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Abstract

This paper describes a study of the use of data-parallel languages such as Fortran D or
High Performance Fortran (HPF) and their compilation systems for existing large scientific
applications. The central question addressed in this study is: Do such languages allow the
expression of the parallelism available in the applications so that the underlying compilation
systems are able to generate efficient code for the specified parallelism?

Our results are based on Fortran D and the current prototype implementation of the
Fortran D compilation sytem. This compilation system represents the state-of-the-art in
compiler technology with respect to compile time optimizations, which is the main point of
interest in this study.

We test the feasibility of Fortran D on a small section of a reservoir simulation code
of wide use in the oil industry. The code is written in a style to take édvantage of the
machine characteristics of a vector supercomputer such as a Cray. However, this machine
dependent programming style inhibits many state-of-the-art compile time optimiza.t';iéns.
This paper provides an insight into a data-parallel programming style that allows state-of-
the-art compilers to generate efficient code across a variety of machines.

Our experiments on Intel’s iPSC/860 distributed-memory multiprocessor indicate that
the Fortran D language and its compilation system can exploit the parallelism that exists in
computations related to reservoir modeling, provided that the code is written in data-parallel
programming style. Additional experiments show that other machines and their compilation
systems can also exploit the compile time information available for programs written in a
data-parallel programming style. This line of work will help to design enhancements to
current parallel languages and compilation techniques, allowing the parallelization of large

existing codes not written in data-parallel programming style.



1 Introduction

This study presents preliminary numerical experiments using the data-parallel Fortran D
language and its compilation system to convert parts of a reservoir simulator written for
high performance vector computers into a program that will run on distributed-memory
parallel processors.

Enhanced and improved recovery of oil is becoming an increasingly necessary activity due
to the exhaustion of oil fields all across the United States. Present economic considerations
dis;ourage tertiary recovery of oil due to the cost associated with those techniques. In this
regard, a detailed and accurate computer simulation of recovery processes would provide a
test bed at reasonably low cost.

Reservoir simulation has been used for three decades in the oil industry as a predict-
ing tool in the design of drilling strategies and reservoir ma.na;gernent. Distributed memory
parallel computing appears as a way of obtaining the necessary computing power at an ac-
ceptable cost. However, this poses the problem of having to convert (i.e;, partiy rewrite)
simulation codes written for high performance vector computers to run on distributed mem-
ory parallel machines. Since the number of man-hours invested in the majority of simulators
currently used in industry is quite considerable, it is critical to develop a language and com-
piler capable of mapping general code written for sequential machines onto the processors of
a distributed machine. Fortran D has been designed to be such a machine independent par-
allel programming system. Its success in the context of oil reservoir simulations will depend
on Whether it is able to express the parallelism available in such applications, and whether
its compiler can generate efficient code for the specified parallelism. The feasibility study
presented in this paper is based on the current prototype implementation of the Fortran D

compiler [Tse93]. The prototype performs a variety of advanced compile time optimizations.



The simulator used in- this study is UTCOMP, developed at the Petroleum Engineering
Department at the University of Texas, Austin [Cha90, CLPS91, CPS90]. The code is
a equation-of-state compositional miscible gas flood simulator in three space dimensions.
The range of physical processes modeled include tracer floods, hydrocarbon miscible floods
and carbon dioxide floods (developed miscibility). The numerical model can handle both
horizontal and vertical wells and four distinct phases. The code uses higher-order, block-
centered, finite differences for the discretization and declares the variables as linear arrays,
which are mapped onto the three-dimensional space by a prescribed numbering scheme of
the grid blocks. On the other hand, UTCOMP does not have all of the generality (e.g., fully
implicit option, coupled wellbore models or a model for surface facilities) displayed by other
(usually proprietary) code of wider use in industry.

The paper is structured as follows. After an introduction to the Fortran D compilation
system in Section 2, we discuss the single routine chosen as the basis of our feasibility
study in Section 3. Section 3.1 and Section 3.2 describe our experiments and their results,

respectively. The paper concludes with a short summary of our findings.

2 Fortran D Compilation System

To make distributed-memory machines easier to use, several researchers have developed
languages such as Fortran D that provide a global name space and annotations that let the
user specify the mapping of the data onto the distributed-memory machine. Based on these
annotations, a sophisticated compilation system transforms the program into a message-
passing program that can be executed on a distributed-memory machine.

In the following, we will give a short overview of the Fortran D language and its compi-

lation system.



2.1 Fortran D Language

Fortran D is a version of Fortran that allows the user to specify the program’s data layout
in two steps using DECOMPOSITION, ALIGN, and DISTRIBUTE statements. A decomposition
is an abstract problem or index domain; it does not require any storage. Each element of
a decomposition represents a unit of computation. The DECOMPOSITION statement declares
the name, dimensionality, and size of a decomposition.

The ALIGN statement maps arrays onto decompositions. Arrays mapped to the same
decomposition are automatically aligned with each other. Alignment can take place either
within or across dimensions. The alignment of arrays to decompositions is specified by
placeholders I, J, K, ... in the subscript expressions of both the array and decomposition.

In the example below,

REAL X(N,N)

DECOMPOSITION A(N,N)

ALIGN X(I,J) with A(J-2,I+3)

A is declared to be a two dimensional decomposition of size N x N. Array X is then aligned
with respect to A with the dimensions permuted and offsets within each dimension.

After arrays have been aligned With a decomposition, the DISTRIBUTE statement maps
the decomposition to the finite resources of the physical machine. Distributions are specified
by assigning an independent attribute to each dimension of a decomposition. Predefined
attributes are BLOCK, CYCLIC, and BLOCK_CYCLIC. The symbol “:” marks dimensions that
are not distributed. Choosing the distribution for a decomposition maps all arrays aligned

with the decomposition to the machine. In the following example,

DECOMPOSITION A(N,N), B(N,N)
DISTRIBUTE A(:, BLOCK)
DISTRIBUTE B(CYCLIC,:)
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DECOMPOSITION REAL X(N,N) DISTRIBUTE DISTRIBUTE
A(N,N) ALIGN X(I,J) A(:,BLOCK) A(CYCLIC,:)
with A(J-2,I+3)

Figure 1: Fortran D Data Layout Specifications

distributing decomposition A by (: ,BLOCK) results in a column partition of arrays aligned
with A. Distributing B by (CYCLIC,:) partitions the rows of B in a round-robin fashion
among processors. These sample data alignment and distributions are shown in Figure 1.
We should note that the goal in designing Fortran D is not to support the most general
data decompositions possible. Instead, the intent is to provide decompositions that are both
--powerful enough to express data parallelism in scientific programs, and simple enough to
_permit the compiler to produce efficient programs. Fortran D is a language with semantics
very similar to sequential Fortran. As a result, it should be easy to use by computational sci-
entists. In addition, we believe that the two-phase strategy for specifying data decomposition

s natural and conducive to writing modular and portable code. Fortran D bears similarities

to HPF [Hig93], CM Fortran [TMC89], KALI [KM91], and Vienna Fortran [CMZ92]. The

complete language is described in detail elsewhere [FHK*90].

2.2 The Compilation System

A Fortran D compilation system translates a Fortran D program into a Fortran 77 SPMD
(single program multiple data) node program that contains calls to library primitives for

interprocessor communication. A vendor-supplied Fortran 77 node compiler is used to gen-



erate an executable that will run on each node of the distributed-memory target machine. A
Fortran D compiler may support optimizations that reduce or hide communication overhead,
exploit parallelism, or reduce memory requirements. Procedure cloning or inlining may be
applied under certain conditions to improve context for optimization. A Fortran D compiler
may relax the owner computes rule for reductions and parallel prefix operations, and for
scalars or arrays that are recognized to be temporaries [HKT91, HKTQQ, HHKT91, Tse93].
Node compilers may perform optimizations to exploit the memory hierarchy and instruction-
level parallelism available on the target node processor [Car92, Wol92, Bri92]. At present, the

principal target of the prototype Fortran D compilation system [Tse93] is the Intel iPSC/860.

3 The Test Subroutine

For the purpose of this feasibility study, one routine of the reservoir simulator UTCOMP was
chosen (procedure DISPER), which displays some of the most typical features of the com-
putations in the whole code. This particular subroutine models the dispersion phenomena
in the model for transport of chemical components, due both to molecular diffusion and to
hydrodynamic dispérsioﬁ, which occurs as a result of the mixing process at different length
scales of the permeable rock matrix.

From the numerical model standpoint, this procedure uses a variety of finite-difference
stencils, some of which are asymmetric, i.e., the intervening directions in the computational
molecule depend on the runtime values of other process variables. In the original code,
this directionality is implemented through indirect addressing, i.e., by defining an integer
array at each grid block, that contains the runtime lécation the upstream grid block in
each coordinate direction. This design was intended to achieve high performance on vector

computers.



3.1 Description of Experiment

The original version (CRAY version) of the DISPER routine contains 500 noncomment lines
of code. A program fragment of this code is shown in Figure 3. The shown code solves a
problem of size (8x256x8).

As mentioned above, the vector version contains indirect addressing. The first form of
indirection is due to the linearization of arrays. For each grid block, the physical neighboring
relation is represented by the indirection array nblk. The array has six entries for each grid
block, two entries for each coordinate direction. The second form of indirection is used
to select one out of two possible computational stencils, in each coordinate direction, at
runtime. The indirection array nblkup contains for each grid block, phase, and coordinate
direction the index of the upstream grid block.

Most of the compiler optimizations described in Section 2.2 require that data access
patterns are known at compile time. Therefore, most compile time optimizations cannot be
rappli_éd in the presence of indirections, resulting in the generation of inefficient code by most -

compilers. The following steps were taken to eliminate the two types of indirections:

e We delinearized "long vectors” and expressed boundary conditions through bounds of

newly introduced loops.

e We made the selection of the stencils explicit by replicating the stencil computation

for the two cases under a selection guard.

The modified code for the problem size (8x256x8) is shown in Figure 4. We refer to this
version as DISPER written in a data-parallel programming style. The transformation of
DISPER into data-parallel programming style tripled the code size, i.e. the modified version
has 1500 noncomment lines. This increase in code size is mostly due to the replication of the

stencil computations. Note that rewritting other programs into data-parallel programming
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style may result in code size increases of more than a factor of three or no code size increases
at all.

For our experiments we chose four different problem sizes. Fér all of the problem sizes, the
data layout that distributes the second physical dimension (y-dimension) is the best choice.
Such a data layout can be easily expressed in Fortran D. The data layout specifications
for the data-parallel programming style version of DISPER are shown in Figure 4. The
specifications are inserted after the array declarations.

We compiled the resulting Fortran D program using the current Fortran D prototype com-
piler [Tse93]. The prototype requires the specification of the number of processors available
on the distributed-memory target machine. The message-passing code generated for eight
processors and problem size (8x256x8) is shown in Figure 5 and Figure 6. The compiler was
able to perform several communication optimizations. All communications have been hoisted
out of loops. Redundant messages have been eliminated and messages of independent data
have been aggregated into single messages if the communication occurs between the same
pair of processors. The quality of the compiler generated node program compares to that
of a hand-generated node program. This is due to the fact that the compiler was able to
perform the for the overall performance crucial hoisting of communication out of innermost
loops.

Note that due to deficiencies in the current implemenation of the prototype Fortran D
compiler, we had to make some minor changes to the compiler generated node program in
order to ensure its correctness. However, all communication statements were generated by

the prototype compiler.



3.2 Results of Experiment

Four sets of numerical experiments were run on an Intel Hypercube iPSC/860, all of them
with a constant x-z cross section, having 8 grid blocks in each of these directions, and 64,
128, 256 and 512 grid blocks in the y-direction, respectively. The model size was scaled in
one direction only since the available implementation of the Fortran D compiler can only
distribute a single dimension. For the chosen problem sizes and number of processors used,
the computational load is perfectly balanced in every experiment.

The lower part of Table 1 shows the execution times of the automatically generated node
programs on the Intel Hypercube iPSC/860. For comparison purposes, the upper part of
the table contains the execution times of the data-parallel programming style versions on a
sequential workstation (Sparc2), two superscalar workstations (Sparcl0 and RS6000/530),
and a vector supercomputer (Cray Y-MP). The comparision shows that the four problem
sizes are non-trivial in the sense that vector and parallel supercomputers can solve the
problems much faster than any of the listed workstations. o

Figure 2 shows the speed-up results of the iPSC/860 experiments. The performance of
the parallel code improves, as expected, as the model size in the y-direction increases from
64 to 512 grid blocks. This is naturally due to the surface-to-volume ratio of the subdomains
becoming smaller as the model size increases. The speed-up results are outstanding even
upto subdomain sizes of 83, which gives a surface-to-volume ratio of 0.25, according to the
one-dimensional decomposition chosen for the experiments. In spite of the fact that all com-
munication calls inserted by Fortran D are of synchronous type, the observed communication
to computation ratios are significantly smaller than those suggested by the corresponding
surface to volume ratios of the subproblems.

The actual communication cost was measured for each of the cases run and these figures
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machine main memory compiler #procs execution times (in seconds)
per processor 8x64x8 8x128x8 8x256x8 8x512x8
Sparc2 64Mbytes 77 -04 1 6.44 13.93 29.93 60.47
Sparcl0 96Mbytes f77 -04 1 2.97 5.73 12.03 25.56
RS6000/550 | 192Mbytes xif -0 1 2.70 6.78 17.51 374
Cray Y-MP 128 banks, | cf77 -Zv -Wf 1 0.19 0.36 0.71 1.39
8Mbytes each
iPSC/860 | 16Mybtes 77 -04 1 868  18.09 x .
2 4.09 8.20 16.65 *
4 204 412 821  16.66
8 1.10 2.05 4.12 8.21
16 0.58 1.10 2.05 4.13
32 0.35 0.58 1.09 2.03
64 0.22 0.35 0.58 1.09

Table 1: Performance of the data-parallel programming style version of DISPER. A ‘¥’

indicates that there was not enough main memory available to run the problem size.
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were compared to the estimated communication overhead. The estimation of the commu-
nication overhead was based on assuming that the total elasped time can be split up into
a computing time, t., and a message-passing time, ¢,,. The message-passing time was as-
sumed constant for all runs with the same global discretization size. This happens to be true
exactly because of the one-dimensional data decomposition, but it would not be so in the
case of multi-dimensional decompositions (i.e., message-passing in more than one coordinate
direction). As for the computing time, it was assumed that no serial computations remained
in the code after parallelization by Fortran D. Expressing the speed-up, S, as the ratio of
the serial elapsed time to the elapsed time in parallel, and the communication overhead as

the ratio of the communication time to the total time [HJ89], respectively, i.e.,

is _tm
S—E and OH = ol

one can extract the communication overhead from knowing only the speed-up and the number

of CPU’s, i.e., = o - - -

S

OH=1- )
Ncpu

In the procedure analyzed here, the incidence of serial computations is negligible, and,
therefore, the estimated and measured communication overhead figures agree remarkably
well.

(Re)writting programs in data-parallel programming style should not only be profitable in
the context of a distributed-memory compilation system, but should also allow compilers for
sequential, superscalar, and vector machines to perform more optimizations and therefore
generate more efficient code. Table 2 lists the execution times of the original version of
DISPER (Cray version) and the corresponding data-parallel programming style version on a

Sparc2, Sparc10, RS6000/550, and a single processor of a Cray Y-MP. The experiments used
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the same machine configurations and compilers as shown in Table 1. The resulting numbers
show that the SUN compilers for the Sparc2 and Sparcl0 did not exploit the additional
opportunities for compile time optimizations available in the data-parallel programming
style. The IBM compiler for the RS6000/550 performed roughly the same on the three
smaller problem sizes, but improved the execution time of the biggest problem size by 14%.
For the Cray system, the improvement in execution time was between 32% and 47%. The

latter result is of particular interest since the original version was written for a Cray machine.

machine programming execution times (in seconds)

style 8x64x8 8x128x8 8x256x8 8x512x8
——__—_———_—;_—_—T—
S 5.67 12.55 27.86 56.58

parc2 original

- data-parallel 6.44 13.93 29.93 60.47

Sparcl0 original 2.59 5.52 11.38 25.82

- data-parallel | 2.97 5.73 12.03 25.56

RS6000/550 original 2.81 6.53 17.03 43.62

data-parallel 2.70 6.78 17.51 37.44

Cray Y-MP original 0.36 0.55 1.05 2.05

data-parallel 0.19 0.36 0.71 1.39

Table 2: Comparison between data-parallel programming style and original style.

Programs written in data-parallel programming style have the advantage of being more
portable across different machines, but have the disadvantage of a potential increase in code
size as compared to a vector style version. In addition, rewritting existing programs into a
data-parallel programming style is a time consuming process. To address some aspects of the

latter problem, Liebrock and Kennedy have investigated compiler directives that will allow
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the compiler to perform delinearization of linearized arrays in ‘long vector style’ codes with-
out actually modifying the source code. Preliminary results of their research can be found in
[LK93]. Another option that might be worthwile to explore is to use compilation fechniques
for irregular problems in the context of ‘long vector style’ programs with array indirection.
Von Hanxleden discusses such state-of-the-art compilation techniques for irregular problems

for the Fortran D language [vH93].

4 Summary

Our feasibility study shows that data-parallel languages such as Fortran D can express the
parallelism available in computations considered typical for oil reservoir simulations. How-
ever, in order to take full advantage of advanced compile time optimizations in state-of-the-
art compilers, the codes have to be (re)written in a data-parallel programming style. We
_converted a single routine in the oil reservoir simulator UTCOMP into this programming
style. Experiments show that the Fortran D compiler is able to generate code that achieves
nearly linear speed-up for most problem sizes and numbers of processors. Supporting the
conversion of programs into data.-pa.ra.llel programming style will be a challenge for language

designers as well as compiler researchers.
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c

CCCCCC. . uurereascomcccnsenssncsnssaccacs cesassseee

<
c

subroutine disper

purpose: computes the dispersion
calls: none

CCCCCC. . ccnacncasssnsssencescscencnces eeesacans eeescsssrsasessanns ccc

c

&
&

0O 00060

rRRE R R

840
840

900

implicit real®8 ( a-h, o-z )

parameter ( npm = 4 )
parameter ( ncm = 5 )
parameter ( nbm = 8 = 256 ™ 8 )
parameter ( ncmpl = ncm + 1 )

common [com100/ nb, nx, ny, nz, aw, np, nc, ncpl, nbwp

common /com210/ nbik(nbm,86), nblkup(nbm,npm,3)

common [com440/ ddx(nbm), ddy(nbm), ddz(nbm)

common [com470/ porstd(nbm), por(nbm), vb(nbm),

common /com480/ diffun(npm,ncmpl), tau, alphal(npm), alphat(npm)
common [com510/ sat(nbm,npm), denmi(nbm,npm), denms(nbm,npm),

logical lsat, lomfr, Ipmfr

common [com515/ 1sat(nbm,npm), lomfr(nbm,ncm), Ipmfr(nbm,npm,ncm)
common /com540/ omfr(nbm,ncm), pmfr(nbm,npm,ncm),

common [com850/ disp(nbm,ncmpl), dispx(nbm), dispy(nbm),

&

dispz(nbm)

common [com870/ coexx(nbm,npm), coexy(nbm,npm), coexz(nbm,npm),

do 900 k = 1, nc

do 850 j = 2, np
do 840 i = 1, nb

ilypl = nblk(i,2)

iupy = nblkup(i,j,1)

y-direction

if ( (ilypl.gt.0 ).and.( lsat(i,j) )

1 (ddy(i) + ddy(ilypl) )
dispy(i) = dispy(i)

* grady
endif

continue
continue

continue

Figure 3:

coeyx(nbm,npm), coeyy(nbm,npm), coeyz(nbm,npm),
coezx(nbm,npm), coezy(nbm,npm), coezz(nbm,npm)

.and.( lsat(ilypl,j) ) ) then
grady = 2. ® ( pmfr(ilypl,j,k) - pmfr(i,j,k) )

+ denml(iupy,j) *® ( por(iupy) * sat(iupy,j)
= diffun(j,k) + coeyy(i,j) )

original code fragment (CRAY version)
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double precision ddx(256,8,8),ddy(256,8,8),ddz(256,8,8)

double precision por(256,8,8),pmfr(256,8,8,4,5),diffun(4,6)

double precision alphail(4),alphat(4),sat(256,8,8,4),denmi(256,8,8,4)
logical 1sat(256,8,8,4)

double precision potx(256,8,8,4),poty(256,8,8,4),potz(256,8,8,4)
double precision disp(256,8,8,6),dispx(256,8,8),dispy(256,8,8),

GEGEGEGEGIG RGN

0o

& dispz(256,8,8)
double precision coexx(256,8,8,4),coexy(256,8,8,4),coexz(256,8,8,4),
& coeyx(256,8,8,4),coeyy(256,8,8,4),coeyz(256,8,8,4),
& coezx(256,8,8,4),coezy(256,8,8,4),c0e22(256,8,8,4)
FORTRAND
integer n3¥proc
parameter (n$proc = 8)
decomposition dd(256)
align 1temp(i),grady(i) with dd(i,j,k,l,m)
align ddy(i,j,k),r(i.j,k),dispy(i,i,k) with dd(i,j,k,l,m)
align poty(i,j,k,1),coeyy(i,j, k,1) with dd(i,j,k,l,m)
align sat(i,j,k,1),Isat(i,j,k,1),denmi(i,j,k,1) with dd(i,j,k.l,m)
align pmfr(i,j,k,1,m) with dd(i,j,k,l,m)
distribute dd(block,:,:,:,:)
do900 k=1,5
do 850 j = 2, 4
do 840i3 =1, 8
do840i2=1,38
do 840 il = 1, 258
if(poty(il1,i2,i3,j).18.0) then
y-direction
if (il.ne. 256 ) then R
Itemp(il) = Isat(i1,i2,i3,j).and.1sat(i1+1,i2,i3,j)
if ( 1temp(il) ) then
grady(il) = 2.*(pmfr(i1+1,i2,i3,j,k)
& -pmfr(il,i2,i3,j,k))
& / ( ddy(il,i2,i3) + ddy(il+1,i2,i3) )
dispy(il,i2,i3) = dispy(il,i2,i3) + denml(il,i2,i3,j)
& * ( por(il,i2,i3) * sat(il,i2,i3,j) . _ . .
& * diffun(j,k) + coeyy(il,i2,i3,j) )
& = grady(il)
endif
endif
else
if (il.ne. 256 ) then
itemp(il) = lsat(il,i2,i3,j).and.lsat(il1+1,i2,i3,j)
if ( 1temp(il) ) then
grady(il) =2."(pmfr(il+1,i2,i3,j,k)
& - pmfr(il,i2,i3,j,k))
& / ( ddy(il,i2,i3) + ddy(il+1,i2,i3) )
dispy(il,i2,i3) = dispy(il,i2,i3)
& + denml(il+1,i2,i3,j) * ( por(il+1,i2,i3)
& * sat(il+1,i2,i3,j)
& * diffun(j,k) + coeyy(il,i2,i3,j) )
& *= grady(il)
endif
endif
endif
840 continue
850 coantinue
900 continue

Figure 4: Code fragment in data parallel style with Fortran D data layout specifications
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double precision ddx(33, 8, 8), ddy(0:33, 8, 8), ddz(33, 8, 8)

double precision por(33, 8, 8), pmfr(0:33, 8, 8, 4, s)

double precision diffun(4, 6), alphai(4), alphat(4)

integer mdisp

double precision sat(33, 8, 8, 4), denmi(33, 8, 8, 4)

logical 1sat(0:33, 8, 8, 4)

double precision potx(32, 8, 8, 4), poty(32, 8, 8, 4), potz(32,
#8, 8, 4)

double precision disp(32, 8, 8, 6), dispx(32, 8, 8), dispy(0:32,
4 8, 8), dispz(32, 8, 8)

double precision fluxx(32, 8, 8, 4), luxy(32, 8, 8, 4), fluxz(3
#2, 8, 8, 4)

double precision coexx(32, 8, 8, 4), coexy(32, 8, 8, 4), coexz(3
#2, 8, 8, 4), coeyx(32, 8, 8, 4), coeyy(32, 8, 8, 4), coeyz(32, 8,
#8, 4), coezx(32, 8, 8, 4), coezy(32, 8, 8, 4), coezz(32, 8, 8, 4)

double precision wkspl(32, 8, 8), wksp2(32, 8, 8), wksp3(32, 8,

#8)
double precision aleff(32, 8, 8, 4), ateff(32, 8, 8, 4)
integer ndproc

—. Fortran D variable declarations —

common /FortD/ n$p, my$p, my$pid

integer n$p, my$p, mydpid, numnodes, mynode, mypid
logical 13buf(300)

double precision dp$buf(1500)

—- Fortran D initializations —
n$p = numnodes()
if (n$p .ne. 8) stop
my$p = mynode()
my$pid = mypid()

. — Send por(1, 1:8, 1:8) —
if ( my$p .gt. 0) then .-
call buf3D$dp(por, 1, ml1, 1, 8, 1, 8,1,1,1,1,8,1,1,38,
#1, dpsbuf(1))
call csend(115, dp3buf, 8 * 8, mydp- 1, my$pid)
endif
—- Recv por(ml, 1:8, 1:8) —
if ( my$p .It. maxproc) then
call crecv(118, dps$buf, 8 * 8) - -
call unbuf3D$dp(por, 1, mli, 1, 8, 1, 8, ml, mli,1,1,8,1,1,8
#, 1, dpsbuf(1))
endif
— Send denmi(1, 1:8, 1:8, 2:4), sat(1, 1:8, 1:8, 2:4) —
if ( my$p .gt. 0) then
call buf4Dsdp(denml, 1, m1, 1,8, 1,8, 1,4, 1, 1,1,1,8,1
#, 1,8, 1,2 4, 1, dpébuf(1))
call buf4D$dp(sat, 1, m1, 1,8, 1,8, 1, 41,1, 1,1,8,1,
#1, 8, 1, 2, 4, 1, dpsbuf(193))
call csend(116, dpébuf, 384 * 8, my$p - 1, my$pid)
endif
Cc — Recv denmi(ml, 1:8, 1:8, 2:4), sat(ml, 1:8, 1:8, 2:4) —
if ( mydp .It. maxproc) then
call crecv(116, dp$buf, 384 * 8)
call unbuf4D$dp(denml, 1, m}, 1, 8, 1, 8, 1, 4, ml,ml, 1, 1,8,
#1,1,8,1,2, 4,1, dpébuf(1))
call unbuf4D3$dp(sas, 1, m1, 1,8, 1,8,1, 4, ml, ml, 1,1,8,1
#, 1,8, 1,2 4, 1, dpébuf(193))
endif
(o] — Send ddy(1, 1:8, 1:8) —
if ( my$p .gt. 0) then
call buf3aD$dp(ddy, 0, m1,1,8,1,8,1,1, 1,1, 8,1,1, 8,
#1, dp3buf(1))
call csend(117, dpébuf, 64 * 8, my$p - 1, my$pid)
endif
C — Recv ddy(ml, 1:8, 1:8) —
if ( my$p .1t. maxproc) then
call crecv(117, dp$buf, 64 = 8)
call unbuf3D$dp(ddy, 0, ml, 1, 8, 1, 8, ml, ml,1,1,8,1,1,8
#, 1, dpsbui(1))
endif

Figure 5: PART 1: Compiler generated, message passing Fortran 77 SPMD node program
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(o] —- Send pmfr(1, 1:8, 1:8, 2:4, 1:5) —
if ( my#p .gt. 0) then
call bufsD$dp(pmfr,0, mi, 1,8,1,8,1,4,1,5,1,1,1,1,
#8,1,1,8,1,2, 4,1, 1,5 1, dpdbuf(1))
call csend(119, dp3buf, 8*8*3%5 * 3, my$p - 1, my$pid)
endif
(o} — Recv pmfr(ml, 1:8, 1:8, 2:4, 1:8) —
if ( my$p .It. maxproc) then
call crecv(119, dp$buf, 378*3"s * 8)
call unbuf5D3$dp(pmfr, 0, ml1, 1,8, 1,8, 1, 4,1, 5, ml, ml, 1,
#1,8,1,1,8,1,2 4, 1, 1, 5, 1, dpsbuf(1))
endif
(o] —- Send lsat(1, 1:8, 1:8, 2:4) —
if ( my$p .gt. 0) then
call buf4D3$I(lsat, 0, m1, 1,8, 1,8,1,4, 1,1, 1, 1, 8,1,
#1,8, 1, 2, 4, 1, 18buf(1))
call csend(122, I$buf, 8%8*3 * 4, my$p - 1, my3$pid)
endif
(¢} ——Recv Isat(ml, 1:8, 1:8, 2:4) —
if ( my3$p .It. maxproc) then
call crecv(122, 1$buf, 8*8*3 * 4)
call unbuf4D8l(lsas, 0, m1, 1,8, 1, 8,1, 4, ml, m}, 1, 1,8, 1
#, 1,8, 1,2 4, 1, 1$buf(1))
endif

do900 k =1,5

do 850 j = 2, 4
do840i3 =1,8
do840i2=1,38
do 840 il = 1, 32
if (poty(il, i2, i3, j) .1t. 0) then
if (my$p .It. 7 .or. il .ne. 32) then
ltemp(il) = Isat(il, i2, i3, j) .and. lsat(il + 1,
# i2, i3, j)
if (temp(il)) then
grady(il) = 2. * (pmfr(il + 1,i2, i3, j, k) - p
#mir(il, i2, i3, j, k)) / (ddy(il, i2, i3) + ddy(il + 1, i2, i3))
dispy(il, i2, i3) = dispy(il, i2, i3) + denmi(il - -
#, i2, i3, j) ™ (por(il, i2, i3) * sas(il, i2, i3, j) * diffun(j, k
#) + coeyy(il, i2, i3, j)) * grady(il)
endif
endif
else
if (my$p .1t. 7 .or. il .ne. 32) then - -
ltemp(il) = Isat(il, i2, i3, j) .and. Isat(il + 1,
# i2, i3, j)
if (1temp(il)) then
grady(il) = 2. * (pmfr(il + 1,2, i3, j, k)-p
#mir(il, i2, i3, j, k)) / (ddy(il, i2, i3) + ddy(il + 1, i2, i3))
dispy(il, i2, i3) = dispy(il, i2, i3) + denmi(il
# + 1,2, i3, j) ® (por(il + 1, i2, i3) ® sat(il + 1,i2,i3, j) *
# diffun(j, k) + coeyy(il, i2, i3, j)) * grady(il)
endif
endif
endif
840 continue
850 continue

900 continue

Figure 6: PART 2: Compiler generated, message passing Fortran 77 SPMD node program
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