headers, they have to be initialized to 1 instead of 0. This in turn prohibits incrementing them at the
beginning of the loop body; instead they have to be incremented at the end, which complicates code generation

especially for loops with internal control flow.

In nbf, the executor for x(j) and £(j) needs a counter, i$, because the references are nested two levels deep
within the executor. The value number of j is the same throughout the executor and maps to the trace array
j$loc. Consequently, x(j) and £(j) are converted to x(j$loc(i$)) and £(j$loc(i$)), respectively.

4.6 Dynamically allocated arrays

Dynamic array allocation is handled by calls to external library routines, such as ialloc(), iresize(), and
free(). These routines manage space provided by some large work arrays and provide offsets into them for each
allocated array. In the current prototype, the work arrays are of fixed, predetermined size; this rather crude
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scheme could be replaced by a more advanced library that does not require fixed size work arrays. Another
option not addressed here is to distinguish between a copying and a non-copying resizing operation.

In nbf, work arrays are the integer array i$wrk and the floating point array f$wrk. A reference like
x(j$loc(i$)) becomes f$wrk(x$ind+i$wrk(j$loc$ind+i$)); note how this explicit array arithmetic exposes
the need for other classical optimizations, like common subexpression elimination or loop invariant code motion.
A separate pass, which can also be used as a stand alone tool, converts all dynamic array references into work
array references. It also introduces some additional bookkeeping code, for example to store the size of each"
dynamic array (the variables suffixed by $size). Separating explicit dynamic memory handling from the rest
of code generation sometimes results in suboptimal code; for example, there are some redundant assignments to
size variables if the same size is used for multiple arrays. This, however, is just one of several examples where
the compiler relies on later, fairly well understood optimizations, in order to achieve the modularity necessary
for efficient use of high level transformations. Another example is the assignment to j, which became dead due
to subscript conversion.

5 Summary and conclusions

Compiling irregular applications in a data parallel framework presents a challenging problem of growing im-
portance. Previous works have addressed some of the arising problems [WSBH91, KM91, CHK*92, HKK*92,
DSvH93, HK93], but very little experience has been gained so far with the compilation of large codes with com-
plicated data access patterns and arbitrary control flow. A major part of the FORTRAN D prototype compiler at
Rice is devoted to handling such codes efficiently. This paper has given an overview of the strategies, algorithms,
and data structures developed for handling the specific characteristics of compiling data parallel, irregular ap-
plications. It turned out that some seemingly simple requirements turned into interesting problems that had a
significant impact on the overall design, such as for example the need for handling multidimensional arrays with
irregular subscripts.

The current prototype is currently able to handle codes such as the molecular dynamics nonbal.f routine
without major modifications, which can be considered a significant advance over other results reported so far.
However, the project is still in progress; in particular, irregular distributions and general slicing are not finished
yet. Even though there exist techniques for handling these problems at least to some degree, their implementation
and application to general programs will probably require refinements and new strategies.
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