Iloc’93

Preston Briggs
Tim Harvey

CRPC-TR93323
July 1993

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Iloc 93

Preston Briggs Tim Harvey
preston@cs.rice.edu harv@cs.rice.due

July 6, 1993

1 Introduction

ILOC ’93 is the latest in a series of intermediate languages used for our Module Compiler. For convenience,
we will simply use ILOC to indicate the current incarnation of the language.

ILOC shares the basic philosophy of earlier versions, but benefits from our experience. ILOC is a low-
level language, allowing extensive optimization; in particular, we expect to be able to eliminate much of the
overhead implicit in array indexing and procedure calls. On the other hand, ILOC is perhaps best suited for
traditional optimizations, such as strength reduction, common subexpression elimination, value numbering,
etc.; more aggressive dependence-based optimizations may require additional high-level structure.

The primary goal of this version of ILOC is to allow a greater degree of machine-independence in the
optimizer than previously achieved. The primary changes are reflected in the handling of procedure calls.
We believe that some portions of the front-end (a2:) are inherently machine dependent (especially in re-
gard to calling conventions). Similarly, certain phases of the back-end are necessarily machine dependent.
Nevertheless, we hope the bulk of the optimizer can be completely machine independent.

A secondary goal is to improve the readability of ILOC, both for humans and programs. Additionally,
we wish to be able to record the results of analysis and optimization within the code. Changes from earlier
versions include:

e The case of alphabetic characters is now significant.
e Opcodes have been renamed in a more systematic fashion.

o Register numbers are preceded with an ‘r’ to help emphasize the difference between registers and
expressions.

e Provision is made for recording interprocedural information, in human-readable form, within the body
of the procedure.

o Additional opcodes are defined to represent common addressing modes and loads from known constant
memory.

An important non-goal is support for C. We think ILOC is adequate for good Fortran 77 compilers; however,
it will need some extensions to support C. Weakness that come to mind include:

¢ inadequate support for character (byte) manipulation,

¢ no support for manipulation of short (16-bit) integers,

e no mechanism for representing pointer-based aliasing, and
e no support for volatile variables.

While none of these seem to insurmountable problems, we have not yet had occasion to extend ILOC in these
directions.

2 An ILOC File

We expect that a single ILOC file will contain a single routine with associated data and declarations. The
code (instructions) and the data are placed in separate segments. Executable code is placed in the program
segment; data is placed in the static data segment. Data declarations may appear anywhere. Consider the
following simple example:

foo: iDATA 0 100
fDATA 3.14 1
bar: 1 FRAME 100 => r0 r1 r2 r3 r4
L123: 2 £ADD 1r2 r3 => r5
3 fRTN x0 r5 | 4 £STor Q@quux 4 0 r4 x5

dDATA 1.414 1

In this case, we see three constants placed in the static data segment and a trivial routine defined in
the program segment. Segment control is implied the kind of statement. The data statements specify
100 integer zeroes, one single-precision floating-point constant equal to 3.14, and a double-precision floating-
point-constant equal to 1.414.

The executable operations each have statement numbers (hopefully referring to the original source text)
to aid when reporting certain statistics. Notice that we can have more than one operation on a line. This
implies that the two operations may be executed in parallel.

3 Labels

Instructions and declarations may have a symbolic label. A label is a string consisting of an alphabetic
character followed by zero or more alphanumeric characters. Case is significant.
Some labels refer to routines or data areas defined in another compilation unit. Other labels may need
to be visible to external routines. Such labels must be declared explicitly using the NAME declaration.
Often, labels will need to be invented to name new basic blocks created during the course of optimization.
These will have the form:

Ldigits

4 Declarations

NAME label Declares label as visible to other routines. Basically used as a declaration to the linker.

ALIAS var-tag [alias-tags] The ALIAS instruction is a declaration which lists all of the aliases for a partic-
ular variable. Note that this is MAY-ALIAS information; that is, stores to one variable may affect an
aliased variable. In the absence of any alias declarations, it is safe to assume that two variables are
not aliased.

4.1 Variable Tags

The tag for a particular variable is simply the variable’s name, preceded by an “at sign” (the character @).
For example,

quux a variable name
Qquux the tag

Besides tag names derived from the program source, a2i may invent tags for its own use (for instance, to
label locations in the stack frame). In the future, we may provide for more elaborate mechanisms to indicate
array sections and so forth.

5 The Data Segment

The following instructions are used to initialize data within the static data segment. The value-expression
specifies the value to be placed in memory; the repetition-expression specifies how many copies are to be
placed in memory.

bDATA integer-expression repetition-expression
iDATA integer-expression repetition-expression
fDATA single-expression repetition-expression

dDATA double-expression repetition-expression

BYTES size Reserves size bytes of uninitialized storage. Typically used for allocating large arrays in COMMON
blocks.

6 ILOC Instructions

We allow several operations to be packed into a single instruction, supporting experimentation with LIW ar-
chitectures, branch-and-execute instructions, and auto-increment addressing modes. When an instruction
is composed of several operations, the operations are (conceptually) issued in parallel; therefore, certain
restrictions are implied:

e It doesn’t make sense to have more than 1 control-flow operation; i.e., no more than one jump, brach,
return, or subroutine call per instruction.

e If several store operations are packed into an instruction, they should store to different locations.
¢ Similarly, no two operations should write to the same result register.

It is assumed that all inputs (memory locations and registers) are read before any results are written.

7 ILOC Operations

Registers in ILOC are not explicitely typed; however, if a floating-point operation attempts to use the result
of an integer operation, it will make problems for the register allocator. Registers are numbered from zero
and an infinite supply is assumed; however, a dense numbering is preferred (i.e., if using only 10 registers,
number them 0 to 9).

In the spelling of opcodes (also labels and tags), case is significant; lower-case characters are used as
modifiers for operations, which are defined to be in all upper-case. Generally, the “type” of each operation
is indicated by a single lower-case letter preceding the opcode.

b byte or character

integer

single-precision floating-point REAL*4

double-precision floating-point REAL*8
single-precision complex COMPLEX*8

q double-precision complex COMPLEX*16

O A

We have also defined address modifiers which are used to indicate addressing modes. When used, they
appear at the end of the opcode.

r register
1 label
o offset

Operations typically use and define registers. Used registers are always mentioned first. The string “=>”
always appears before any defined registers. For example, in the statement

iADD ri17 ri8 => ri9

the registers r17 and r18 are used to define r19.
The results of interprocedural analysis are represented via lists of tags. Items in the lists are separated
by whitespace and the lists are enclosed in square brackets.

7.1 Miscellaneous

HALT The HALT operation is not executable. Instead, it serves as an indication to the optimizer that execution
will never reach this point. Typically, it is emitted after a call to ezit.

NOP A placeholder. Sometimes used for labels or to replace instructions that have been deleted.

7.2 Procedure Calls and Returns

FRAME size => parms The FRAME operation serves as a header for a subroutine. The size is an integer value
specifying the size of the stack frame to be allocated. The parms list contains one or more registers
whose value is known at the beginning of the subroutine. While the length and exact contents of this
list are machine dependent, it will minimally contain the frame pointer and the registers containing
parameters sent to the subroutine.

The JSRr operations specify a call (jump to subroutine) of the routine whose address is contained in the
register reg. Registers containing arguments are specified by the parms list. All registers are preserved across
the call.

The optional lists refs and mods contain the tags of variables possibly referenced or modified by the
subroutine. For instance,

iJSR1 foo r0 ri10 r20 => r30 [@bar] [@quux]

indicates a call to the function foo, with the frame pointer in r0 and two parameters in r10 and r20. The
result is returned in r30. The variable bar may be referenced and the variable quux may be modified.

If no interprocedural information is available, the lists will be absent. If no variables are referenced or
modified, both lists will be empty. For example,

iJSR1 foo r0 ri0 r20 => r30
iJSR1 bar r0 ri10 r20 => r30 [Qquux] []

No information is known about foo, so we must conservatively assume that all variables may be referenced
and modified. On the other hand, we are certain that bar modifies no variables, though it may refer to quux.

JSRr reg fp parms [refs] [mods]

iJSRr reg fp parms => result [refs] [mods] Call a function returning an INTEGER result in the register
specified by result. This form is also used for calling CHAR and LOGICAL functions.

fJSRr reg fp parms => result [refs] [mods] Call afunction returning a REAL#*4 result in the register spec-
ified by result.

dJSRr reg fp parms => result [refs] [mods] Call a function returning a REAL#*8 result in the register spec-
ified by result. :

cJSRr reg fp parms => result [refs] [mods] Call a function returning a COMPLEX*8 result in the register
specified by result.

qJSRr reg fp parms => result [refs] [mods] Call a function returning a COMPLEX*16 result in the register
specified by result.

The JSR1 operations specify a call to a subroutine defined by label. The list parms is a list of registers
containing the parameters to be sent to the subroutine. The lists refs and mods contain variables possibly
referenced or modified by the subroutine. All registers are preserved across the call.

JSR1 label fp parms [refs] [mods]

iJSR1 label fp parms => result [refs] [mods] Call a function returning an INTEGER result in the register
specified by result. This form is also used for calling CHAR and LOGICAL functions.

£JSR1 label fp parms => result [refs] [mods] Call a function returning a REAL*4 result in the register
specified by result. :

dJSR1 label fp parms => result [refs] [mods] Call a function returning a REAL*8 result in the register
specified by result.

cJSR1 label fp parms => result [refs] [mods] Call a function returning a COMPLEX*8 result in the register
specified by result.

qJSR1 label fp parms => result [refs] [mods] Call a function returning a COMPLEX#*16 result in the reg-
ister specified by result.

The RTN operations specify a return from a subroutine call. fp is the register containing the frame pointer.
A list of live variables may be specified. If the list is not present, we must assume that all variables are live.
If a list is present, we assume it is conservative and specifies at least all the live variables (typically members
of common blocks and variables in the caller’s stack frame).

RTN fp Llive-vars] No value to be returned.

iRTN fp result [live-vars] INTEGER result to be returned in the result register.
fRTN fp result [live-vars] REAL*4 result to be returned in the result register.
dRTN fp result [live-vars] REAL*8 result to be returned in the result register.
cRTN fp result [live-vars] COMPLEX*8 result to be returned in the result register.

qRTN fp result [live-vars] COMPLEX*16 result to be returned in the result register.

7.3 Memory References

Load and store operations refer to a single memory location at a time. Each operation is typed, indicating
the size of the referenced location. Each operation contains a tag (a constant string) whose value corresponds
to the name of the source variable. Additionally, each operation contains an alignment indicator (an integer
constant) showing the minimal guaranteed alignment. Typical values would be 1, 2, 4, 8, 16, ... Normally,
the compiler will align REAL*4 values to a four-byte boundary, REAL*8 values to an eight-byte boundary, and
so forth. Occasionally, equivalence statements may force misalignment (or uncertain alignment).

We define a small hierarchy of load and store instructions. For the load instructions, the hierarchy looks
like this:

load immediate Load a known value into a register.

load from constant memory Load an unknown (but unchanging) value into a register. No subroutine or
store can affect this value.

load from scalar memory Load an unknown value from a scalar variable. No dependence analysis is
required to build use-def chains for this variable.

load from array memory Load an unknown value from a location in an array. It’s generally impossible
to build accurate use-def chains for array variables without dependence analysis.

For stores, the hierarchy is simpler since it only makes sense to store to scalar and array locations.

7.3.1 Load Immediate

iLDI int_.exp => result Load an immediate (INTEGER constant) value into a register.

fLDI int.exp => result Convert an immediate (INTEGER constant) value to a REAL*4 and load it into the
result register.

dLDI int.exp => result Convert an immediate (INTEGER constant) value to a REAL*8 and load it into the
result register.

cLDI int_exp => result Convert an immediate (INTEGER constant) value to a COMPLEX#8 and load it into
the result register. Note that the imaginary part of the complex value will be 0.

qLDI int.exp => result Convert an immediate (INTEGER constant) value to a COMPLEX#16 and load it into
the result register. Note that the imaginary part of the complex value will be 0.

7.3.2 Load from Constant Memory

The CON operations load a constant from memory. Only the “or” addressing form is expected to be required.
While the tags are not expected to be useful for optimization, they will be used by the cache simulator.

bCONor tag alignment offset base => result Load an‘ unsigned byte constant from memory.
iCONor tag alignment offset base => result Load an INTEGER constant from memory.
£CONor tag alignment offset base => result Load a REAL*4 constant from memory.
dCONox tag alignment offset base => result Load a REAL*8 constant from memory.
cCONor tag alignment offset base => result Load a COMPLEX*8 constant from memory.

qCONor tag alignment offset base => result Load a COMPLEX*16 constant from memory.

7.3.3 Load from Scalar Memory

A load operation copies a single value from memory into a result register.
The SLDor operations load values from a memory location defined by the sum of a base register and an
integer constant (the offset).

bSLDor tag alignment offset base => result Load an unsigned byte value from memory. The alignment is
included since it might be possible to take advantage of the information to block together character
operations.

iSLDor tag alignment offset base => result Load an INTEGER value from memory.
f£SLDor tag alignment offset base => result Load a REAL*4 value from memory.
dSLDor tag alignment offset base => result Load a REAL*8 value from memory.
cSLDor tag alignment offset base => result Load a COMPLEX*8 value from memory.

qSLDor tag alignment offset base => result Load a COMPLEX*16 value from memory.

The SLDrr operations load values from a memory location defined by the sum of a base register plus an
index register.

bSLDrr tag alignment index base => result Load an unsigned byte value from memory.
iSLDrr tag alignment index base => result Load an INTEGER value from memory.
fSLDrr tag alignment index base => result Load a REAL#*4 value from memory.

dSLDrr tag alignment index base => result Load a REAL#*8 value from memory.

cSLDrr tag alignment index base => result Load a COMPLEX*8 value from memory.

qSLDrr tag alignment index base => result Load a COMPLEX*16 value from memory.

Note — Starred instructions are potentially machine dependent and should not be emitted by the front end.
They are reserved for use by the optimizer and code generator.

7.3.4 Store to Scalar Memory

Store operations copy the contents of a value register into a memory location.
The SSTor operations store a value in the memory location defined by the sum of a base register and
some integer constant offset.

bSSTor tag alignment offset base value Store the byte value to memory.
iSSTor tag alignment offset base value Store the INTEGER value to memory.
£SSTor tag alignment offset base value Store the REAL*4 value to memory.
dSSTor tag alignment offset base value Store the REAL*8 value to memory.
cSSTor tag alignment offset base value Store the COMPLEX*8 value to memory.

qSSTor tag alignment offset base value Store the COMPLEX*16 value to memory.

The SSTrr operations store a value in the memory location defined by the sum of the base register and the
index register.

bSSTrr tag alignment index base value Store the byte value to memory.
iSSTrr tag alignment index base value Store the INTEGER value to memory.
£SSTrr tag alignment index base value Store the REAL*4 value to memory.
dSSTrr tag alignment index base value Store the REAL*8 value to memory.
cSSTrr tag alignment index base value Store the COMPLEX#8 value to memory.

qSSTrr tag alignment index base value Store the COMPLEX*16 value to memory.

7.3.5 Load from Array Memory

A load operation copies a single value from memory into a result register.
The LDor operations load values from a memory location defined by the sum of a base register and an
integer constant (the offset).

bLDor tag alignment offset base => result Load an unsigned byte value from memory. The alignment is
included since it might be possible to take advantage of the information to block together character
operations.

iLDor tag alignment offset base => result Load an INTEGER value from memory.

fLDor tag alignment offset base => result Load a REAL*4 value from memory.

dLDor tag alignment offset base => result Load a REAL*8 value from memory.

cLDor tag alignment offset base => result Load a COMPLEX*8 value from memory.

qLDor tag alignment offset base => result Load a COMPLEX*16 value from memory.

The LDrr operations load values from a memory location defined by the sum of a base register plus an index
register.

bLDrr tag alignment index base => result Load an unsigned byte value from memory.
iLDrr tag alignment index base => result Load an INTEGER value from memory.
fLDrr tag alignment index base => result Load a REAL*4 value from memory.

dLDrr tag alignment index base => result Load a REAL*8 value from memory.

cLDrr tag alignment index base => result Load a COMPLEX*8 value from memory.

qLDrr tag alignment index base => result Load a COMPLEX#*16 value from memory.

7.3.6 Store to Array Memory

Store operations copy the contents of a value register into a memory location.
The STor operations store a value in the memory location defined by the sum of a base register and some
integer constant offset.

bSTor tag alignment offset base value Store the byte value to memory.

iSTor tag alignment offset base value Store the INTEGER value to memory.
£STor tag alignment offset base value Store the REAL*4 value to memory.
dSTor tag alignment offset base value Store the REAL*8 value to memory.
cSTor tag alignment offset base value Store the COMPLEX*8 value to memory.
qSTor tag alignment offset base value Store the COMPLEX*16 value to memory.

The STrr operations store a value in the memory location defined by the sum of the base register and the
index register.

bSTrr tag alignment index base value Store the byte value to memory.
iSTrr tag alignment index base value Store the INTEGER value to memory.
£STrr tag alignment index base value Store the REAL*4 value to memory.
dSTrr tag alignment index base value Store the REAL*8 value to memory.
cSTrr tag alignment index base value Store the COMPLEX*8 value to memory.

qSTrr tag alignment index base value Store the COMPLEX*16 value to memory.

7.4 Arithmetic
7.4.1 Integer Arithmetic
iADD addend addend => sum

iSUB minuend subtrahend => difference where difference «— minuend — subtrahend.
iMUL multiplicand multiplier => product

iDIV dividend divisor => quotient where quotient — dividend/divisor.

iADDI immediate addend => sum

iSUBI immediate subtrahend => difference where difference «— immediate — subtrahend.

7.4.2 Single-Precision Arithmetic

£ADD addend addend => sum
£SUB minuend subtrahend => difference
fMUL multiplicand multiplier => product

£DIV dividend divisor => quotient

7.4.3 Double-Precision Arithmetic
dADD addend addend => sum

dSUB minuend subtrahend => difference
dMUL multiplicand multiplier => product

dDIV dividend divisor => quotient

7.4.4 Single-Precision Complex Arithmetic

cADD addend addend => sum
cSUB minuend subtrahend => difference
cMUL multiplicand multiplier => product

cDIV dividend divisor => quotient

7.4.5 Double-Precision Complex Arithmetic
gADD addend addend => sum

qSUB minuend subtrahend => difference

qMUL multiplicand multiplier => product

qDIV dividend divisor => quotient

7.5 Control Flow
JMP1 Jlabel Jump to the location of label.

JMPr reg [labels] Jump to the location pointed to by reg. The possible values of reg are indicated by the
list Jabels. For best results, the label list should be as precise as possible; extra labels will cause extra
edges in the control-flow graph and severly degrade optimization.

BR true false op Branch to the true label if the boolean value in op is TRUE, else branch to the false label.

7.6 Comparisons and Conditional Branches

The handling of compares and branches is difficult to accomplish in a machine-independent fashion. There
seem to be two styles used in common machines:

1. A general compare (or perhaps subtract) setting a condition code, followed by a specific branch on a
particular condition code setting (e.g., branch if greater-than).

2. A specific compare (e.g., testing for equality) setting a result register to true or false, then branching
based on the sense of the result register.

We try to support both schemes. Typically, a comparison and branch will require three operations. The
first is a compare which sets a result to —1, 0, or 1 if the first operand is less than, equal to, or greater
than the second operand, respectively. The second operation is a logical operation which reads the result
of the comparison and returns a boolean result for the specified condition. The final operation would be a
branch on the sense of the logical operation. During optimization, we may combine two of these operations,
depending on which scheme the target machine supports.

CMP operations compare the values in two registers and put the result into the result register cc. Note
that the result register is not a special machine register; rather, it is simply a general-purpose register.

iCMP opl op2 => cc Compare two INTEGER values.

fCMP opl op2 => cc Compare two REAL*4 values.

dCMP opl op2 => cc Compare the REAL*8 values.

cCMP opl op2 => cc Compare the COMPLEX*8 values.

> cc Compare the COMPLEX*16 values.

qCMP opl op2

The following operations take the result of one of the CMP operations (above) and convert it into a boolean
value. The possible values are TRUE and FALSE, although the implementation of these values will be with
the integers —1 and 0, respectively.

EQ cc => logical Set logical to TRUE if cc = 0, FALSE otherwise.
NE cc => logical Set logical to TRUE if cc # 0, FALSE otherwise.
LE cc => logical Set logical to TRUE if cc # 1, FALSE otherwise.
GE cc => logical Set logical to TRUE if cc # —1, FALSE otherwise.
LT cc => logical Set logical to TRUE if cc = —1, FALSE otherwise.

GT cc => logical Set logical to TRUE if cc = 1, FALSE otherwise.

10

The CMPcc instructions compare two operands, testing for a specific condition, and set the result register
logical to either TRUE or FALSE. Effectively, the iCMPeq instruction serves as a combination of the iCMP
instruction and the EQ instruction.

iCMPeq opl op2 => logical
iCMPne opl op2 => logical
iCMPle opl op2 => logical
iCMPge opl op2 => logical
iCMP1t opl op2 => logical
iCMPgt opl op2 => logical

fCMPeq opl op2 => logical
£CMPne opl op2 => logical
£CMPle opl op2 => logical
fCMPge opl op2 => logical
fCMP1t opl op2 => logical
fCMPgt opl op2 => logical

dCMPeq opl op2 => logical
dCMPne opl op2 => logical
dCMPle opl op2 => logical
dCMPge opl op2 => logical
dCMP1t opl op2 => logical
dCMPgt opl op2 => logical

cCMPeq opl op2 => logical
cCMPne opl op2 => logical

qCMPeq opl op2 => logical
qCMPne opl op2 => logical

The BRcc operations branch to the true label if the appropriate test on the cc register is TRUE, otherwise
they branch to the false label. Effectively, a BReq combines an EQ instruction and a BR instruction.

BReq true false cc
BRne true false cc
BRle true false cc
BRge true false cc
BR1t true false cc

BRgt true false cc

11

7.7 Intrinsics
7.7.1 Conversions and Copies

The conversion functions are not specified completely by the Fortran ANSI standard, so we have defined our
own. All of the function names are built with the following formula:

<old_type>2<new_type>
where old_type and new_type are taken from the set of type prefixes for non-intrinsic iloc operations.
i2i old => new Copy.
i2f old => new
i2d old => new
i2¢ old => new Assigns (old,0) to new.

i2q old => new Assigns (old,0) to new.

£2i old => new Truncation.

£2f old => new Copy.

f£2d old => new

f2c old => new Assigns (old,0) to new.

£2q old => new Assigns (old,0) to new.

d2i old => new Truncation.

d2f old => new

d2d old => new Copy.

d2c old => new Assigns (old,0) to new.

d2q old => new Assigns (old,0) to new.

c2i old => new Returns the truncated real part.
c2f old => new Returns the real part.

c2d old => new Returns the real part.

c2c old => new Copy.

c2q old => new

q2i old => new Returns the truncated real part.
q2f old => new Returns the real part.

q2d old => new Returns the real part.

12

q2c old => new
q2q old => new Copy.
cCOMPLEX real_l real.2 => complex_result Construct a COMPLEX*8

qCOMPLEX double_1 double2 => dcomplex._result Construct a COMPLEX*16

7.7.2 Intrinsic Functions

Truncation
£TRUNC real_input => real_result Implements AINT()

dTRUNC double_input => double_result Implements DINT()

Rounding

fROUND real_input => real_result Implements ANINT()
dROUND double_input => double_result Implements DNINT()
fNINT realinput => integer_result Implements NINT()

dNINT double_input => integer_result Implements IDNINT()

Absolute Value
iABS integer_input => integer_result Implements IABS()
fABS real_input => real result Implements ABS()

dABS double_input => double_result Implements DABS ()

cABS complex_input => real_result The absolute value of a complex is \/real_part* + imag_part? and yields
a real value, not a complex one.

qABS dcomplex_input => double_result The absolute value of a complex is \/real_part® + imag_part* and
yields a real value, not a complex one.

Arithmetic Shifts Typically, integer shift operations are emitted by the optimizer to obtain quicker
computation of multiply and divide. Note that while shifting a positive integer right one place is equivalent
to dividing by two, the same trick does not work for negative numbers.

iSL amount_reg value_reg => result Shift left. The shift amount in amount_reg must be > 0.
iSLI amount_exp value_reg => result Shift left. The shift amount specified by amount_exp must be > 0.
iSR amount_reg value_reg => result Shift right. The shift amount in amount.reg must be > 0.

iSRI amount_exp value_reg => result Shift right. The shift amount specified by amount_exp must be > 0.

13

Bitwise Logical Shifts Bitwise shifts (also commonly known as logical shifts) are used for bit-field ma-
nipulations. The primary difference from integer shifts is that bitwise right shifts move 0 bits into the the
most significant bit position; integer shifts duplicate the value of the sign bit, thus preserving the sign of
integer values.

1SHIFT amount.reg value_reg => result Shift the value contained in value_reg by the amount contained in
the amount_reg. The shift amount may be positive, negative, or zero. A negative value indicates a
right shift and a positive value indicates a left shift. This instruction is generated by the front end and
will be subjected to optimization. If necessary, it will be converted to one of the following instructions
before code generation.

1SL amount._reg valuereg => result Shift left. The shift amount in amount_reg must be > 0.
1SLI amount_exp valuereg => result Shift left. The shift amount specified by amount_exp must be > 0.
1SR amount.reg valuereg => result Shift Right. The shift amount in amount_reg must be > 0.

1SRI amount_exp valuereg => result Shift right. The shift amount specified by amount_exp must be > 0.

Bitwise Logical Operations The following operations perform the appropriate logical operation in a
bitwise fashion between two integer values, putting the result into the result register.

1AND opl op2 => result
10R opl op2 => result

1NAND opl op2 => result
1NOR opl op2 => result
1EQV opl op2 => result
1X0R opl op2 => result

1NOT op => result

Remainder
iMOD integer_dividend integer_divisor => integer_remainder Implements MOD()
fMOD real_dividend real_divisor => real_remainder Implements AMOD ()

dMOD double_dividend double_divisor => double_remainder Implements DMOD()

Sign Transfer
iSIGN integer_input sign_determining_integer => integer_result Implements ISIGN()
£SIGN real_input sign.determining.real => real_result Implements SIGN()

dSIGN double_input sign_determining_double => double_result Implements DSIGN()

Positive Difference If minuend > subtrahend, the result is minuend — subtrahend. Otherwise, the result
is zero.

iDIM integer_minuend integer_subtrahend => integer_positive_difference
£DIM real_minuend real_subtrahend => real_positive_difference

dDIM double_minuend double_subtrahend => double_positive_difference

14

Double Precision Product

dPROD real_multiplicand real_multiplier => double_product

Maximum
iMAX integer.l integer_2 => integer_result
fMAX real_l real_.2 => real_result

dMAX double.1 double_2 => double_result

Minimum

iMIN integer.l integer-2 => integer_result
fMIN real_l real 2 => real_result

dMIN double_1 double_2 => double_result

Imaginary Part of Complex
cIMAG complex_input => realresult Extracts the imaginary part of a COMPLEX*8

qIMAG dcomplex_input => double_result Extracts the imaginary part of a COMPLEX*16

Conjugate (r,i) = (r,—1)
cCONJ complex_input => complex_result For COMPLEX*8

qCONJ dcomplex_input => dcomplex_result For COMPLEX*16

Square Root

fSQRT real_input => real_result

dSQRT double_input => double_result
c¢SQRT complex_input => complex_result

qSQRT dcomplex_input => dcomplex_result

Exponential Computes e*

fEXP real_exponent => real_result

dEXP double_exponent => double_result
cEXP complex_exponent => complex_result

qEXP dcomplex_exponent => dcomplex._result

Natural Logarithm

fLOG real_antilog => real_logarithm

dLOG double_antilog => double_logarithm
cLOG complex_antilog => complex_logarithm

qLOG dcomplex_antilog => dcomplex_logarithm

15

Common Logarithm Computes the logarithm, base 10

fL0G10 real_antilog => real logarithm

dL0G10 double_antilog => double_logarithm

Exponentiation These are provided to handle FORTRAN’s exponentiation operator. They each compute
input, ** input,.

iPOW integer_inputl integer_input2 => integer_result

£POW float_inputl float_input2 => float_result

dPOW double_inputl double_input2 => double_result

cPOW complex_inputl complex_input2 => complex_result
qPOW dcomplex_inputl dcomplex_input2 => dcomplex_result

Since raising a number to an exact integer power is an important special case, we provide separate operations
to handle it. Of course, the case of an integer raised to an integer power is already handled above.

fPOWi float_input integer.input => float_result
dPOWi double_input integer_input => double_result
cPOWi complex_input integer_input => complex_result

qPOWi dcomplex_input integer_input => dcomplex_result

Sine

£SIN real_input => real_result

dSIN double_input => double_result
cSIN complex_input => complex_result

qSIN dcomplex_input => dcomplex_result

Cosine

£COS real_input => real result

dC0S double_input => double_result
cCOS complex_input => complex_result

qC0S dcomplex_input => dcomplex_result

Tangent
fTAN real_input => real_result

dTAN double_input => double_result

Arcsine
fASIN real_input => real_result

dASIN double_input => double_result

16

Arccosine
fACOS real_input => real_result

dACOS double_input => double_result

Arctangent

fATAN real_input => real_result

dATAN double_input => double_result

Note that xATAN2 produces the arctan of a quotient, where the divisor may be zero.
fATAN2 real_dividend real_divisor => real_result

dATAN2 double_dividend double_divisor => double_result

Hyperbolic Sine
£SINH real_input => real_result

dSINH double_input => double_result

Hyperbolic Cosine
£COSE real_input => real_result

dCOSH double_input => double_result

Hyperbolic Tangent
£TANH real_input => real_result

dTANE double_input => double_result

8 Assertions

Assertions may appear in the code to indicate that certain facts hold at that particular point. They are not
executable; rather, they are to act as hints to the optimizer (typically, they are inserted by one pass of the
optimizer as a hint to another pass of the optimizer). On the other hand, they cannot simply be ignored
since they often imply a copy (or renaming) from a source to the result.

iASRT immediate source => result Asserts that the result register is equal to the integer expression.

iASRTeq sourcel source2 => result This operation asserts that the integer source registers have the same
value.

{
v

fASRTeq sourcel source2 => result This operation asserts that the floating-point source registers have the

same value.

[}
\4

dASRTeq sourcel source2 result This operation asserts that the double-precision source registers have

the same value.

"
v

cASRTeq sourcel source2 result This operation asserts that the complex source registers have the same

value.

qASRTeq sourcel source2 => result This operation asserts that the double-complex source registers have
the same value.

17

