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Abstract. This paper gives a simplified, abstract description of generalized pattern search meth-
ods for solving nonlinear optimization problems. Pattern search methods are a class of direct search -
methods—methods that neither require nor explicitly approximate derivatives. The abstract descrip-
tion of pattern search methods is used to establish a global first-order stationary point convergence
theory that neither requires the directional derivative nor enforces a notion of sufficient decrease. The
relationship between the convergence theory for pattern search methods and the theory for both line
search and model trust region strategies is also discussed.
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1. Introduction. In this paper, we will study methods that do not require the
directional derivative to solve the unconstrained minimization problem

min f(Z),
where f : R® — R. Such methods generally are referred to as direct search methods.

The purpose of this paper is to define and analyze a generalization of pattern search
methods, a particular subclass of direct search methods. We will give a global, first-
order stationary point convergence theory for pattern search methods, which, to our
knowledge, will provide the first known convergence result for some of these methods,
and the first general convergence theory for all of them.

Hooke and Jeeves [10] introduced the term “direct search” to describe methods that
work directly with values of the objective function to drive the search. In particular,
they noted that:

Direct search is distinguished from other numerical procedures by hav-
ing a finite number of states which, without loss of generality, can be
indexed by a set of integers.... It does not include methods which
possess a continuum of states, such as those (e.g., Newton’s method
and methods of steepest ascent) which rely on the use of such tools as
derivatives and power series approximations. (p. 225)
For Hooke and Jeeves, the notion of a “finite number of states” was no doubt influenced
by automata theory:
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The “strategy” for selecting new trial points is determined by a set

of “states” which provide the memory. The number of states is finite.

There is an arbitrary initial state So, and a final state which stops the

search. The other states represent various conditions which arise as a

function of the results of the trials made. (p. 213)
Our definition and analysis of pattern search methods will hinge on a different notion
of “finite number of states.” At iteration k of a pattern search method, the iterate T4
is chosen from a finite set of possibilities that is essentially independent of the function
f. A successful iteration is one for which the algorithm chooses from among this finite
set of possibilities any iterate that satisfies simple decrease, i.e., f(Zr+1) < f(Zk).

A unique feature of the convergence theory we will present is that we are able to
guarantee first-order convergence without an explicit representation of the gradient or
the directional derivative. In particular, we can prove convergence for pattern search
methods even though they do not explicitly enforce fraction of Cauchy decrease, the
Armijo—Goldstein-Wolfe conditions, or some other notion of sufficient decrease, on their
iterates. To do so, we specifically exploit the fact that pattern search methods possess
a finite number of states. However, the global convergence analysis of these methods
also shows that they share several important features with both line search and model
trust region methods. We believe this to be somewhat subtle and unexpected.

The important ideas for the convergence theory for pattern search methods come
from the convergence theory developed by Torczon [20] for the multidirectional search
algorithm of Dennis and Torczon [9, 19]. The main contribution of this paper is a concise
abstraction of the key ingredients necessary for a more general convergence theory.

We have been aware, for some time, that the same style of argument used to prove
global convergence for the multidirectional search algorithm could be applied, individ-
ually, to such classical algorithms as coordinate search, with fixed step sizes, response
surface methodology, first developed by Box and Wilson [4] and later popularized by
Box [2, 3], and the original pattern search algorithm of Hooke and Jeeves [10]. The chal-
lenge was to develop an abstraction that both allowed for a general convergence theory
and explained why such algorithms, often viewed as disparate direct search methods,
could be analyzed using the same techniques. The goal, then, was to show that these
methods were special cases of a generalized pattern search method.

We flirt with the possibility of confusion by using pattern search to describe this
class of methods, since Hooke and Jeeves first used the term to describe the particular
direct search method they developed. Our reasons for adopting this terminology are
several. First, the notion of a pattern that is used to define the search at every inner
iteration of these methods aptly captures the common element that allows for the
general convergence theory. But just as important is our desire to give credit to Hooke
and Jeeves for recognizing the usefulness of direct search methods. These algorithms
have remained in favor with users, not because they are particularly efficient when
compared to methods that rely on derivatives, but because they are both simple and
robust. The convergence theory we present will make it clear why these methods are as
robust as their proponents have long claimed, while clarifying some of the limitations




ON THE CONVERGENCE OF PATTERN SEARCH ALGORITHMS 3

that have long been ascribed to these methods. In addition, now that the key ingredients
these methods share have been identified, it is possible to develop new pattern search
methods for which the theory holds.

The abstraction we present should make the important elements of the global con-
vergence theory much clearer than those found in [20]. Furthermore, we hope that the
unexpected parallels with classical convergence theory for both line search and model
trust region methods now will be more evident. This paper also includes a new analytic
argument for the proposition, found in [20], stating that if the sequence of iterates is
uniformly bounded away from the set of stationary points of the function, then the
multidirectional search algorithm can visit only a finite number of points. (This result
has also been extended to generalized pattern search methods.) In addition, we include
a correction to the specification for the scaling factors found in [20].

In the next section we will establish the notation and general specification of pattern
search methods. In §3 we will show that the classical pattern search methods mentioned
above, as well as the newer multidirectional search algorithm of Dennis and Torczon,
conform to the general specification for pattern search methods and thus fall under the
domain of the convergence theory we have developed. In §4, we will prove that if the
function to be minimized is continuously differentiable, then these methods guarantee
first-order stationary point convergence. In §5 we will discuss the relationship between
the convergence theory for pattern search methods and the convergence theory for line
search and model trust region methods. Finally, in §6, we give some concluding remarks.

2. The Generalized Pattern Search Method. To make the convergence anal-
ysis succinct, we will introduce the following abstraction of pattern search methods. We
will defer to the next section demonstrations that the pattern search methods mentioned
above fall comfortably within this abstraction. Bear in mind that none of the pattern
search methods we will discuss was developed with a convergence theory in mind. The
seemingly complicated features found in the abstract specification reflect the original
statements of each these algorithms and so were motivated by practical considerations.

The Basis Matrices. We begin with a finite, nonempty set of n x n nonsingular
basis matrices B. We choose a particular matrix

(1) B, =[b}---b| €B
as a reference and express the columns of any other matrix
By=[b}---b;] B
as a linear combination of the columns of the designated matrix B,. Thus,
. n . - .
(2) b;z =Zﬂi,lbi J= 1’“'7"'
=1

The Core Pattern. We require a core pattern I' = [j!-.-4"] € R™". The
core pattern I' must also be nonsingular. We will refer to the elements 47, of I'; the
superscript refers to the column and the subscript to the row.
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The Generating Matrix. At every iteration k we require an n X p generating
matriz Cj, where p > 2n. We use Cj to generate a pattern of points associated with a
given algorithm. We require that the columns of Cy contain the columns of both the
core pattern I and its negative —T'. In addition, we will require C to contain a column
of all zeros. We will partition Cj as follows:

(3) Ce=[L L Al=[L Al
n n p—2n 2n p—2n

The block F = [I' —TJ] is a portion of the generating matrix that is fized across all
iterations; Ax contains additional columns. The columns of Ax may or may not vary
across iterations; however, Ay always contains at least one column—the column of all
zeros. We express the columns of

-1 -
Cr = [ck '--c,f]

as linear combinations of the columns of the core pattern I' so that

n

(4) E‘I‘;=Ea§c,j;7‘j t=1,---,p.

J=1

The Constants of Proportionality. To ensure global convergence, we must
place a restriction on the scalars ﬂfb’,, 43, and a};,j; namely, that there exist nonzero
scalars q;,¢2 € R such that

(5) QIﬂi,lez, V]=1’an Vl:laan V"p:l,aiBl,

where Z denotes the set of integers and |B| denotes the cardinality of the set B,

(6) Q2‘7',’,,€Z, Vj=1,'°°,’n Vm:l,-..,n’
and
(7) qzai,,-eZ Vi=1,---,p Vi=1,---,n VY k.

The constants of proportionality ¢; and g2 found in (5), (6), and (7) are present in
each of the pattern search methods we will consider.

The Pattern. A pattern P, is defined by the columns of the matrix Py = BiCk,
where B, € B. Because both B and Cj have rank n, the columns of P, span R™.
For convenience, we will use the partition of the generating matrix C} given in (3) to
partition P as follows:

2n p—2n

We define a trial step 5} to be any vector of the form

9) 5i = AeBicy,
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where A, € R. Note that B¢} determines the direction of the step, while Ay serves as
a step length parameter.
At iteration k, we define a trial point as any point of the form

Ty =T + 5,
where T is the current iterate.

The Exploratory Moves. Pattern search methods proceed by conducting a se-
ries of ezploratory moves about the current iterate before declaring a new iterate and
updating the associated information. These moves can be viewed as sampling the func-
tion about the current iterate Z; in a well-defined deterministic fashion in search of a
new iterate Tr41 = &x + 5 with a lower function value. The individual pattern search
methods are distinguished, in part, by the manner in which these exploratory moves
are conducted. To allow the broadest possible choice of exploratory moves, and yet still
maintain the properties required to prove convergence for the pattern search methods,
we shall place two requirements on the exploratory moves associated with any particular
pattern search method. These requirements are given in the following Hypotheses on
Exploratory Moves. (Please note an abuse of notation that is nonetheless convenient.
Throughout this paper, if A is a matrix, then the notation § € A will mean the vector
¥ is contained in the set of columns of A.)

Hypotheses on Exploratory Moves.
1. 3k € APy = A BrCh.
2. If min{f(:i'k + 5), ge AkBkF} < f(i:‘k), then f(fk + .§'k) < f(fk)

In other words, the choice of exploratory moves must ensure two things:

1. The direction of any step Sj accepted at iteration k is defined by the pattern
Py and its length is determined by Aj.

2. If simple decrease on the function value at the current iterate can be found
among any of the 2n trial steps defined by A, B F, then the exploratory moves
will produce a step 3} that also gives simple decrease on the function value at
the current iterate.

There are two important points worth noting:
e First, 3§, may be contained in A;BxA; rather than in Ay B F.
e Second, f(Zx+ 5k) need not be min{ f(Zx+ &), & € AxBxF'}; 3k only need
satisfy f(Zx + 3&) < f(Zk). _
These are the properties of the exploratory moves that enable us to prove convergence
by requiring only simple decrease on f while avoiding the necessity of enforcing either a
fraction of Cauchy decrease or the Armijo—Goldstein—-Wolfe conditions on the iterates.

The Generalized Pattern Search Method. We now specify the generalized
pattern search method for unconstrained minimization.

To define a pattern search method, it is necessary to specify the family of basis
matrices B, the core pattern I', the generating matrix Cy = [[' =T Ax] = [F Ag], the
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Algorithm 1. The Generalized Pattern Search Method.

Let £o € R™ and Ao > 0 be given.

For k=0,1,---,

- a) Compute f(Z).
b) Determine a step 3% using an ezploratory moves algorithm.
c) Compute pyx = f(:i“k) - f(fk + 3k).
d) If px > 0 then Ti41 = Zx + 3. Otherwise Ti1 =
e) Update Ck, By, and Ayg.

_‘

result 3% of the exploratory moves, and the algorithms for choosing B from B and for
updating C and A.

The Updates. The aim of the updating algorithm for Ay is to force pr > 0. An
iteration with pr > 0 is successful; otherwise, the iteration is unsuccessful. Again we
note that to accept a step we only require simple, as opposed to sufficient, decrease.

Algorithm 2. Updating A;.
Given 7 € Q (Q denotes the set of rational numbers), 7 > 1 and {wo,ws, -+, w1} C
|A| < 400, where wo < 0 and w; > 0, i = 1,---,|A|, let § = 7*° and A\x € A
{Tw1, “os ,7-‘”|AI},

a) If pr <0 then Agyr = 0A;.

b) If pr > 0 then Agyr = Al

Z,

The conditions on # and A ensure that 0 < 8 <1 and \; > 1 for all A\; € A. Thus,
if an iteration is successful it may be possible to increase the step length parameter Ay,
but Ay is not allowed to decrease. Not surprisingly, this is crucial to the success of the
theory. Also crucial to the theory is the relationship (overlooked in [20]) between 6 and
the elements of A. These requirements are not particularly restrictive, as we shall see
in §3.

The algorithm for updating Cj; will depend on the pattern search method. For
theoretical purposes, it is sufficient to choose the columns of Cj so that they satisfy the
conditions given in (4) and (7).

Updating B; requires a way to choose Bjy from the finite family of basis matrices
B. Again, this choice will depend on the pattern search method, but will not affect the
theory. For theoretical purposes it is sufficient that the matrices contained in B satisfy
the conditions given in (2) and (5).

3. The Particular Pattern Search Methods. In §2 we stated the conditions
an algorithm must satisfy to be a pattern search method. We will now illustrate these
conditions by considering the following specific algorithms:

e the coordinate search algorithm,

e response surface methodology, in its simplest form, as presented by Box and
Wilson in [4],

e the original pattern search method of Hooke and Jeeves [10], and

e the multidirectional search algorithm of Dennis and Torczon ([9] and [19]).
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We will show that these methods satisfy the conditions that define pattern search meth-
ods and thus are special cases of the generalized pattern search method presented as
Algorithm 1. Specifically, we will identify the following for each of the four methods:
1. The finite, nonempty set of n X n nonsingular basis matrices B.
2. The nonsingular core pattern I' € R™*",
3. The n X p generating matrix Cj that includes the columns of both I and —T,
as well as a column of zeros, among its p columns so that Ci can be partitioned
as in (3).
4. The constants of proportionality ¢;,¢2 € R that satisfy (5), (6), and (7).
5. An exploratory moves algorithm that satisfies the conditions given in Hypothe-
ses on Exploratory Moves.
6. An algorithm for choosing Bj4; from B.
7. An algorithm for updating Cj.
8. An algorithm for updating A, that conforms with Algorithm 2.
These are the pieces we need to specify in the generalized pattern search method given
in Algorithm 1. Once we have established that these conditions hold for a given method,
we can appeal to Theorem 4.4 to claim global convergence for the method.

There are undoubtedly other algorithms for which this analysis holds—including
various modifications to the algorithms presented—but we shall confine our investiga-
tion to these, the best known of the pattern search methods, as illustrative of the power
of Theorem 4.4.

3.1. Coordinate Search with Fixed Step Lengths. The method of coordinate
search is the simplest and most obvious of all the pattern search methods. Davidon de-
scribes it concisely in the opening of his belated preface to Argonne National Laboratory
Research and Development Report 5990 [7]:

Enrico Fermi and Nicholas Metropolis used one of the first digital com-
puters, the Los Alamos Maniac, to determine which values of certain
theoretical parameters (phase shifts) best fit experimental data (scat-
tering cross sections). They varied one theoretical parameter at a time
by steps of the same magnitude, and when no such increase or decrease
in any one parameter further improved the fit to the experimental data,
they halved the step size and repeated the process until the steps were
deemed sufficiently small. Their simple procedure was slow but sure....

Not only is this algorithm simple, it conforms with classical notions of good exper-
imental design: vary one factor at a time and observe the effect of that variation on
the result of the associated experiment. This method enjoys many names, among them
alternating directions, alternating variable search, azial relazation, and local variation.
We shall refer to it as coordinate search.

Perhaps less obvious is that coordinate search is a pattern search method and, in
fact, could be considered the canonical pattern search algorithm. To see this, we will
begin by considering all possible scenarios for a single iteration of coordinate search
when n = 2. These can be seen in Fig. 1. We mark the current iterate Z;. The
Z)’s with superscripts mark trial points considered during the course of the iteration.
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FIG. 1. All possible subsets of the steps for coordinate search in R2.

The next iterate Zx,; is marked. Solid circles indicate successful intermediate steps
taken during the course of the iteration while open circles indicate points at which the
function was evaluated but that did not produce further decrease in the value of the
objective function. Thus, in the first scenario shown, a step from Zj to Z; resulted in
a decrease in the objective function, so the step from Z} to Zi41 was tried and led to
a further decrease in the objective function value. The iteration was then terminated
with a new point 4, that satisfies the simple decrease condition f(Zk4+1) < f(Zk). In
the worst case, the last scenario shown, 2n trial points were evaluated (Z}, ZY, Z2, and
#2') without producing decrease in the function value at the current iterate Zx. In this
case, $141 = T and the step size must be reduced for the next iteration.

We will now show this algorithm is an instance of a generalized pattern search
method.

3.1.1. The Basis Matrix. The family of basis matrices B consists of a single
matrix. Coordinate search is usually defined so that the basis matrix is the identity
matrix; i.e., B = {I}. However, knowledge of the problem may lead to a different choice
for the basis matrix. It may make sense to search using a different coordinate system.
For instance, if the variables are known to differ by several orders of magnitude, this
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can be taken into account in the choice of the basis matrix (though, as we will see in
§7.2, this may have a significant effect on the behavior of the method).

3.1.2. The Core Pattern. For coordinate search, the core pattern is the identity
matrix; i.e., ' = I.

3.1.3. The Generating Matrix. For coordinate search, the generating matrix
Cl contains in its columns all possible combinations of {—1,0,1}. Thus, Cj has p = 3"
columns. In particular, the columns of Cj will contain both I and —1I, as well as a
column of all zeros. Thus F = [I' —I'] = [I —1I], which is consistent with our definition
of the core pattern. Note, also, that Cj is fixed across all iterations of the method; A
consists of the remaining 3" — 2n columns of C). For n = 2 we have

1

Ce=|

[l =]

-1 01 1-1-10
0-1 1-1-1 1 0

Thus, when n = 2, all possible trial points defined by the pattern P, = B;Cy, for a

given step length A, can be seen in Fig. 2. Note that the pattern includes all the

possible trial points enumerated in Fig. 1.

F1G. 2. The pattern for coordinate search in R? with a given step length Ag.

3.1.4. The Constants of Proportionality. Since B consists of a single matrix,
Q1= 1. '

Since the generating matrix Ci consists of all possible combinations of {-1,0,1}
(and is fixed across all iterations of the method) and ' = I, the second constant of
proportionality is simply ¢g; = 1.

3.1.5. The Exploratory Moves. The exploratory moves for coordinate search
are given in Algorithm 3, where the €;’s denote the unit coordinate vectors.

The exploratory moves are executed sequentially in the sense that the selection of
the next trial step is based on the success or failure of the previous trial step. Thus,
while there are 3" possible trial steps, we may compute as few as n trial steps, but we
compute no more than 2n at any given iteration, as we saw in Fig. 1.

From the perspective of the theory, there are two conditions that need to be met
by the exploratory moves algorithm. First, as Figs. 1 and 2 illustrate, all possible trial
steps are contained in A;P;.

The second condition on the exploratory moves is the more interesting; coordinate
search demonstrates the laxity of this second hypothesis. For instance, in the first
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Algorithm 3. Exploratory Moves Algonthm for Coordinate Search.
Given Iy, Ak, f(Z), and Bk, set 5 = 0, pr =0, and min = f(F%).
For:=1,- Bl do
a) §i = 8 + AwByé; and &} = & + 3{. Compute f(Z}).
b) If f(Z{) < min then px = f(Z%) — f(F}), min = f(Z{), and 3k = 5%
Otherw1se,
i) §f = 3% — AxB€; and &, #} = &4 + 5. Compute F(ZD).
ii) If f(Z]) < min then py = f(Fk) — f(Z}), min = f(£{), and 35k = 5.
Return.

scenario shown in Fig. 1, decrease in the objective function was realized for the first
trial step

o 1

s,: = AkI ( 0) ’
so the second trial step

- 1 1 0
= ut (1) =t (1) + 01 ()

was taken, and accepted. It is certainly possible that greater decrease in the value of
the objective function might have been realized for the trial step

5= Ayl (‘1)) ,

which is contained in the core pattern I' = I (the step 37 is not contained in the core
pattern), but 5, is not tried when simple decrease is realized by the step 5}. However,
in the worst case, as seen in Fig. 1, the algorithm for coordinate search ensures that all
2n steps defined by Ay By F = AkBk[I" —TI'] = AgBx[I —1I] are tried before returning the
step 5% = 0. In other words, the exploratory moves given in Algorithm 3 will examine
all 2n steps defined by AxByF unless a step satisfying f(Zx + 3k) < f(Z) is found.

3.1.6. Choosing the Basis Matrix. Since B consists of a single matrix, there
is no need for a special algorithm to select Bk.

3.1.7. Updating the Generating Matrix. Since C} is fixed across all iterations
of the method, there is no need for an update algorithm.

3.1.8. Updating the Step Length. The update for Ay is exactly as given in
Algorithm 2. As noted by Davidon, the usual practice is to continue with steps of the
same magnitude until no further decrease in the objective function is realized, at which
point the step size is halved. This corresponds to setting § = 1/2 and A = {1}. Thus,
T =2, wy=—1,and w; =0.

Since we have shown that coordinate search with fixed step length satisfies all the
necessary requirements, we can therefore conclude that coordinate search with fixed
step length is a pattern search method.
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3.2. Response Surface Methodology. In 1951, Box and Wilson [4] introduced
the notion of “response surface methodology” as a way to investigate an objective func-
tion by performing function evaluations at the vertices of some geometric configuration
in the space of independent variables. This paper prepared the way for the development
of direct search methods, in general, and what we now call pattern search methods, in
particular. ‘

In its simplest form, response surface methodology is based on what are known
as “two-level factorial designs”: evaluate the function at the vertices of a hypercube
centered about the current iterate. (In fact, Box refers to this as one of a variety of
“pattern of variants” [3].) An example for n = 2 can be seen in Fig. 3. If simple decrease
in the value of the objective function is observed at one of the vertices, it becomes the
new iterate. Otherwise, the lengths of the edges in the hypercube are halved and the
process is repeated. Further discussions of the basic approach can be found in [5] and

[17].

=4 =1
Tk k
- ®
Tk
Tk k

F1G. 3. The full factorial design in R2.

This simple idea is, in some sense, the dual of coordinate search: rather than vary
one factor at a time and observe the effect of that single variation on the result of the
associated experiment, vary all the factors simultaneously and observe the effect. This
more closely conforms with statistical notions of good experimental design since the
intent is to better capture interactions between factors. There are many variations on
this simple theme, including several in the original paper of Box and Wilson. We will
concentrate on this basic version and show that it is a pattern search algorithm. How-
ever, many of the proposed variants, such as fractional factorial designs or composite
designs, can also be formulated so that they fall within the definition we have given for
pattern search methods.

3.2.1. The Basis Matrix. As with coordinate search, the family of basis matrices
for response surface methodology consists of a single matrix. The usual choice is B =
{I}, though, as with coordinate search, other choices may be made to reflect information
known about the problem to be solved.

3.2.2. The Core Pattern. For response surface methodology, the core pattern
consists of any linearly independent subset of n columns consisting of combinations of
{—1,1}. This choice will become clearer when we define the generating matrix, but as
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an illustration we will show a core pattern for the example in Fig. 3:

e[ 1)

3.2.3. The Generating Matrix. The generating matrix C}, for response surface
methodology contains in its columns all possible combinations of {-1,1}; to this we
append the column of all zeros. Thus Cj has p = 2" + 1 columns. For n =2,

1 1-1-1 0
C"“[ 1-1-1 1 0}'
We take I' to be any linearly independent subset of n columns of Ci; —I' necessarily will
be contained in Ck. Once again, A is fixed and consists of the remaining (2" +1)—2n
columns of Cj. :

For n = 2 and a given step length A, all possible trial points defined by the pattern
P; can be seen in Fig. 4.

Fi1G. 4. The pattern for response surface methodology in R? with a given step length Ag.

3.2.4. The Constants of Proportionality. Once again, there is a single basis
matrix, so ¢; = 1.
The columns of Ay consist of integer combinations of the columns of I, so g2 = 1.

3.2.5. The Exploratory Moves. The exploratory moves given in Algorithm 4
are simultaneous in the sense that every possible trial step 5l € ArPr = AxBiCh is
computed at each iteration. It is then the case that every trial step 5% is contained in
ArPi. The second observation of note is that since

5 = arg min{f(Z% + 5;)},
5,:€Akpk

then, if min{f(Z: + &), € AxF} < f(Zx), we have f(Zi + 3k) < f(Zx)—regardless of
our choice of T' (and thus, by extension, our choice of F).

3.2.6. Choosing the Basis Matrix. Since B consists of a single matrix, there
is no need for a special algorithm to choose B.

3.2.7. Updating the Generating Matrix. The generating matrix is fixed across
all iterations of the method, so there is no need for an algorithm to update Cj.
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Algorithm 4. Exploratory Moves Algorithm for Response Surface Methodology.
Given Zx, Ay, f(Zk), By, and Ci = [¢} - -+ &), set 5k = 0, px = 0, and min = f().
Fori=1,---,2" do

a) 5f = ArBiS} and Zf = 7% + 5j. Compute f(Z}). _

b) If f(Zf) < min then p; = f(Zx) — f(F}), min = f(]), and 3 = 3.
Return. .

3.2.8. Updating the Step Length. The algorithm for updating Ay is exactly
as given in Algorithm 2, with 6 usually set to 1/2 and A = {1}, so that 7 = 2, wo = —1,
and w = 0.

Since we have shown that response surface methodology satisfies all the necessary
requirements, we can therefore conclude that it, too, is a pattern search method.

3.3. Hooke and Jeeves’ Pattern Search Algorithm. In addition to introduc-
ing the general notion of a direct search method, Hooke and Jeeves also introduced
the pattern search method—a specific kind of search strategy—in their 1961 paper [10].
The pattern search of Hooke and Jeeves is essentially a variant of coordinate search that
incorporates a pattern step in an attempt to accelerate the progress of the algorithm by
exploiting information gained from the search during previous successful iterations.

The Hooke and Jeeves pattern search algorithm is opportunistic. If the previous
iteration was successful (i.e., pr—1 > 0), then the current iteration begins by conducting
coordinate search about a speculative iterate Zy + (Zx — £x—1), rather than about the
current iterate Zx. This is the pattern step. The idea is to investigate whether further
progress is possible in the general direction Z — Zx_, (since, if Zx # Tk—1, then T — Ty
is clearly a promising direction).

To make this a little clearer, we consider the example shown in Fig. 5 for n = 2.
Given Z—; and Zj (we assume, for now, that £ > 0 and that &% # Zx—.), the pattern

Zr + (Zx — Th-1)

Tr-1
FIG. 5. The pattern step in R2, given & # £x—1, k > 0.

search algorithm takes the step ) — £x—; from Zx. The function is evaluated at this
trial step and it is accepted, temporarily, even if f(Zx + (Zx — ZTk-1)) = f(Zk). The
Hooke and Jeeves pattern search algorithm then proceeds to conduct coordinate search
about the temporary iterate Zy + (Zx — £x—1). Thus, in R?, the exploratory moves are
exactly as shown in Fig. 1, but with Zx + (Zx — £x—1) substituted for Zj.

If coordinate search about the temporary iterate &y + (Zx — Zx-1) is successful, then
the point returned by coordinate search about the temporary iterate is accepted as the
new iterate Zx4;. If not, i.e., f((Zx + (Zx — Tx-1)) + k) = f(Z), then the pattern step

WS
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is deemed unsuccessful, and the method reduces to coordinate search about Z;. For
our example, then, the exploratory moves would then simply resort to the possibilities
shown in Fig. 1. ’ .

If the previous iteration was not successful, so Zy = Zx-1 and (Zx — Zk—1) = 0, then
the iteration is limited to coordinate search about Z;. In this instance, though, the
updating algorithm for A, will have reduced the size of the step (i.e., Ax = 0Ak-1).
The algorithm does not execute the pattern step when k = 0.

To express the pattern search algorithm within the framework we have developed,
we will use all the machinery required for coordinate search, but append to the gener-
ating matrix another set of 3" columns to capture the effect of the pattern step. We
will make this point clearer in the discussion that follows.

3.3.1. The Basis Matrix. Once again, the family of basis matrices B consists of
a single matrix that is usually chosen to be the identity.

3.3.2. The Core Pattern. As for coordinate search, the core pattern is the iden-
tity matrix. '

3.3.3. The Generating Matrix. Recall that the generating matrix for coordi-
nate search consists of all possible combinations of {—1,0,1} and is never changed. For
the Hooke and Jeeves pattern search method, we append another set of 3" columns,
consisting of all possible combinations of {—1,0,1}, to the initial generating matrix for
coordinate search. Thus Cx has p = 2 - 3" columns. The additional 3" columns allow
us to express the effect of the pattern step with respect to &, rather than with respect
to the temporary iterate Zj + (Zx — Zx—1), which is usually how the Hooke and Jeeves
pattern search method is described. Thus, for n = 2,

1

(10) Co = 0

- O
— -

-1 0 1-1-1 0 1 0-1
0-11-1-1 10 01 0-
For notational convenience, we require that the last column of Co, which we denote
as ¢, be the column of all zeros. In both the algorithm for the exploratory moves
(Algorithm 5) and the algorithm for updating Ci (Algorithm 6), we use the column
¢! to measure the accumulation of a sequence of successful pattern steps. This can be
seen, in (11), for our example from Fig. 5. In this example, we have the generating

matrix

(11) ck=[ :

[ =]

-1
0—
The pattern step (Zx — Zx-1) is represented by the vector (1 1)7, seen in the last column
of Ci. Note that the only difference between the columns of Cy given in (10) and the
columns of C} given in (11) is that (1 1) has been added to the last 3? columns of C;.
In R?, with the initial generating matrix Cp, the pattern of points would be identical

to that given in Fig. 2 for coordinate search. However, for the example shown in Fig. 5,
with the generating matrix given in (11), the pattern would be as shown in Fig. 6.
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F1G. 6. The pattern for Hooke and Jeeves in R? with given step length Ay and generating matriz
Ck.

3.3.4. The Constants of Proportionality. Since B still consists of a single
matrix, it is still the case that ¢, = 1. _

It will also be the case that g, = 1, as for coordinate search, but that argument can
be made only after the discussion in §3.3.7 of the algorithm for updating Cy.

3.3.5. The Exploratory Moves. In Algorithm 5, the &;’s denote the unit coor-
dinate vectors and &f denotes the last column of Cj, as explained in §3.3.3. We set
p-1 = 0 so that pi_; is defined when k = 0.

A useful example for working through the logic of the algorithm can be found in
[1], though the presentation and notation differ somewhat from that given here.

Algorithm 5. Exploratory Moves Algorithm for Hooke and Jeeves.
Given Z, Ak, f(£x), Bk, and pr-1, set px = px—1 and min = f(Z}).
If pr > 0 then set 5k = AxBilf, pr = f(Zx) — f(Zk + 3%), and min = F(Zx + 3k)-
Forz=1,---,ndo
a) 8§ = 5k + AxBy€; and F{ = 7 + 5{. Compute f(Z}).
b) If f(Z{) < min then px = f(Z%) — f(Ff), min = f(Z}), and 5, = 3.
Otherwise,
i) 8§ = 3k — AxBy€; and Zf = Z; + 5. Compute f(Z}).
ii) If f(Z}) < min then py = f(Z%) — f(Zf), min = f(Zf), and 3) = 3].
If pr <0 then set 3} = 6, pr =0, and min = f(Zy).
Fori=1,---,ndo
a) 3§ = 3k + AxBx€; and 7} = 74 + 5. Compute f(Z}).
b) If f(Z{) < min then pi = f(Zi) — f(Z}), min = f(Z}), and 5; = 3}.
Otherwise,
i) 5,: = §) — ArBie; and 5,: = T + g,: Compute f(f,:)
ii) If f(Z{) < min then px = f(Z%) — f(Z}), min = f(}), and 5; = 5].
Return.

All possible steps are contained in APy since Ci contains columns that represent
the “pattern steps” tried at the beginning of the iteration. And, once again, the ex-
ploratory moves given in Algorithm 5 will examine all 2n steps defined by A By F unless
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a step satisfying f(Zx + 3k) < f(Zx) is found.

3.3.6. Choosing the Basis Matrix. Since B consists of a single matrix, there
is no need for a special algorithm to select B.

3.3.7. Updating the Generating Matrix. The algorithm for updating the gen-
erating matrix updates the last 3" columns of Cj; the first 3" columns remain un-
changed, as in coordinate search. The purpose of the updating algorithm is to incor-
porate the result of the search at the current iteration into the pattern for the next
iteration. This is done using Algorithm 6. Note the distinguished role of &, the last
column of Ci, which represents the pattern step (Zx — Tk-1).

Algorithm 6. Updating Cy.
Fori=3"+1,.---,2-3" do

G = G+ (1A% — .
Return.

Since (1/Ax)3% is necessarily a column of C, an argument by induction shows that
the update for C) ensures that the columns of C} always consists of integer combinations
of the columns of T, thus ensuring that g, remains one.

3.3.8. Updating the Step Length. The algorithm for updating Ay is exactly
as given in Algorithm 2. Again, 8 is usually set to 1/2 and A = {1} so that 7 = 2,
wo = —1, and w; = 0.

Since we have shown that the pattern search algorithm of Hooke and Jeeves satisfies
all the necessary requirements, we can therefore conclude that it, too, is a special case
of the generalized pattern search method.

3.4. Multidirectional Search. The multidirectional search algorithm was intro-
duced by Dennis and Torczon in 1989 [19] as a first step towards a general purpose
optimization algorithm with promising properties for parallel computation. While sub-
sequent work led to a general class of algorithms based on the multidirectional search
algorithm that allows for more flexible computation, [9] and [21], one of the unantici-
pated results of the original research was a global first-order stationary point conver-
gence result for the multidirectional search algorithm [20].

The multidirectional search algorithm is a simplex-based algorithm. The pattern of
points can be expressed as a simplex (i.e., n+1 points, or vertices) based at the current
iterate; as such, multidirectional search owes much in its conception to its predecessors,
the simplex design algorithm of Spendley, Hext, and Himsworth [16] and the simplex
algorithm of Nelder and Mead [12]. However, multidirectional search is a different
algorithm—particularly from a theoretical standpoint. Convergence for the Spendley,
Hext and Himsworth algorithm can be shown only with some modification of the original
algorithm, and then only under the additional assumption that the function f is convex.
There are numerical examples to demonstrate that the Nelder-Mead simplex algorithm
may fail to converge to a stationary point of the function because the uniform linear
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independence property (discussed in §7.2), which plays a key role in the convergence
analysis, cannot be guaranteed to hold [19).

A simple example (with By = I) showing all possible trial steps as well as the
underlying simplices for a problem in R? is given in Fig. 7.

F1G. 7. All possible trial steps for multidirectional search in R2.

The multidirectional search algorithm is described in some detail in both [9] and
[20]. The formulation given here is different and, in fact, introduces some redundancy
that can be eliminated when actually implementing the algorithm. However, the way of
expressing the algorithm that we will use here allows us to employ the general conver-
gence theory given in §4 and makes clear the similarities between this and other pattern
search methods.

3.4.1. The Basis Matrices. One of the most interesting features of the multi-
directional search algorithm lies in the use of multiple basis matrices. The family of
basis matrices B consists of all matrices representing the edges adjacent to each vertex
in a nondegenerate n-dimensional simplex, a simplex that the user is allowed to spec-
ify. We add the matrices representing all possible permutations of the columns of the
(n + 1) matrices we have just constructed. We then add the product of these (n + 1)!
basis matrices with —I. Thus |B| = 2(n + 1)!. For the example shown in Fig. 7, the
matrices representing the edges adjacent to each vertex in the original nondegenerate
2-dimensional simplex would be:

] B

We then add all possible permutations of the columns of these three matrices:

ol [ )

Finally, we add the product of these six basis matrices with —1I:

o] Lol [ Ll o] 3]

e
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Fortunately, there is no need to actually construct and “store” this unwieldy number
of basis matrices to initialize the method. Instead, as we will show in §3.4.6, given
the outcome of the exploratory moves, Algorithm 8 can be used to update the basis
matrix after each iteration by reconstructing the new basis matrix from the trial points
considered during the course of the exploratory moves.

We will also defer to §3.4.6 a discussion of the fact that the choice of an initial
simplex defines the family of basis matrices across all iterations of the multidirectional
search algorithm.

3.4.2. The Core Pattern. Once again, the core pattern is the identity matrix,
sol'=1.

3.4.3. The Generating Matrix. The generating matrix for the multidirectional
search algorithm is C = [I —I —pl 6] Thus, Cx contains p = 3n + 1 columns.

We will define p in §3.4.4 (u is equal to 7*2, for w, € N and thus must be greater
than one; u is typically 2). For n = 2 we have

1
on| !

0—1 0—p 0 0
1 0-1 0—p Of°
We set F = [I —1].
For the example shown in Fig. 7, the pattern would then be as shown in Fig. 8

]

FIG. 8. The pattern for multidirectional search in R? with given step length Ay and basis matriz
B, =1.

3.4.4. The Constants of Proportionality. A convenient feature of using the
edges of a simplex to form the set of basis matrices is that the 3} ,’s from (5) belong to
the set {—1,0,1} for any choice of reference matrix B,. Thus ¢; = 1.

We must also satisfy the proportionality property found in (6) and (7). Since
g = 72 for some w, € N, and 7 is rational, we can express u as a fraction pn /14 where
fin, ba € N and p,, 4 are relatively prime. Since I' = I, g2 = p4. The multidirectional
search algorithm usually is specified so that 7 = 2 and w; = 1, so that p = 72 = 2.
Thus, typically, g2 = 1.
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Algorithm 7. Exploratory Moves Algorithm for Multidirectional Search.
Given Zk, Ak, f(Zx), Bk, and u > 1, set 3% =0, px = = 0, min = f(Z%),
A =1, scale = 1/ Ay, best = 0, and P = Z;.
Fori=1,---,ndo
a) §f = AkBké‘.- and Z} = Z + 3}. Compute f(Z}).
~ b) If () < min then px = f(Zx) — f(3f), min = f(&}), 5 = 5}, and best = i.
If pr <0 then
For:=1,---,ndo
a) 3 = —ArBy€; and &} = 7} + 5{. Compute f(Z}).
b) If f(Z§) < min then pr = f(Fi) — f(Zf), min = f(&}), 5 = 5}, and best = i.
If pr > 0 then set scale = 1/ul;.
Fori=1,---,ndo

a) 3 = —pAiBi€; and &} = Zx + 5. Compute f(Z}).
b) If f(z ) < min then p = f(Zk) — f(F}), min = f(F}), 8k = 5}, best =1,
and \x =

Return.

3.4.5. The Exploratory Moves. The exploratory moves for the multidirectional
search method are given in Algorithm 7; the €;’s denote the unit coordinate vectors.

Clearly, Sk € AxPs. Since the exploratory moves algorithm will consider all steps
of the form A By F' = AgBi[I —1], unless simple decrease is found after examining only
the steps defined by AxBiI' = ArByI, this guarantees we satisfy the condition that if
mm{f(:i:'k + 5“), o€ AkBkF} < f(fk), then f(fk + §k) < f(fk)

3.4.6. Updating the Basis Matrix. We can update the basis matrix after each
iteration k of the generalized pattern search method by reconstructing the new basis
matrix Biy1, given the outcome of the exploratory moves, from the trial points 7},
t=1,.--,n, considered during the course of the exploratory moves. This procedure is
given in Algorithm 8.

Algorithm 8. Updating B;.
Given By, scale, best, and Z} for ¢ = 0,---,n, denote By = [3,:], t=1,---,n
If px > 0 then
Fori=0,---,(best — 1) do
b,:ﬂ = scale x (F} — Z}te*t).
For i = (best +1),---,n do

b,,+1 = scale * (Z} — Zte*).
Otherwise
Fori=1,.---,ndo
bk+1 i
Return.

At iteration k, the basis matrix By represents the edges adjacent to the current
iterate £; (the “best” vertex). To see that the basis By constructed by Algorithm 8
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is contained in B as required, we note that while the multidirectional search algorithm
may reflect or rescale the simplex, it does not change the basic shape of the simplex.
The rescaling of the simplex is handled by the choice of Ax; we eliminate this from
the construction of the basis for the next iteration using the variable scale. Since the
reflection is effected by applying the orthogonal transformation —I, the Euclidean inner
product is preserved. Thus the reflection does not affect the angles in the simplex used
to start the current iteration (as can be seen, for example, in Fig. 7) and we have
included this alternative in our definition of B. Thus, an argument by induction shows
that the Bi4; constructed by the update algorithm will be contained in B. (A further
discussion can be found in [20].)

3.4.7. Updating the Generating Matrix. The generating matrix is fixed across
all iterations, so there is no need for an algorithm to update C.

3.4.8. Updating the Step Length. The algorithm for updating Ay is that given
in Algorithm 2. In this case, while 6 usually is set to 1/2 so that 7 = 2, wo = —1, and
w; = 0, we also include an expansion factor 4 = 72, where w; usually equals one. Thus
A = {1, u}, where p is usually 2. The choice of Ax € A is made during the execution of
the exploratory moves.

Since we have shown that the multidirectional search algorithm satisfies all the
necessary requirements, we conclude that it is also a pattern search method.

4. The Convergence Theory. Having set up the machinery to define pattern
search methods, and demonstrated that several of the better known direct search meth-
ods fall naturally within this framework, we are now ready to analyze these methods.
This analysis will produce two interesting theorems. The first, developed in §4.1, demon-
strates an algebraic fact about the nature of pattern search methods that requires no
assumption on the function f. The second theorem, developed in §4.2, states the global
first-order stationary point convergence result. The first theorem is critical to the proof
of the second for it shows that we only need require simple decrease in f to ensure
global convergence. _

Before proceeding, we note that all norms will be Euclidean vector norms or the
subordinate operator norm. We also define the level set of f at Zo to be

L(Zo) = {Z: f(Z) < f(Z0)}-

4.1. The Algebraic Structure of the Iterates. As we noted in the introduc-
tion, Hooke and Jeeves observed that direct search methods are distinguished from
other search techniques by having a finite number of states that can be indexed by a set
of integers. We will give mathematical rigor to this observation. The results found in
this section are purely algebraic facts about the nature of pattern search methods; they
are also independent of the function to be optimized. It is the algebraic structure of the
iterates that allows us to prove global convergence for pattern search methods without
imposing a notion of either sufficient or Cauchy decrease on the iterates.

We begin by showing in what sense Ay is a step length parameter.

e e A ——
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LEMM{&. 4.}. There ezists a constant c. > 0, independent of k, such that for any
trial step 5 # 0 produced by a generalized pattern search method (Algorithm 1 ) we have

ale < 5 I

Proof. Suppose 3} # 0. From (4) and (9) we have
8} = Ay By&}

n
=Arg; By Y g3a 7,

i=1

where ¢; is as defined in (6) and (7). Let

EI: = Z q,:‘,’a;;,ﬁj;
from (6) and (7) we know that the components of Z} are integers.
Let 0,(B:) denote the smallest singular value of Bx. Then

| 5% Il = Axgs?|| BeZi ||
> Arg; *on(Br)|l 2 ||
> Arg;on(By).

The last inequality holds because at least one of the components of Z} is a nonzero
integer, and hence || z§ || > 1.
Since |B| is finite, we can define

7+(B) = min ou(By),

and
| 5 1| > Argz20a(B).

0

From Lemma 4.1 we can conclude that the role of A; as a step length parameter
is to regulate backtracking and thus prevent excessively short steps.

There is one key feature, shared by all the pattern search methods, that makes clear
the similarities between these methods. That is the fact that pattern search methods
could be considered adaptive grid search algorithms.

The pattern search methods are “grid search” algorithms in the sense that there
is an underlying grid structure which each of these methods manifests throughout the
course of the search. The grid structure is preserved by the strict adherence to steps
defined by the pattern P; and by the careful restriction of the way in which the step
length parameter A can be updated. Theorem 4.2 clarifies this aspect of pattern search
methods.
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The pattern search methods are “adaptive” grid search algorithms in two senses.
First, none of the pattern search methods consider all possible grid points; subsets of
these points are explored, based both on the pattern defined by the particular choice
of pattern search method and on the success of the exploratory moves taken during
previous iterations. Second, the update rules for A stated in Algorithm 2 give a clear
indication of when, and how, to refine the grid to advance the search—which further
clarifies the import of Lemma 4.1.

THEOREM 4.2. Any iterate £y produced by a generalized pattern search method
(Algorithm 1) can be expressed in the following form:

n (N-1
= = N - -1 -2\ 7!
IN =7To+ Z (Z Nk,l) (TzﬁﬁTde:.UBAO‘h 92 ) by,

=1 \k=0

where
T = Tnum [Tden 18 the T found in the algorithm for updating A (Algbrithm 2),
r.g and ryp are bounds on the ezponents of T that depend on N,
A is the initial choice for the step length control parameter,
1 and gz are the constants of proportionality found in (5), (6) and (7),
blf, [=1,---,n, are the columns of the reference matriz B, found in (1), and
Niy, 1 =1,---,n, k =0,---,N are integers that depend on the ,Bi', found in
(2), the core pattern T, the a} ; found in (4), the constants of proportionality
q1 and g3, 7, LB, and TUB.

Proof. The generalized pattern search algorithm, as stated in Algorithm 1, guaran-
tees that any iterate Zn is of the form

N-1
(12) IN=Zo+ ) 3
k=0

(We adopt the convention that 5} = 0 if iteration & is unsuccessful.) We also know that
the step 5k must come from the set of trial steps §{,1=1,---,p. The trial steps are of
the form

n
i i '
5} = AeBiéi = Ak Y 6. ;b1

From (4) we have

From (2) we have
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We can then express the trial steps in terms of the columns of the reference matrix B,:

. n n . n Y
=3 (3 e (608
i=1 \m=1 =1

n
o
A Y ok BB

] m=1 [=1

n n . -
(Z > T ﬂi,z) b,

=1 m=1

<
i
[
-

M=

Ay

1

~
|

Thus,
(13 > (z > ai,mv}”ﬂi,z) 3
=1 \J=1m=1

defines the search direction while Ay controls the length of the step. We now examine
each of these two components of the step.

The search direction given in (13) can be expressed as a scaled sum of the columns
of B, so that

2": (i 2": a;;,m’)'? ﬂi,z) I-"i = 2": i,zz,ﬁ-
=1 \j=1m=1 =1
We have specified the pattern search methods so that

@Bl €2, Vj=1,-;n Vi=1,--;n Vk
and

oyt €2, Vi=1l,---,p Vj=1l,---,n Vm=1l,---,n Vk.

Thus, we have
. n . 2 -‘I
5 =0cY Ny (a703%) B
=1

where N,’;', € Z depends on ¢y, 2, a};’m, 47, and ,B,‘Z,,.
Now consider the second component of the step, the step length parameter A. For
any k > 0, the update for A, given in Algorithm 2 guarantees that Ay is of the form

L]
(14) A= 0NN - X Ao,

where pi € Z and p. > 0. We have also placed the following restrictions on the form of
6 and );: for a given 7 € Q, 7 > 1, and {wo, w1, -+, wz|} C Z,

0=Tw°, w0<0
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and

Ai=1%, w; >0, 1,---,|Al

-~
I

We can thus rewrite (14) as
Ay = (Two)P?; (r™ )pi (Twz)Pi e (Tww)PLA ' Ao
= 7" A,
where r, € Z. Let

res = mig {r}

rve = g nkh

Returning to (12) we have

N =30+ 2 Akztbub

k=0
N-1 )
= Io+ E Tr"AOZNkI (ql 9 ) b,
k=0 I=1
n (N-1
-] ™ N Analg7? i;l
=To + Z Z T "Vl 01 92 v
I=1 \k=0
Since 7 is rational, we can express T as
Tnum
T=—"
Tden

where Thum, Tden € IN. Then

-

n
= = - rup-r 4
In=1Zo+ E , (E , Trsm P Tien Nk 1) (rrzaria?® Mogi ey )8,

k=0
n .

= To+ Z (Z Nk,l) (7’;,’:,‘,’17'4, UBAOQl 9 ) bli’
=1 \k=0

where the Nk,z are integers. 0O

Theorem 4.2 synthesizes the requirements we have placed on the choice of the basis
matrices, the core pattern, the generating matrix, the constants of proportionality, the
definition of the trial steps, and the algorithm for updating Ay (Algorithm 2). One
other consequence of this structure, though, is to give us a way to define a nested
sequence of grids across which the exploratory moves for a pattern search method must
be conducted. The following corollary to Theorem 4.2, which is still a strictly algebraic
fact about the nature of pattern search methods, gives us a first step towards the proof
of global convergence for these methods.

e vt e B ¥ L Yo AT
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COROLLARY 4.3. Suppose that for a generalized pattern search method, there ezist
0 < AL and Ayp < 400 such that Arp < A < Ayp for all k. Then the sequence
of iterates Zi produced by a generalized pattern search method (Algorithm 1) has no
accumulation points.

Proof. From Theorem 4.2 we know that A, can be written as
Ak =T Tk Ao,

where r;, € Z.

The hypothesis that Arp < A for all k¥ means that the sequence {7} is bounded
away from zero. The hypothesis that Ay < Ayp for all ¥ means that the sequence
{r"} is bounded above. Consequently, the sequence {77+} is a finite set. Equivalently,
the sequence {r;} is bounded above and below. Let

LB = n}:in{rk}

rUB = ml?,x{rk}.

From these bounds on the sequence {r;}, together with Theorem 4.2, we see that
the sequence of iterates {Zx} has no accumulation points. O

4.2. First-Order Stationary Point Convergence. We are now ready ‘to state
the global convergence theorem.

THEOREM 4.4. Assume that L(Zo) is compact and that f : R® — R is continu-
ously differentiable on L(Zo). Then for the sequence of iterates {Zx} produced by the
generalized pattern search method (Algorithm 1)

Liminf [V f(Z})]| = 0.

We assume that f is continuously differentiable on L(Z,); however, this assumption
can be weakened, as we shall discuss further in §5.

Before proving Theorem 4.4 we need the following results. We will defer the proofs
of Lemma 4.5 and Proposition 4.6 to §7 in part because we wish to discuss there several
other issues that are interesting but tangential to the proof of Theorem 4.4. It is also
the case that the proofs of these two results are similar in style to those given for the
equivalent results found in [20], though they are restated in terms of the machinery we
developed in §2.

Lemma 4.5 establishes that pattern search methods are descent methods.

LEMMA 4.5. Suppose that f is continuously differentiable on L(Zo). If V f(Zi) # 0,
then there exists p € Z, p > 0, such that pryp, > 0 (i.e., the k + p’th iteration is
successful ).

The proof of Theorem 4.4 is by contradiction. We will posit the following null
hypothesis: liminfx_ 4 ||V f(Zk)|| # 0, or, equivalently, for all but finitely many k the
sequence of iterates {Zi} stays bounded away from the set of stationary points

(15) X, = {Z: Vf(@) = 0}.
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The result in Proposition 4.6 spells out a consequence of the null hypothesis.

PROPOSITION 4.6. Assume that L(,) is compact and f is continuously differen-
tiable on L(Zo). Suppose that liminfi_.1co [[Vf(Zk)|| # 0. Then there ezists a constant
Arg > 0 such that for all k,

A < Ag.

We emphasize that the existence of a lower bound Arp for Ay is guaranteed only under
the null hypothesis that liminfx—+c0 ||V f(Zk)| # 0.

We are now ready to prove Theorem 4.4.

Proof. (Theorem 4.4.) The proof is by contradiction.

Suppose that liminfi—4c0 ||V f(Z%)|| # 0. Then Proposition 4.6 holds.

Meanwhile, we also know that the sequence {A;} is bounded above because all the
iterates 7 must lie inside the level set L(Z,) and the latter set is compact; Lemma 4.1
then guarantees the upper bound on {A}.

Corollary 4.3 says that the sequence of iterates Z; has no accumulation points. The
simple decrease condition ensures that {Zx} C L(Zo) as well. Since L(Zo) is compact,
it follows from the Bolzano-Weierstrass theorem that {Zix} must be a finite set. Thus,
under the supposition that liminfi—ie ||Vf(Zk)|| # 0, a pattern search method can
visit only a finite number of points.

However, this contradicts the fact, stated in Lemma 4.5, that if V(%) # 0, then
pattern search methods guarantee simple decrease in a finite number of iterations.
Therefore

Liminf ||V f(Z)| =0
as required. 0O

5. Parallels with Line Search and Model Trust Region Theory. The global
convergence theory we have just presented for the pattern search methods shares simi-
larities with the global convergence theory for both line search and model trust region
methods.

Parallels with the line search theory are perhaps most obvious and are discussed in
[20]. The outline for the convergence theory follows the outline for global convergence
theorems as detailed by Ortega and Rheinboldt [14] and recently reviewed in the survey
by Nocedal [13]: we consider iterations of the form Zi41 = Tx+ 5k where 3k € AxFy; the
columns of P, determine the search directions and Ay serves as a step length parameter.
In §7.1 we show that pattern search methods are descent methods (as defined in either
[8] or [14]) by showing that if &) is not a stationary point of the function then the
generalized pattern search method guarantees decrease in the value of the objective
function in a finite number of iterations. We then provide, in §7.2, a measure of the
goodness of the search direction by showing that pattern search methods are gradient-
related methods (as defined in [14]). Finally, in Corollary 4.3 and Proposition 4.6, we
consider the length of the step.

Given these major components for the convergence theory, the one that is most
unusual, and certainly the most unexpected, is that involving the step length control.
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For a standard line search iteration, the strategy for choosing the step relies on satisfying

the Armijo-Goldstein-Wolfe conditions for sufficient decrease: the step length Ay is
chosen to satisfy

F(Zx + Arpr) < f(Zk) + 1AV £(Z2) T Br

V(& + Api) B > 02V F(Z2) i,

where py is the search direction and the constants o; and o5 are chosen to satisfy
0 < 01 < 02 < 1. The first condition prevents very small decreases in the function
values relative to the lengths of the steps taken. The second condition prevents steps
that are too small relative to the initial rate of decrease of f. The standard convergence
analysis then proceeds on the assumption that these conditions for sufficient decrease
have been satisfied.

The obvious difficulty that arises in any attempt to extend the notion of sufficient
decrease to an iteration of any direct search method is that enforcement of the Armijo—
Goldstein-Wolfe conditions requires the directional derivative—information that the
direct search methods do not otherwise require.!

The point of Corollary 4.3 is that the Armijo-Goldstein-Wolfe conditions need not
be enforced to guarantee that pattern search methods will converge to a stationary point
of the function. The reason is that pattern search methods place strict limitations on
the choice of both the search directions and the step lengths. The set of search directions
is limited to the columns of P;. The step length parameter A; must be a multiple of
Ao, 8, and A € A. These restrictions guarantee an underlying grid structure that is at
the heart of the proof of Theorem 4.2. Once again we stress that this grid structure is
a purely algebraic fact about the nature of pattern search methods.

What does this algebraic structure mean for the convergence theory? The answer
lies in the simple control mechanisms imposed by the Hypotheses on the Exploratory
Moves and the update algorithm for Ay (Algorithm 2). The Hypotheses on the Ex-
ploratory Moves require that if simple decrease can be found for some one of the steps
defined by the core pattern (and its negative), then the exploratory moves must return
a step that gives simple decrease. This step can be defined by any column of the gener-
ating matrix. If we are lucky and guess right, we may only have to consider a single step
at any given iteration; however, in the worst case we may have to consider all 2n steps
defined by the core matrix and its negative. The role of the algorithm for updating
Ay is to ensure that Ay is reduced only when the exploratory moves algorithm fails to
produce a step that gives simple decrease on the value of the objective function.

The combination of these two mechanisms:

e Hypotheses on the Exploratory Moves
e Algorithm 2 for updating A,

! The analysis in [22] enforces a notion of sufficient decrease by imposing on the methods an “error-
controlling sequence” that does not exist in the original algorithms. No suggestions on how to construct
such a sequence in practice are provided.
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introduces backtracking into the generalized pattern search methods, which prevents
steps that are too short. This is the import of Lemma 4.1.

The backtracking feature of the generalized pattern search methods is also critical
because it guarantees that descent will be realized if the current iterate is not a station-
ary point of the function. The core pattern guarantees that a descent direction exists,
even if we are not sure which of the 2n directions it may be. Thus we are assured that
the pattern search methods will produce descent once Ax becomes small enough.

The algebraic structure also prevents steps that are too long. The rigidity of the
algebraic structure prevents arbitrary directions and arbitrary step lengths.

The net effect of the algebraic rigidity of the pattern search methods, when com-
bined with the Hypothesis on the Exploratory Moves and the algorithm for updating
Ay, is to ensure that the pathologies which might otherwise occur were the Armijo—
Goldstein-Wolfe conditions to be ignored (see [8]) cannot happen. These simple, if
non-standard, mechanisms prevent the well-known pathologies that can arise if the
length of the steps is not monitored. ’ ,

Parallels with the global convergence theory for model trust region methods are
perhaps less obvious, but exist nonetheless. So much so, in fact, that there is some
temptation to call the pattern search methods sample trust region methods. This arises
from the observation that in the basic version of each of the algorithms covered in §3,
all possible steps can be seen to lie on the boundary of a trust region in a weighted I,
norm. We weight the norm by using the inverse of the current basis matrix. Recall that
the basis matrices are required to be nonsingular and that all but the multidirectional
search method typically use the identity matrix as a basis matrix. Thus, for all the
pattern search methods (ignoring the acceleration steps found in the Hooke and Jeeves
pattern search algorithm and the multidirectional search algorithm, which lie outside
the trust region radius) all steps satisfy || By 5f|lcc = Ak. To see this, note all possible
trial points for problems in R? that could be generated by coordinate search (Z, :'c'f ,
z7, 28, B, 2%, &7, £f), the Hooke and Jeeves pattern search (the same possibilities as
for coordinate search), the full factorial design of Box and Wilson (Zf, £, %, f), and
multidirectional search (Zg, Z)}, Zf, Zy ), as seen in Fig. 9.

"9 —“ -oﬁ
Tk k Tk
=7 Ak =Y
T T
K o k
- —¢ "8
T Tk Tk

F1G. 9. The sample trust region in R2.

In essence, A gives the radius of the region within which we trust our sampling to
be effective. If the sampling does not produce simple decrease, we reduce the radius of
the trust region. If the sampling did produce simple decrease, we may choose to increase

AP
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the size of the trust region radius—an option that traditionally has not been considered
for pattern search methods, but one that the global convergence theory clearly allows.
Changing the radius of the trust region may affect more than simply the length of the
step taken. While the set of search directions is fixed by the pattern, the exploratory
moves algorithm may return any step that provides simple decrease as long as the step
is defined by the pattern. Thus, changing the radius of the trust region before accepting
a step may have the effect of changing the search direction selected by the exploratory
move algorithm—a feature not found in the usual line search methods but shared with
model trust region methods.

It is worth comparing the global first-order stationary point convergence results
for model trust region methods and generalized pattern search methods. Under the
hypotheses of Theorem 4.4, the results due to Powell [15] and Thomas [18] (see [11])
give

Jim [V £(z1)] = 0

for the sequence of iterates generated by a model trust region method. We have shown
that

liminf |V f(zx)]| = 0

for the sequence of iterates generated by a generalized pattern search method. The
gap between the two results is due to the fact that the model trust region methods
link the size of the step to the norm of the gradient through the notion of fraction
of Cauchy decrease. The generalized pattern search methods do not explicitly enforce
such a condition and hence lead to a weaker result.

A further connection with trust region algorithms is that we can allow the trust
region radius Ay to increase if the algorithm is making good progress. This is a marked
departure from other attempts to prove convergence for methods of this sort (e.g.,
[6] and [22]) which force the steps to be monotonically decreasing in length. The
multidirectional search algorithm is the only one of the pattern search methods that
explicitly increases the trust region radius Ay (the “pattern steps” of Hooke and Jeeves
are another attempt to allow longer steps even though Ay is not allowed to increase), but
it could just as easily be incorporated into any of the classical pattern search methods.
Like the model trust region theory, the controlled expansion of the trust region radius
plays no significant role in the convergence theory we have presented, but it often makes
good algorithmic sense.

One other point worth making is that pattern search methods are well-defined even
when the function to be minimized is not differentiable. In fact, it is trivial to extend
Theorem 4.4 to handle functions that are nondifferentiable, we need only modify the
set X.. This is reassuring in light of the fact that those who rely on these methods
typically only assume that the function is continuous. The modification to the theory is
discussed in further detail in [20]. The only qualification to be made is that the resulting
theorem is not a general result for the nonsmooth case; rather, it is an extension of the
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result for the smooth case. Because the uniform continuity of the gradient over
Q. = {Z € L(Z,) : dist(Z, X.) > €}

is necessary for the proof of Theorem 4.4, the definition of X. given in (15) must include
not only the stationary points of the function, but also the points where the function
is nondifferentiable and where the gradient exists but is not continuous.

6. Conclusions. We have presented a framework in which one can analyze pat-
tern search methods. This framework abstracts and quantifies the similarities of the
classical pattern search methods and enables us to prove a first-order stationary point
convergence result for this class of algorithms. This convergence result is perhaps sur-
prising, given the simplicity of pattern search methods, but derives from the algebraic
rigidity with which pattern search methods conduct their local searches. This is grati-
fying, since while this rigidity originally was introduced as a heuristic for directing the
local search, it turned out to be the key to proving convergence as well.

7. Appendix. We deferred the proofs of Lemma 4.5 and Proposition 4.6 both
because their proofs are closely related and because there are several additional notions
that we must introduce before tackling the proof of Proposition 4.6.

To do so, we return to our definition of the pattern as P = BxCy to show that the
pattern contains at least one direction of descent whenever V f(Z) # 0.

We require that the columns of Cj contain both the core pattern I and its negative
—T as subsets. Thus, P; can be partitioned as follows:

Po=BiCi=B [T T Ac]=Bi[F Al

We shall now elaborate on these requirements. Since I' is an n X n nonsingular matrix,
and Bj comes from a family of n X n nonsingular matrices, we are guaranteed that BiI’
forms a basis for R® (as does —BI'). Thus at any iteration k, if Vf(Z%) # 0 we are
guaranteed that B,&} will be a direction of descent for at least one column ¢} contained
in the partition F' of the columns of the generating matrix C.

7.1. Descent Methods. Of course, the existence of a trial step in a descent di-
rection is not sufficient to guarantee that decrease in the value of the objective function
will be realized. To guarantee that a pattern search method is a descent method, we
need to guarantee that in a finite number of iterations the method will produce a posi-
tive step size Ay that achieves decrease on the objective function at the current iterate.
We show that this is the case in the following proof of Lemma 4.5.

Proof. (Lemma 4.5.) A key hypothesis placed on the exploratory moves (see Hy-
potheses on Exploratory Moves) is that if descent can be found for some one of the trial
steps defined by A;BiF, then the exploratory moves will return a step that produces
descent.

Because BiCj has rank n, if V f(Zi) # 0, then there exists at least one trial direction
di = B.&}, where & € T, such that V f(Zx)Td} # 0. But, since —& € F, without loss
of generality,

V(&) d: <.
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Thus, there exists an hx > 0 such that for 0 < A < hg,
F(&k + hdf) < f(Zx).

If at iteration k, Ar > hg, then the iteration may be unsuccessful; that is, pr =
f(Zk) — f(Zx + 5) < 0. When the iteration is unsuccessful, the generalized pattern
search method sets £34; = Z; and the updating algorithm sets Ay, = 0A;. Since 0 is
strictly less than one, there exists p € Z, p > 0, such that

0PAg < hg.

Thus we are guaranteed further descent, i.e., a successful iteration, in at most p itera-
tions. O

7.2. Uniform Linear Independence. The pattern P, guarantees the existence
of at least one direction of descent whenever V f(Z%) # 0. We now want to guarantee
the existence of a bound on the angle between the direction of descent contained in
BiF and the negative gradient at Z; (whenever V f(Z;) # 0). We will show, in fact,
that this bound is uniform across all iterations of the pattern search algorithm. To do
so, we use the notion of uniform linear independence (as introduced in [14]).

LEMMA 7.1. For a pattern search algorithm, there exists a constant ¢ > 0 such
that for all k > 0 and T # 0,

|5T(:7:',; - )| . }
16 maxs rso o=t = 1,0 >E&.
(16) { BT Rt

Proof. To demonstrate the existence of ¢, we will first consider the simplest possible
case, B = {I} and C = [F -T 6} = [I -I 6], and use this to derive a bound for any
choice of B and I' that satisfies the conditions we have imposed.

LEMMA 7.2. Assume Vf(Zy) #0. Let

- _ V(&)
Y= IVGE

and
—_— -‘TC'..
cos0(7) = max {I77&1},
where the €;’s are the unit coordinate vectors.

If B={I} and Cy = [I —I 0], then

min cos () =

3~

Proof. We have |§77¢;| = |y;|, where ¥ = (y1,---,¥n)%. Since

n

Dol =1,

ij=1
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we are guaranteed that |y;| > 1/4/n for some j, so |§7€;| > 1/4/n for some j. Thus

cos 8(3) = 1/+/n.

Now note that cos 6(%) attains this lower bound for any
¥ =018 + a8 + -+ + néhn,

where o; € {£1/+/n}. O

Thus, if the pattern search is restricted to the coordinate directions defined by
P, = [I =1 0], £ = 1/y/n gives the lower bound on the cosine of the angle between
the gradient and a guaranteed direction of descent. We now use this bound to derive a
bound for the more general case.

Assume a general basis matrix B, where By € B, and a general core matrix I'. We
adopt the notation BiI' = [§ - - #]. Then for any & # 0 we have the following:

. AT .
#75]|  |s7Bire ((BD)TZ) &
B EEA A

If we set @ = (ByI')TZ, so that ¥ = (BxI')~Tw, we have

cosf =

i 57|
B TalIBIE] = (BT M@lBITIE

cosf =

_ 1 ( |wTe;| ) _ 1 ( |wTe;| ) > 1 1
IBD)-TINBLN \llsllllE ) — N(BD)- BTl \llGlllIE;ll ) ~ £(Bil) v/n’

where k(BxI') is the condition number of the matrix B,I'. Thus, we have

1
0> ———=>0.
cost = k(Bi)/n
To ensure a bound ¢ that is independent of the choice of any particular basis matrix
B,, we simply observe that the set of basis matrices B is finite. Thus, £ is taken to be

) 1

) = (s
0

The bound given in (17) points to two features that explain much about the behav-
ior of pattern search methods. Since we never explicitly calculate—or approximate—the
gradient, we are dependent on the fact that in the worst case at least one of our search
directions is not orthogonal to the gradient; £ gives us a bound on how far away we can
be. Thus, as either the condition number of the product BiI' increases, or the dimen-
sion of the problem increases, our bound on the angle between the search direction and
the gradient deteriorates. This suggests two things. First, we should be very careful in
our choice of B and T for any particular pattern search method. Second, we should not
be surprised that these methods become less effective as the dimension of the problem
increases.

B a3
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Nevertheless, even though pattern search methods neither require nor explicitly
approximate the gradient of the function, the uniform linear independence condition
demonstrates that the pattern search methods are, in fact, gradient-related methods, as
defined by Ortega and Rheinboldt [14], which is one reason why we can establish global
first-order stationary point convergence.

7.2.1. Uniform Linear Independence, Coordinate Search and Response
Surface Methodology. Before proceeding, there is one other point worth noting. In
§3.2 we observed that in some sense response surface methodology is dual to coordinate
search. The notion of the uniform linear independence of the set of search directions
allows us to further clarify this remark. -

Without loss of generality, assume that the trial steps generated by the search
pattern around the current iterate lie on the Iy, unit sphere. For coordinate search,
in the worst case, we consider the 2n unit vectors £¢&;, which correspond to the 2n
vertices of the /; unit sphere inscribed inside the I, unit sphere, as can be seen for R?
in Fig. 10. The worst case for the bound on the angle between the search directions

F1G. 10. Coordinate search versus factorial design in R2.

and the gradient at the current iterate occurs when the gradient is directed towards one
of the 2" vertices on the /., unit sphere. The result is the bound ¢ = 1/y/n—the case
demonstrated in Lemma 7.2.

In the basic variant of response surface methodology, we always consider the 2"
vertices of the /., unit sphere at every iteration of the algorithm. Now the worst case
for the bound on the angle between the search directions and the gradient at the current
iterate corresponds to taking any one of the 2n vertices on the /; unit sphere as the
(appropriately scaled) gradient—which once again gives the bound ¢ = 1/4/n.

This illustrates that while we may sample significantly more trial points for a single
iteration of response surface methodology with a full factorial design (O(2")) than
we do for a single iteration of coordinate search (O(n)), we do not gain any further
improvement on the bound ¢.2 -

7.3. The Descent Condition. Having introduced the notion of uniform linear
independence with the bound ¢, we are now ready to show that pattern search methods
reduce A only when necessary to find descent. This enables us to prove Proposition 4.6.

2 There may be, however, other reasons for generating the additional information. One important
component of response surface methodology is the sensitivity analysis that can be done once a potential
solution has been identified. For instance, the additional trial points can be used to obtain a least
squares estimate of the gradient and the Hessian.
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PROPOSITION 7.3. Suppose that L(Z,) is compact and f is continuously differen- .
tiable on L(Zp). Given € > 0, let

Q. = {Z € L(Z) : dist(Z, X.) > €}.

Suppose also that Zo € Q. Then there exists § > 0, depending only on f, € from (16),
and €, such that if T € Q. and

Ak$5,

then pr = f(Zx) — f(Zk + 5k) > 0; i.e., the iteration will be successful.

Proof. We restrict our attention to the fixed steps defined by the core pattern r
and its negative, i.e., steps of the form AgBF. This is sufficient since the Hypotheses
on Exploratory Moves ensure that a step 5% satisfying the simple decrease condition
must be returned if a trial step satisfying the simple decrease condition is satisfied for
a step defined by Ay BiF'.

We first need some measure of the relative lengths of the steps defined by the core
pattern ' and its negative —I'. We begin by defining

k

e = min ||a:k—mk||-- mln ||sk|| = rnm IIAkBk"y"H
t=1,---,2n
and
E*= max || - %l = max |[5]l= max [|ABl
’ '

We assume here that Py is partitioned as in (8) so that the first 2n columns of P
contain the columns of [ByF] = [BiI' —BI].
Since |B| is finite, we can define 7 as follows:

— min minj:l'-..,n ||B1/J:ij“ .
By€B maX;=1,...n | By7||

Thus, for any 1 <z,; < 2n,

1k

(18) I1Z; — Zill = 15l < B* < -II 5l = -II A

Note that 7 is independent of k since the columns of the core matrix I' are fixed across

all iterations of a pattern search method. Observe also that 0 <7 <1.
We define the contour C(Zo) to be

C(@0) = {7+ £(2) = f(2)}.
Since T € Q., Lemma 4.5 allows us to define

N = min{k : & # Zo}.

T



ON THE CONVERGENCE OF PATTERN SEARCH ALGORITHMS 35

We define d to be the distance between the contour defined by Zo and the level set

defined by Ty
d = dist (L(Zn), C(Zy)) .

Because both sets are compact and disjoint, we know that d > 0.

We now make the following two claims. _
CLaM 1. Suppose k > N. If, for some j = 1,---,2n, ||} — Z|| < nd, then

Z} € L(Z) foralli=1,---,2n.
Proof. The triangle inequality gives us

dist (&}, L(#w)) < dist (2, L(Zx)) + dist (L(4), L(Zn))
= dist (Z, L(Z%))

< |\&% — -

From (18) we have

- - 1 -7 —
2% — Zkll < 1%k = Zl,

so that
dist (7}, L(#n)) < d,
for any choiceof i =1,---,2n. O ‘
CLAIM 2. If for some i = 1,---,2n, ||Z] — &i|| < n§, then

4

Fl € Ny = {F € L() : dist(Z, X.) > €/2}

foranyj=1,---,2n.
Proof. Suppose Z, € X.. We appeal to the “reverse” form of the triangle inequality

to obtain

127 — 2.0l > | |£] = Zel| - |2

< e

[ZT7N

Finally, let
a = min |Vf(@)]].

By design, > 0. Since Vf is continuous on L(Z,), Vf is uniformly continuous on
L(Z,). Thus, there exists r > 0, depending only on the ¢ from (16) and a, such that

IVF(Z) = V()| < %ﬁ whenever ||Z — Zk|| < r (and £ € L(Zo)).

. Fite mE RS
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We define § as follows:
§= nnﬁn {d, €/3, r, An-1}.

If k < N, then because § < An_y, if Ax were smaller than 6 the iteration necessarily
would be successful. In fact, this happens exactly when k = N — 1.
On the other hand, if k¥ > N, we are now assured that if

(19) E* <6,

then for 4 = 1,-++,2n, 3} is contained in L(Z,) and for some i = 1,---,2n satisfying
(16), |V f(Zf) — VF(&k)|| < éa/2. We are ready to argue that if, at any iteration k,
(19) is satisfied, then an iteration of a pattern search method will be successful.

Choose a trial point Z§, i = 1,---,2n, that satisfies both Vf(Z)T(Z} — k) < 0
and

V£ (@) (@ — &)
NMiAlEEE

The definition of the pattern P, and Lemma 7.1 guarantee the existence of at least one
such Zj.
The Mean Value Theorem tells us that

(&) = f(@) = V(@) (3 — )
for some @ contained in the line segment from (#{ to Zx), whence
(20)  F(Z) — f(Fx) = VF(E)T(E} — &) + (V@) = V(@) (@ - Zx)-
Consider the first term on the right-hand side of (20). Our choice of Z; gives us
V@7 (@ - 30)| = V@G - Zell.
Furthermore, since V f(Zx)T(Z§ — Zx) < 0, we have
(21) V@) - &) < €IV @EIE — Zll.

Now consider the second term on the right-hand side of (20). The Cauchy-Schwarz
inequality gives us

(2)  |(VA@) - VAEN G- 2| < IVF@) - VAEIIE - Z.
Combine (21) and (22) to rewrite (20) as

F(F) — £(&) < —€IVFEINIZE = Eell + IV (@) = V@ Z — 2l
= (=EIVFEDI + V(@) = VF(EIDIZk — Zll-

Since @ lies on the line segment between #§ and %, once ||Z{ — Zx|| < §,

F(&) = £(@) < (<EIVFE)N + SIVFAE)DIZL — &l <O

2¢.
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Thus, when ||Z} — Zi|| < 6,
f(&@) = (%) > 0.

The condition on the exploratory moves guarantee that if min{f(Zx+5),5 € AxByF} <
f(fk), then f(:;:‘k + 5‘/;) < f(fk) Thus, px = f(fk) - f(fk + 5‘1;) >0. 0
We now will prove Proposition 4.6. :

Proof. (Proposition 4.6.) Suppose that liminfi_ e || V.f(Z%)|| # 0. Then we can
find N; and € > 0 such that for all £ > N,

Z € Qe = {7 € L() : dist(Z, X.) > €}.

We also know that there exists N, such that Zy, # Zo; if &% = Z for all k, this would
mean that V(&) = 0, contradicting the assumption that liminfx_,+o ||V F(Zk)|| # 0.

Let N = max(N;, N;). From Proposition 7.3 we are assured of § > 0 such that
if £ > N and A < 6, then the iteration will be successful. Given Ag, there exists a
constant p € Z, p > 0, such that

0P < 6.

Thus, for £ > N, 07Pt1Aq < Ap.
Now set

ALB = 0min(0’Ao, Al, ey, AN—l)-
Then for all k, Azp < Ag. O
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