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Abstract. Block matrices with a special structure arise from mixed finite element discretizations
of incompressible flow problems. This paper is concerned with an analysis of the eigenvalue problem
for such matrices, and the derivation of two shifted eigenvalue problems which are more suited to
numerical solution by iterative algorithms like simultaneous iteration and Arnoldi’s method. The
application of the shifted eigenvalue problems to the determination of the eigenvalue of smallest
real part is discussed and a numerical example arising from a stability analysis of double-diffusive
convection is described.
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1. Introduction. Let A and B be N x N real matrices with the following block
structure

(1.1) A:[g} OC] B=[1‘gg}

where N = n+m, n>m, Kisnxn, Cisnxmofrankm,and M isnxn symmetric
positive definite. The paper is concerned with the theory of the generalised eigenvalue
problem

(1.2) ' Aw = pBw

that we call EVP1, and three related eigenvalue problems called EVP2, EVP3 and
EVP4 that are introduced in Section 3. Since the matrices are typically large and
sparse numerical techniques based on transformation methods, like the QZ algorithm,
will be very expensive, and the reason for introducing the related eigenvalue problems
EVP2, EVP3 and EVP4 is that they should be amenable to iterative techniques
commonly used to find selected eigenvalues of large sparse matrices (Section I-5, (2]).
In the applications we have mind K, C, and M arise from mixed finite element
discretizations of the “velocity-pressure” formulation of the Navier-Stokes equations
for incompressible flow problems [3], [9], and the eigenvalue problem (1.2) arises in
the determination of the stability of steady flows [5]. The problem is to find the
eigenvalues of (1.2) with smallest real part.

As is standard, the finite values u € C such that det(4 — pB) = 0 are known as
finite eigenvalues, though we usually drop the term “finite”. Since B is singular there
are also infinite eigenvalues, which are defined to be zero eigenvalues of vAw = Bw,
with corresponding eigenvectors that are null vectors of B. The theory for (1.2) is
more complicated than for the standard eigenvalue problem Aw = pw [21]. However,
the assumptions made in this paper on C and M allow very precise statements to be
made about the number of eigenvalues of (1.2) and make possible the introduction of
related eigenvalue problems which are better suited to solution by iterative algorithms.
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Eigenvalue problems of the form (1.2) with block structure (1.1) arise in
applications involving constraints. For example, Malkus [14] discusses the case
when K is symmetric in an analysis of the discrete LBB stability condition for
incompressible finite elements, arising in linear elasticity or Stokes flow. For symmetric
K, the results on the eigenvalues of EVP1 in Theorem 1 and Lemma 1 are contained
in ([14], Theorem 3) though our method of proof produces the results in a more direct
manner. In addition, the case of KX symmetric and M = I is discussed in Golub [10].

The plan of the paper is as follows. In Section 2 the basic theory for the
eigenvalue problem (1.1)(1.2) is presented. Section 3 contains an analysis of some
related eigenvalue problems which provide some shift strategies for the eigenvalues.
In Section 4 some practical aspects are considered. First there is a discussion relating
to the execution of certain matrix-vector operations, and second the estimation of the
accuracy of computed eigensolutions is examined. Section 5 contains a discussion of
strategies which could be used to determine the eigenvalues of smallest real part of
(1.1)(1.2), and these are illustrated with reference to a matrix problem arising from
a finite element discretization of 2—dimensional double-diffusive convection in a box.

2. Theory for the eigenvalue problem. This section contains some results
about the eigenvalue problem Aw = pBw which for convenience we rewrite (and

rename) as
K C u M 0 u
4 ,
[CTOHP] "[0 OHP} (EVPL
where, in anology with our applications arising from the discretization of the Navier-
Stokes equations, we use the notation w = [u,p], v € R", p € R™, where u and p
correspond to velocity and pressure degrees of freedom respectively.

First we note that since C is full rank, the QR factorisation of C has the form
(ignoring possible permutations, which play no role here)

(21) c=Qr=101 Q[ " | (=R

where R is n x m, Ry is m x m nonsingular and upper triangular, Q is n x n orthogonal,
Q; is n x m and provides an orthonormal basis for range(C), and Q2 is n x (n — m)
and provides an orthonormal basis for C*. For future use note that CTCismxm
positive definite and has the Cholesky decomposition CTC = RTR; ([11] p. 217).
Also, the matrix

(2.2) | x:=I-C(CTCc)~'cT

is a projection from R" onto C* along range(C).
Now we state a fundamental result on the number of eigenvalues of EVP1.
THEOREM 2.1. a) The eigenvalue problem EVPI has precisely n—m eigenvalues,

that are those of the reduced eigenvalue problem of dimension (n — m)
QT (K — uM)Q2z = 0. (REVP1)

b) If(u,z), z € R* ™ is an eigensolution of REVPI then (1, u,p) is a corresponding
eigensolution of EVP1 where

u=Qsz, p=—R{1QT(K - pM)Q>z.
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¢) If (u,u,p), v € R*, p € R™ is an eigensolution of EVPI then (u,z) is a

corresponding eigensolution of REVPI where z = Tu.

0 In
y = Z2Tw = (QTu,p) = (QTv, Q% u,p) =: (u1,us,p). Now EVPL is equivalent to
ZT AZy = uZT BZy, that in block form becomes

Proof. a) Introduce Z = [Q 0 ] where Q is defined in (2.1), and

Kun Ki2 R uy My Mz 0 uy
(2.3) Koy Koo O U =p| My M 0 ug
RT 0 © p 0 0 o0 P

where Kjj = QTKQ;, M;; = QTMQj, i,j =1,2. Simple manipulation shows that
uy = 0, (Ko2 — pMag)uz = 0, p = —R;l(K'lg — pMj2)u,. Since M and M3, are
symmetric positive definite a) is immediate. Results b) and c¢) now follow. O

REMARK 1. An equivalent proof in the style of Golub (10] uses the projection 7
defined by (2.2). Since 7u = u for u € Ct we may write the first row of EVP1 as
Kwu+ Cp = pMmu. Premultiplication by 7 gives

(2.4) mKru = prMmu

that has the same eigenvalues as (REVP1) plus m zero eigenvalues corresponding to
eigenvectors lying in range(C) which have no relevance for EVP1.

For the future analysis it is convenient to exclude the possibility that p = 0 is an
eigenvalue and so we assume the following:

(2.5) u = 0 is not an eigenvalue of EVP1.

This assumption is not a severe restriction in the applications we have in mind, since
though zero eigenvalues are important, corresponding to “steady-state” bifurcations
in some nonlinear problem, they are usually detected readily. For example, if a direct
solver for A is feasible then one can check the determinant of A. If a zero eigenvalue
of EVP1 has been found, an eigenvalue problem satisfying (2.5) may be obtained by
considering a “shifted” eigenvalue problem with the same structure as EVP1 but with
K replaced by K —vM for some appropriately chosen shift v € R.
Under assumption (2.5), K22 is nonsingular and so (2.3) may be rewritten as

0 0 R;T My Mz 0
vw = 0 K3 o x Mayy Ma 0 |w

Rfl * * 0 0 0
or
0 0 0
(2.6) vw = | * K5'Ma 0 |w
* * 0

where * denotes unique submatrices which do not effect the analysis. Clearly (2.6)
has a zero eigenvalue of algebraic multiplicity 2m. Thus we have proved :
LEMMA 2.2. Under (2.5), EVP1 has an infinite eigenvalue of maultiplicity 2m.
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Similar results apply to the following generalisation of EVP1

S PR TR

where C; and C; are n x m matrices of rank m. Such a problem arises after the
discretization of the Navier-Stokes equations by a spectral method [6]. Provided C}
and C, satisfy the nondegeneracy condition

CTC, is invertible

(which is a natural condition in the context of discretizations of the Navier-Stokes
equations) then results analogous to Theorem 1 hold. To see this we introduce the
projection operator

(2.8) w2 =1 —-Cy(CTCy)~'CT

(cf (2.2)): Clearly if u € range(C1) then mou = 0, and if u € C3, then mjou = u.
Now follow the approach of Remark 1 to obtain

2.9 Trlg.[i’ﬂ'lgu = 7I’121W7l'1'_ru
I

(cf. (2.4)) which has n — m eigenvalues for u € C3-. A corresponding reduced
eigenvalue problem can be derived (cf. Theorem 1 a)).

REMARK 2. It is important to note that if ' and M are large and sparse (as is the
case in the applications we have in mind) then typically one would not explicitly form
the matrices in (REVP1). This is because Q3 is full and hence QTKQ- and QT MQ-
are full. Rather one would employ iterative techniques to find selected eigenvalues as
discussed in Section 5.

3. Some Shifted Eigenvalue Problems. It is a common technique to shift the
eigenvalues of an eigenvalue problem, so that if Aw = pBw then (A — yB)w = (p -
v)Bw and all the eigenvalues p are shifted by v, with the corresponding eigenvector
remaining unchanged. In this section we look at some generalised eigenvalue problems
that are closely related to EVP1 in that the new eigenvalue problems allow us to shift
both the finite and infinite eigenvalues. First consider the eigenvalue problem

[K—-yM 5lc]v=o[ M 520] .

5,67 0 5,0T 0 (EVP2)

for some 61, 62,7 € R. Note that ¥ = §» = 0,8; = 1 recovers EVP1. We have the
following theorem about the eigenvalues of EVP2.

THEOREM 3.1. Denote the finite eigenvalues of REVP1 by p;,i=1,...,n—m.
Assume (2.5) and

(3.1) i) 62 #0, ) 61651 #pi—7.

Then EVP2 has eigenvalues o;, t=1,...,n+m with
a) oi=pi—7v, 1=1,.,n—m
b) o= 516{1, i=n-m+1,...,n+m.
4



Proof.  Since M is positive definite it is straightforward to show, under (3.1.i),
that the matrix on the right hand side of EVP2 is nonsingular and hence EVP2 has
n + m eigenvalues. Under the transformation introduced in the proof of Theorem 1,
EVP2 is equivalent to

Ky —yMy K2 =My 61R; My, Mya 6R;
Kyy —yMy1 Kay—vMay 0 v=c| My My 0 v
5. RT 0 0 RT 0 0

and premultiplication by the inverse of the matrix on the right hand side produces
the eigenvalue problem

165" 0 0
* Myl (Kaa —vMas) 0 v=o0v
* * 5162_1

(where again * denotes unique submatrices). Clearly this matrix has an eigenvalue at
6162'1 of multiplicity 2m and n — m eigenvalues satisfying (K22 — vMas): = o Maaz
which is precisely a simple shift of REVP1. Statements a) and b) now follow. 0

Thus we see that the finite eigenvalues p; of EVP1 are shifted by +, but the
infinite eigenvalues are transformed to 6,65 ! Thus any eigenvalue of EVP1 may be
shifted to any location. Two examples of EVP2 which are the most likely to be useful
are now introduced. Consider

[K—O'yM 8] v:a[ég g] v (EVP3)

Clearly this has n — m eigenvalues 0; = y; — v,i = 1,...,n — m, and 2m eigenvalues
at zero. Similarly the eigenvalue problem

K ¢ M C
R A I

leaves the finite eigenvalues p; of EVP1 unchanged, but transforms the infinite
eigenvalues to 6;. Note however that not all eigenvectors are preserved by the shifts.
Eigenvectors of EVP1 corresponding to the infinite eigenvalues have the form (0, wa)
and these are unchanged. However the eigenvectors of the finite eigenvalues of EVP1
are changed, but only in the last m components. To be precise, we have the following
result which may be deduced from the block form of the equations for EVP1 and
EVP2.

LEMMA 3.2. a) Letu be a finite eigenvalue of EVP1. Assume (2.5) and (3.1).
If (w1, w2), w1 € R*,wy € R™ is an eigenvector of EVPI associated with p, then
(v1,v2), where vy = wy,v2 = (61 — (u — 7)62) " wa is the corresponding eigenvector of

EVP2.

b) Let (0,w3),ws € R™ be an eigenvector corresponding to an infinite eigenvalue
of EVP1. Then (0,v2) with v = wa is an eigenvector of EVP2 corresponding to the
eigenvalue 8,65 ".

REMARK 3. We have not gone into the detailed structure of the infinite eigenvalue of
EVP1 or the eigenvalue 6,65 ! of EVP2 of algebraic multiplicity 2m. However analysis
using the Weierstrass-Kronecker canonical form reveals that &,6;' has geometric
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multiplicity m and that the eigenvalues occur in 2 X 2 pairs corresponding to Jordan

-1
blocks of the form [ 616, 1

_1 |. This is to be expected following the results in
0 616,
(14].

4. Computational Considerations. For K,C and M small and/or full it will
probably be a reasonable strategy to form K2 = QT KQ2 and M2y = QT MQ, and
solve REVP1 directly. However, if K,C, and M are large and sparse the 'reduced’
matrices K99 and Ms2 will be full, and transformation methods will probably not be
feasible. Iterative methods, like simultaneous iteration or Arnoldi’s method (probably
applied to the EVP3 or EVP4) become attractive. It is therefore necessary to
implement matrix x vector operations, which for the generalised eigenvalue problem
reduce to solving systems of (n + m) dimensional linear equations. These could be
carried out directly on the (n+m) dimensional systems [5], [7], [12], but an approach
which involves only solving n dimensional systems is possible.

This is illustrated with reference to EVP3 with ¥ = 0. An iterative method will
require the solution of a linear system of the form

N R 1 R CRY I AR

using an n dimensional system with coefficient matrix M.
It is readily shown (say by a block Gaussian elimination approach) that (4.1) can
be solved by the following algorithm:
(i) solve Mw = Kv forw € R"
(ii) solve [CTM~'Clp=CTw for pe R™
(iii) solve Mz = Cp for z € R"
(iv) set u=w — z.
This is the Uzawa algorithm [1] and in order to be efficient step (ii) would be carried
out iteratively to avoid the direct computation of CTM~1C. For example, one could
precondition CT M ~1C by CT M;'C, where M; is the “lumped mass” matrix derived
from M.
“Shift-invert” [16] or Cayley transform [7], [12] techniques are also possible, with
iterative methods, like subspace iteration, requiring the solution of nonsymmetric
systems of the form

@ e S ] = 6]

for appropriate v, and for 3-D pdes this system will invariably have to be solved
iteratively. However, if good estimates of the wanted eigenvalues are available and
if direct solution of (4.2) is possible, then these approaches are likely to prove very
efficient.

A standard approach to estimate the accuracy of an approximate eigenpair (f, @)
of Aw = pw is to calculate the “residual” vector r := Aw — fgw. Standard backward
error analysis (p171 of [23]) shows that typically a “small” residual indicates that  is
a “good” approximation to u. A similar analysis holds for problems considered here.
Let (1, &, p]) denote an approximate eigenpair with CT@ = 0. Then the corresponding
residual vector » € R®*™ has the form

(4.3) r=(r,0), r:=Ki+Cp—iMieR"
6



With #T# = 1 it is readily shown that

Al

e &t

M o] [a
cT 0 “Elo o) |5
ie. (i, [#,7]) is an exact eigenpair of a perturbed problem (with the same block
structure as (1.1), (1.2)). In Section 5 we use [|ry||2(= ||7]|2) to test the accuracy of
an approximate eigenpair (cf. p383 of [11]).

5. Applications. The eigenvalue problem arises in the determination of the the
stability of steady solutions to the Navier-Stokes and related equations, and linearised
stability theory [8], [19] shows that stability is determined by the eigenvalues of
smallest real part of a linearised problem. The eigenvalue problem EVP1 arises if a
mixed finite element method is used to discretize the linearised problem (5], [9], [15].
Of special interest is the case when the eigenvalues of smallest real part are complex,
since algorithms for the detection of Hopf bifurcations in parameter dependent systems
can be developed from knowledge of these eigenvalues. The matrices K, C and M are
sparse and very large - in [12] a problem with over 2 x 10° degrees of freedom is '
studied.

Since EVP1 involves large sparse nonsymmetric matrices one has to fall back
on iterative methods like Arnoldi’s method or simultaneous iteration [2] to compute
wanted eigenvalues. As mentioned in Section 4 shift-invert strategies are possible
if good estimates of wanted eigenvalues are known. However one can also apply
iterative methods directly to EVP3 or EVP4 with appropriate choices for 7 or 61,62
respectively. To be precise two approaches are:

a) Choose v ~ {Re(yt1) + Re(ttn-m)}/2 in EVP3. Thus with p; = p; — 7, we
have Re(p1) + Re(pn—m) = 0. The zero eigenvalue of multiplicity 2m of EVP3 is “in
the middle” of the spectrum.

b) Choose §; ~ {Re(u1) + Re(pn-m)}/2 in EVP4. Thus the eigenvalue of
multiplicity 2m of EVP2 is “in the middle” of the spectrum of EVP4, with p¢; ... un—m
being unchanged.

In both EVP3 and EVP4 the troublesome 2m multiple eigenvalue, which corresponds
to the infinite eigenvalue of EVP1 (Lemma 1), will not be computed by the iterative
algorithm. We note that the recent implicit polynomial filters algorithm of Sorensen
[20] would appear to be an appropriate method to apply to reformulations like EVP2.

If the eigenvalues of EVP1 are known to be real then simple shift strategies based
on EVP3 and EVP4 allied to iterative methods will provide the largest and smallest
eigenvalues. However when the eigenvalues may be complex then one may have to
further transform the matrix eigenvalue problem. One approach is to utilize the
Chebyshev transformation ideas of Saad [17],[18]. For a standard eigenvalue problem
Aw = pw, the idea is to carry out a shifted Chebyshev polynomial transformation
of A, say to p,(A), where the eigenvalues y; of A lying inside a certain ellipse in the
complex plane are mapped to eigenvalues p,(u;) of ps(A) satisfying |ps(u:)| < 1. The
aim is to choose the polynomial p, (and hence the ellipse) so that only the desired
eigenvalues of A lie outside the ellipse. These become dominant, well separated,
eigenvalues of p,(A) and hence are computed by an iterative solver applied to ps(4).
These techniques were applied successfully to EVP3 to find eigenvalues of smallest
real part of two problems from fluid dynamics and the results were reported in [5] and

7



[7]. Transformation EVP4 was used to provide the numerical results in the following
example.

5.1. Example. We consider a matrix arising from a mixed finite element
discretization of the equations modelling two dimensional double-diffusive convection
in a box heated on the bottom boundary (see Chapter 8 of [22]). The governing
equations are solved in the Boussinesq approximation and are given in [4]. We do
not reproduce these equations here but note that the model has nondimensional
parameters: Prandtl number Pr, Rayleigh number Ra, salinity Rayleigh number
Rs and 7 (see [4] p.254), and interest centres on the loss of stability as Ra increases
(which corresponds to increasing the temperature difference between the top and
bottom boundary). Our calculations were performed with Pr = 10 and 7 = 10-2,
which corresponds roughly to a salt solution and water, Rs = 2000 and Ra = 2480.
The exact eigenvalues of the continuous problem, pf say, are known ((8.18) in [22])
and the three leftmost eigenvalues are p$, u§ = 0.047486 + 24.502¢, u§ = 0.098696. A
mixed finite element approximation was obtained in the usual way [13], using nine-
node quadrilateral elements with biquadratic interpolation for velocities, temperatures
and salinities and discontinuous piecewise-linear interpolation for pressures [4]. The
matrix was set up using ENTWIFE [24] with a 4 x 4 grid which leads to a matrix
with the block structure of (1.1) with n = 324, m = 48 and hence N(= n+m) = 372.
The three leftmost eigenvalues of the matrix problem to seven significant figures are
g1, g = 0.04932671 & 24.51725¢ p3 = 0.09874659. (In fact numerical values are
known with residuals (see (4.2)) less than 0.25 x 10713.)

In the following “Arnoldi (k,!)” means Arnoldi’s method restarted [ times with
subspace of dimension k [18]. First Arnoldi (20,1) with a random starting vector

: -1 -

was applied to A4; := :[ éﬁ g Ia 8
the convex hull of the eigenvalues of EVP2 with v = 0, 6; = 0 and é» = 1, and
hence a rough estimate of pin—m is obtained. (Of course, the matrix x vector
operations with A; were performed by solving linear systems.) Next form EVP4
with 62 = 1, 6, = Re(pn-m)/2, in line with 1st:rategy b) above, and try to find
éﬁ. g ] [ 51180 510‘7 ] Arnoldi (20,50)
failed to find any of the 3 leftmost eigenvalues, perhaps because of severe clustering
of the eigenvalues ([18]). The hybrid Algorithm of Saad [18] (see above) utilizing the
Chebyshev transformation to find the two leftmost eigenvalues (so that the ellipse
passes through p3) is however successful. A two step procedure was used:

(i) Arnoldi (20,1) with a random starting vector was applied to

ps(A2) to obtain a “purified” starting vector,

(ii) Arnoldi (20,1) was applied to ps2(Az). This computed p;, p2 with

residuals less than 5 x 10712, (see (4.3)).

Numerical experiments using EVP3 with v chosen in a) above produce similar
results. This is not surprising since the distribution of the extremal eigenvalues of
EVP3 and EVP4 is the same.

to obtain a very rough idea of

the leftmost eigenvalues of A; :=
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