NP-completeness of
Dynamic Remapping

Ulrich Kremer

CRPC-TR93330
July 1993

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892






NP-completeness of Dynamic Remapping *

‘D NEWSLETTER # 8

Ulrich Kremer

e-mail: kremerQcs.rice.edu
July 30, 1993

Department of Computer Science
Rice University
P.O. Box 1892
Houston, Texas 77251

1 Problem Statement

The data layout problem is formulated as an optimization problem over the phase control
flow graph. We assume that the input program has a linear phase control flow graph.

Let V denote the set of variables in the program, V = {v,...v,}. The linear phase control
flow graph has n nodes, P;,... P,, one node for each phase. Let p; denote the variables
referenced in the i-th phase P;, i.e. p; € 2Y,1 < i < n. For each p; there is a set of candidate
data layouts D; = {d},... d™}. A single candidate data layout df = {d¥; , ...dqu}, 1 <k<m,
is a set of layouts, one layout for each variable v € p; = {v;;,...v;,}.

The cost of executing phase P; under the data layout df € D; is denoted by c¢(P;, d).
The remapping cost from one data layout scheme to another can be defined based on the
remapping costs of each individual variable common to both schemes. Let d, and dg be two
candidate data layouts for phase P, and phase Pg, respectively. The remapping cost is given
below:

c(daydg) = D c(dai, dgi),

vi€panpg

where ¢(dq;, dg;) is the cost for remapping the single variable v;.

*This research was supported by the Center for Research on Parallel Computation (CRPC), a Science
and Technology Center funded by NSF through Cooperative Agreement Number CCR-9120008. This work
was also sponsored by DARPA under contract #DABT63-92-C-0038, and the IBM corporation. The content
of this paper does not necessarily reflect the position or the policy of the U.S. Government and no official
endorsement should be inferred.






Let f; : p; — {1,..n} be a mapping that determines for each variable v € p; the phase
that most recently referenced v. If no such phase exists, then f;(v) has the value ;. A data
remapping of v may occur between phase py,(,) and phase p;.

Definition 1 An instance of the dynamic data layout problem consists of a linear phase
control flow graph with n-phases, a set of program variables V = {v1,...v.}, sets p; and D;
for each phase P;, and cost functions ¢(P;,d;), d; € D;, and c(dij, df,(v;)5) for each v; € p;
and d; € D;, with 1<:<mnandl <j<r.

Definition 2 A solution of an instance of the dynamic data layout problem is a sequence
dy, dy,...d, of data layout schemes d; € D;,1 <1 < n, such that

n

doc(Pyd) + ZZ o(dij, dg(w;)7)

1=1 =1 vy €pi

is minimized, where c(di;,dy,(v;);) 15 0, if ¢ = fi(v;), i.e. an initial data layout is not associ-
ated with any cost.

Definition 2 is an optimization problem. We will show in Section 2 that the related
decision problem DYN-REMAP (k) is NP-complete.

Definition 3 DYN-REMAP(k) represents a decision problem defined as follows:

DYN-REMAP(k) := set of all instances of the dynamic data layout problem such that
there ezists a sequence of data layouts dy,dy,...dy, d; € D;,1 <1 < n, with a cost less or
equal to k, where k is a non-negative integer.

2 NP-completeness Proof

Definition 4 An instance of the 8 Conjunctive Normal Form Satisfiability Problem consists
of a boolean ezpression B in conjunctive normal form,

where F; = [} VI2V I3, 1 <1i<t, and each literal is a variable or its negation in the set of
vartables V = {vyq,...v,.}.
The decision problem 3SAT is represented as follows:

3SAT := set of all instances of the 3 Conjunctive Normal Form Satisfiability Problem for
which there exists a truth value assignment w : V — {true,false} such that B evaluates to
true under w.

Theorem 1 DYN-REMAP(k) is NP-complete.






Proof: The proof consists of two parts. First we show in Lemma 1 that DYN-REMAP (k) is
in NP. Lemma 2 states that 3SAT can be reduced to DYN-REMAP(k) in polynomial time.

Since 3SAT is NP-complete, DYN-REMAP(k) has to be NP-complete.
0

Lemma 1 DYN-REMAP(k) is in NP.

Proof: Let d,,d,,...d,, d; € D;,;,1 <1 < n, be a sequence of data layouts for an instance
of the dynamic data layout problem, one data layout for each phase in the program. The
overall cost of this sequence can be computed in polynomial time as described in Definition 2.
Therefore it can be verified in polynomial time whether a given sequence of data layouts has
a cost smaller or equal to a given cost k. Hence, DYN-REMAP(k) is in NP.

|

Lemma 2 3SAT can be reduced in polynomial time to DYN-REMAP (k).

Proof: Let g be a function that maps an instance B of the 3SAT problem onto an instance
g(B) of the DYN-REMAP(0) problem such that B € 3SAT < ¢(B) € DYN-REMAP(0). We
will define the function ¢ in Part 1 of the proof. In Part 2, we will prove the required property
of the function. Finally, in Part 3, we will show that g can be computed in polynomial time.

Part 1: Let B be an arbitrary instance of the 3 Conjunctive Normal Form Satisfiability
Problem, B = A'_,( ! VI? V3 ). g maps the instance B to an instance of the dynamic
remapping problem as follows:

o V = {vy,...v,}, i.e. the sets of variables are the same.

e Each F; is represented by a distinct phase P;. The linear order of the nodes in the
phase control flow graph corresponds to the numbering of the F; terms, i.e. the phase
control flow graph has edges (P;, P;+1) for eachi,1 <7 <t —1.

o p; = {v; | I¥ is a literal of variable v;, 1 < k < 3}, where 1 < ¢ < ¢. Note that
lpi| < 3.

e Each variable v € p; has 2 possible data layouts, called T and F. D; contains 2/ can-
didate layouts, one layout for each possible combination of the single variable layouts.
In other words, each d; € D; represents a truth value assignment w; for all variables in

pi:

(v;) = true ifd;; =T
Wilti) = false ifd; =F

e Assume D; = {d}, ... d™*}.

)

o(Pi, db) = 0 if F;is ‘true under the truth value assignment represented by d¥
T 1 otherwise

where ] <:<tand 1 <k <m.






o Assume d; € df € D; and df,'] € d% € Dy, where i’ = f;(v;).

k 'y _ ) 0 if both data layouts are identical
o(dij» dirj) = { 1 otherwise

k. gk
In other words, ¢(d;;, dii;

the two data layouts.

) = 0 if and only if no remapping of v; is required between

An example of the application of g to an instance of 3SAT is given in Section 3.
Part 2a: Claim: B € 3SAT = g(B) € DYN-REMAP(0).

Proof: Let w : V — {true,false} be a truth value assignment that satisfies the problem
instance B. There is exactly one data layout scheme in each phase P; of g(B) that represents
w restricted to the variables in p;. Call this data layout scheme d’;. For all 7, 1 < : < ¢,
c(d’;) = 0. Since w specifies a unique data layout for each single program variable v; € V,
redistribution between the sequence of data layouts d'y,d’s, ... d’; does not occur. Therefore

the sequence has an overall cost of 0. Hence g(B) € DYN-REMAP(0).
Part 2b: Claim: ¢(B) € DYN-REMAP(0) = B € 3SAT.

Proof: Let dq,d>, ... d; be a sequence of data layouts, one data layout for each phase P;, with
an overall cost of 0. Therefore no remapping can occur between the data layouts and each
data layout d; has to represent a truth value assignment that satisfies F;. Hence, there exists
a unique truth value assignment w that satisfies all F;;1 < : < ¢. The existence of such a
truth value assignment means that B is in 3SAT.

Part 3: Claim: g(B) can be computed in polynomial time.

Proof: The collection of functions f; can be computed in O(t * r), where t and r are the
number of phases and program variables, respectively.

There are at most 8 data layouts per phase. Therefore there are at most ¢ * 8 cost
functions for all phases in the program. For each data layout, at most 3 * 8 remapping cost
functions for individual variables have to be computed per phase, resulting in ¢ * 3 * 82 cost
functions for the entire program. Hence, g can be computed in polynomial time.

a

3 Example Reduction

The function g maps the instance B = (v; V-v3Vv3) A (-3 VuaVog) A (v1VusV —wy)
of the 3SAT problem into an instance of the decision problem DYN-REMAP(0) as follows:

L V = {’U],'UQ,'U3,’U4}

e There are three phases, P;, P;,and P;. The ordering of the phases is given by their
indices.

® P = {vlav'ZaUS}? p2 = {01,02,04}, and p3 = {Ul,va,v4}-

4






o D1 = {{(v1, F), (v, F), (v3, F)}, {(v1, F), (v2, F), (v3, T) }, {(v1, ), (v2, T), (v3, F)},
(v1, F), (v2,T), (v3, T) }, {(v1, T), (v2, F), (v3, F) }, {(v1, T), (v2, F), (v3, T)},

(v1,T), (v2, ), (vs, )}, {(v1, T), (v2, T), (v3, T)} },

(v1, F), (va, F), (va, )}, {(v1, F), (v2, F), (va, T) }, {(v1, F), (v2, T), (va, F)},

(vi, F), (v2, T), (v, T)}, {(v1, T), (v2, F), (va, F)}, {(v1,T), (v2, F), (va, T)},

(v1,T), (v2,T), (va, F)}, {(v1,T), (v, T), (v, T)} }, and

(

(

(

Ds 'UI,F),(U;;, F)’(v‘h )}7{(01? )?(Ul’n F)’(v47T)}’{(vlaF)’(U3’T) ('U4,F)}

I
—~—

{
{
{
Dy = {{
{
{
{
{

vlaF)a(v3’T) (’U4,T)} {(‘01, ) ('U3,F),(’U4, )} {(th)?(U-'ia ) (1)4, )}7
{UlaT)a(vL’n ) (1.)4, )} {(vla ) (U3a ) ('04, )}}

o The cost functions for the phases and the cost functions for remapping of individual
variables is shown in Figure 1. Individual remapping functions are only shown for
d3 € D3, & ={ (v1,T), (v3, F), (v4, F) }. Each edge in the graph represents a cost
function ¢(d5;, df, ,.);), 7 € {1,3,4}.

- Figure 2 shows a solution s to the example dynamic data layout problem, s = d},d}, d; €
DYN-REMAP(0). Note that all cost functions evaluate to 0. The corresponding truth value
assignment is {(vq,true), (v,, true), (vs, false), (vy,false)}. This truth value assignment
satisfies B.

(&7






P= { Ve V2 Yy

P={VpVyV,)

C) cost of layout is 0 ——  cost of remapping is 0
l: -_:) cost of layout is 1 ----=--—- cost of remapping is 1

Figure 1: Sample cost functions for g(B), B = (v1V—v2Vv3) A (-v1VvaVvg) A (v1VvsV-wg)

P,= { Vi Ve Ve

o—— /7

FFF) IFFT) Fr1) @GF8 (TF1) (TH (TT1D p3={vl, v3,v4}
D cost of layout is 0 ———  cost of remapping is 0
l , cost of layout is 1 -—-—-—=- cost of remapping is 1

Figure 2: Solution for g(B), B = (v1 V ~v; Vv3) A (-v1 VeV vg) A (v1 V3V —vy)







