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Abstract

Moultilevel Algorithms for Nonlinear Equations
and Equality Constrained Optimization

by

Natalia Alexandrov

A general trust region strategy is proposed for solving nonlinear systems of equa-
tions and equality constrained optimization problems by means of multilevel algo-
rithms. The idea is to use the trust region strategy to globalize the Brent algorithms
for solving nonlinear equations, and to extend them to algorithms for solving opti-
mization problems. The new multilevel algorithm for nonlinear equality constrained
optimization operates as follows. The constraints are divided into an arbitrary num-
ber of blocks dictated by the application. The trial step from the current solution
approximation to the next one is computed as a sum of substeps, each of which must
predict a Fraction of Cauchy Decrease on the subproblem of minimizing the model
of each constraint block, and, finally, the model of the objective function, restricted
to the intersection of the null spaces of all the preceding linearized constraints. The
models of each constraint block and of the objective function are built by using the
function and derivative information at different points. The merit function used to
evaluate the step is a modified ¢, penalty function with nested penalty parameters.
The scheme for updating the penalty parameters is a generalization of the one pro-
posed by El-Alem. The algorithm is shown to be well-defined and globally convergent
under reasonable assumptions. The global convergence theory for the optimization
algorithm implies global convergence of the multilevel algorithm for nonlinear equa-
tions and a modification of a class of trust region algorithms proposed by Maciel, and
Dennis, El-Alem and Maciel.

The algorithms are expected to become flexible tools for solving a variety of opti-
mization problems and to be of great practical use in applications such as multidisci-
plinary design optimization. In addition, they serve to establish a foundation for the
study of the general multilevel optimization problem.
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Chapter 1

Preliminaries

This study proposes generalizations of the methods of Brown and Brent for solving
systems of nonlinear equations; i.e.,

Problem NLEQ:

Given F : R" — R",
find z* € R", such that F(z*) =0,

where F has Lipschitz continuous first derivatives.

The algorithms for solving systems are further generalized to solve the nonlinear
equality constrained optimization problem; i.e.,

Problem EQC:

minimize f(z)
subject to C(z) = 0,

where f : ®* — R and C : R" — R™(m < n) are at least twice continuously
differentiable. For this problem, a procedure similar to the one for nonlinear equations
is used as a scheme for finding feasible points.

When reduced to their mathematical formulations, many problems of science and
engineering may be stated as nonlinear optimization problems or problems that re-
quire solving nonlinear systems of equations. Much successful research has been done
in developing numerical methods together with the underlying theory for their solu-
tion. However, the appearance of increasingly challenging practical problems coupled
with growing computational capabilities require the introduction of algorithms that
can solve new problems while making good use of powerful computers. We also hope
that the new algorithms described in this thesis will allow researchers and industrial
users to solve old problems more effectively, and even to recognize the existence of
tractable optimization problems where none have been thought to exist.

The algorithms proposed here can be used to solve any general problem NLEQ or
EQC, but we consider the following special set of optimization problems as a target.



Optimization problems that arise in engineering and other industrial applications
are often of very large dimensions. Their constraint systems are frequently nearly
square, with only a relatively few variables that correspond to actual physical con-
trol parameters, while the majority are state or behavior variables for the system.
Methods that allow solving large problems by solving several problems of smaller
dimension are very important to find.

Frequently, in engineering design and other applications, constraints occur natu-
rally in blocks arranged in a specific order. For instance, in multidisciplinary design
optimization the blocks may come from different sources such as various analyses or
simulation codes. In other applications; computational resources do not allow the en-
tire constraint system to be considered simultaneously. An optimization strategy that
permits arbitrary splitting of constraints into blocks and separate processing of them
would be very useful for such applications. For problem NLEQ, local Brown-Brent
methods form such a strategy. Their natural extension is the basis for the multilevel
algorithms proposed here.

In addition to their flexibility in handling an arbitrary number of constraint blocks,
our algorithms are attractive because, following the original Brown-Brent methods
in their finite-difference derivative form, they require fewer function evaluations than
the Newton’s method.

Multidisciplinary design optimization is expected to be the most useful specific
application of the proposed algorithms.

The remainder of this chapter introduces the new algorithms in general terms, dis-
cusses their historical background, explains the notation, and states some well-known
theoretical results that will be used without proof throughout the thesis. Chapter 2
discusses the globalization of Brent’s method for solving systems of nonlinear equa-
tions. Chapter 3 introduces the multilevel algorithm for equality constrained opti-
mization based on Brent’s method. Chapter 4 is devoted to global convergence theory
for the multilevel algorithms. Chapter 5 discusses the problems of implementation.
Finally, Chapter 6 concludes with descriptions of some applications and plans for fu-
ture research. Appendix A contains a glossary of the lemmas and theorems; Appendix
B contains the list of test problems.
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1.1 General Introduction: Multilevel Algorithms for NLEQ
and EQC

Let us begin by considering the conventional approach to solving problem NLEQ with
a trust region method used as a globalization strategy. A complete step of such an
algorithm has the following form:

Algorithm 1.1 The Trust Region Algorithm for Nonlinear Equations

Given F : R* - R*, z. € R, 6. > 0,
Do until convergence:
(1) Let s. be an approximate solution of
minimize ||F(z.) + VF(z.)7s||?
subject to ||s|| < ..
(2) Set z4 = z. + se.
(3) Evaluate z4. If it is acceptable, set z. = z.
(4) Update é..
End
To evaluate the computed iterate, the algorithm uses the merit function f(z) =
IF()II3-
This is a special case of the trust region approach to the unconstrained optimiza-
tion problem:
Problem UNC:

minimize f(z)

z € R™.

Detailed treatment of the trust region approach to UNC can be found in Dennis and
Schnabel [15], Sorensen [34], Moré [25], Moré and Sorensen [26], Powell [19], and
Shultz, Schnabel and Byrd [33].

The methods proposed in this dissertation are multilevel algorithms. In the case
of nonlinear equations, our scheme differs from the conventional algorithm in that its
major iteration involves finding an approximate solution of not one quadratic model
over a single restricted region, but a sweep of quadratic models, each approximately
minimized over its own trust region. Each model approximates the sum of squares of
a block of equations, restricted to certain subspaces. Each model is computed at a
different point. The case of a single block of equations is included.



In general terms, a multilevel algorithm for nonlinear equations with the trust
region strategy will have the following form:

Algorithm 1.2 The General Multilevel Trust Region Algorithm
for Nonlinear Equations

Given F : R* — R", let the components of F' be partitioned into M arbitrary blocks
denoted by Fi,...,Fup. Let & > 0,...,85 > 0,z. € R" be given.
Do until convergence:
(1) Compute the trial step 3.:
Set yo = z..
Do k=1,M:
Let sx be an approximate solution of the subproblem
minimize || Fi(y-1) + V Fe(yr-1)T s]|?
subject to ||s|| < 6§ and
s is restricted to an appropriate subspace.
Set yr = yg—-1 + Sk-
End Do
Set §. =51+ ...+ sar.
(2) Set z4 = z. + 3.
(3) Evaluate z. If it is acceptable, set . = z.
(4) Update &%,..., 65;.
End
Thus the principal difference between Algorithm 1.1 and 1.2 is in the computation
of the trial step:

e In Algorithm 1.1, the trial step is computed using the function and derivative’

information for the equation components at a single point.

e In Algorithm 1.2, the trial step is computed using the function and derivative
information for the equation components at different points.

This difference makes the conventional merit function ||F(z)||? used in Algorithm 1.1
inadequate for measuring the progress of Algorithm 1.2 toward a solution. We will
introduce a new merit function in Chapter 2 and discuss the reasons for introducing
it in more detail. As a consequence, steps 3 of the two algorithms also differ.
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Figure 1.1 Multilevel algorithm for NLEQ: one trial step.



Figure 1.1 illustrates the computation of one trial step of the multilevel algorithm
for problem NLEQ with n =3, M = 3:

At yo = ., the model of F; at yo is minimized over the three-dimensional trust
region, producing y;. Then the model of F; at y;, restricted to the nullspace of
V Fi(y0)7, is minimized in a two-dimensional region to produce y,. Finally, the model
of F3 at y,, restricted to the intersection of the null spaces of VFl(yo)T and V Fy(y,)7,
is minimized in a one-dimensional region to yield y3 = z..

In the case of equality constrained optimization, the m components of the con-
straint system are partitioned into M arbitrary blocks. Then a procedure similar to
the one for problem NLEQ is used on the constraint blocks. However, when the norm
of the model of the last block of constraints is approximately minimized to yield yar,
only m degrees of freedom of the problem are exhausted, leaving n—m degrees of free-
dom. Then the reduced model of the objective function is approximately minimized
over that (n — m)-dimensional region to produce yar41 = Z4.

In addition to practical considerations discussed in the previous section, this thesis

offers several theoretical contributions:

1. We present a global convergence theory for an algorithm based on Brent’s
method. The algorithm and its theory may be viewed as a generalization of
several other algorithms (see Section 1.2).

2. To the author’s knowledge, the proposed algorithm for solving nonlinear equa-
tions is the first theoretically supported method for globalizing Brent’s algo-
rithm via the trust region strategy.

3. In both the algorithms for NLEQ and EQC, the choice of the merit function
and the definition of the predicted reduction in the local quadratic model play .
a crucial role. We introduce new merit functions based on the #; penalty func-

tion with a multistage penalty parameter updating scheme using the method
proposed by El-Alem [8], [9].

4. The work may be considered as a foundation for the study of the general mul-
tilevel optimization problem. This will be discussed in more detail in Chapter

6.



1.2 Historical Background

The algorithms proposed here may be viewed as a combination and generalization of
the null space methods for solving optimization problems and the generalized elimi-
nation methods (Brown-Brent) for solving nonlinear equations.

1.2.1 The Methods of Brown and Brent

Theoretical origins of this research lie in the method for solving nonlinear systems of
equations introduced by Brown in [4], [5], [6]. In [3], Brent viewed Brown’s method
from a different perspective, which allowed Brent to propose a class of methods,
among which Brown’s original method was a special case. Gay [12] and Martinez
[22], [23] provided further modifications and generalizations of the methods.

The following statement of the general Brown-Brent algorithm was condensed
from the descriptions in Gay [12] and Dennis [14]. In these works the algorithm is
described in terms of one-dimensional blocks.

Denote the components of F(z) by Fi(z),..., Fa(z).

Algorithm 1.3 Local Brown-Brent Algorithm for Nonlinear Systems

Outer Loop: Do until convergence:
Yo = ZT¢
Ho = %n
Inner Loop: Dok =1,n
1. Form the linearization, Ly about yi.; of Fj restricted to ﬂf-‘__])l H;.
L =0 defines Hi, an (n — k)-dimensional hyperplane in ®".
2. Move from yi-1 € N H; to yx € ﬂ{-;o H;.
End Inner Loop
e =Yn
End Outer Loop
The point y, of intersection of all the hyperplanes is the point where all the
linearizations vanish. The way in which the steps 1-2 of the inner loop are actually
done determines the particular kind of Brown-Brent method. In Brent’s method,
Sk = Yk — Yk—1 is the shortest £; norm step from yi—; to Hi. In Brown’s method, si
is the shortest £; norm step from yx—; to Hj parallel the k-th coordinate axis.
When applied to a linear system of equations, i.e., when F(z) = Az — b, Brown’s
method is equivalent to Gaussian elimination with pivoting about the maximum row




element of the reduced matrix [4], while Brent’s method is equivalent to factoring A
into a product of a lower triangular matrix and an orthogonal matrix [3].

Figure 1.2 illustrates the difference between the two methods.

Brown [4], [6], Brown and Dennis [7], Brent [3], and Gay [12] established local
quadratic convergence of variants of the algorithm, both for analytic and finite dif-
ference derivatives. -

An important feature of the methods is that in their finite-difference derivative
form, they require fewer function evaluations than Newton’s method. The savings in
computation for problem NLEQ can be demonstrated as follows.

The finite-difference Newton’s method requires n + 1 evaluations of each function
component Fi(z), resulting in n? 4+ n component function evaluations. In contrast,
each inner loop of a local Brown-Brent method requires n + 1 evaluations of F3(z),
n evaluations of Fy(z), ..., 2 evaluations of Fn(z), resulting in "—%9-’1 component
function evaluations.

The above description suggests that Brown-Brent based methods perform more
efficiently when the linear or the most linear components are placed first in the system.
Numerical experience confirms this.

1.2.2 Null Space Methods

The multilevel methods proposed here may be viewed as a generalization of an ap-
proach to nonlinear programming known as the null space or generalized elimination
approach (see Fletcher [11]).

Different authors refer to different methods as ”null space methods”, but the
general idea of a null space method for equality constrained minimization is to reduce
the dimension of the problem by first taking the step intended to solve the constraint
equations, and then to minimize the model of the function restricted to the null
space of the linearized constraints. The resulting minimization problem is of a lower
dimension than the original one.

A well-known local method of this type is the GRG (Generalized Reduced Gradient)
algorithm. Details of GRG and other null space methods can be found in Lasdon (17],
Fletcher [11], Avriel [1], and Gill, Murray and Wright [29].

A class of global trust region algorithms that use the same general principle of
reducing the problem’s dimension is known as the class of tangent space methods.



Fi(z1,22) =0

Fay(z1,22) =0 Brown

Y Yo

AT

Brent

\
\

Figure 1.2 Brown’s method.vs. Brent’s method for two linear equations.
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The tangent space approach was introduced to avoid the possibility of infeasibility of
the constrained trust region subproblem.

Recent work on these methods by Maciel [20] and Dennis, El-Alem and Maciel [16)
will be discussed in more detail in Chapter 3. The main feature of the class is that the
trial step is computed as a sum of two substeps, the first of which is made toward the
linearized constraints in the direction orthogonal to the null space of the constraint
Jacobian, while the second is made to minimize the model of the Lagrangian in the
null space of the linearized constraints. The function and derivative information is
computed at a single point z..

The multilevel methods proposed here generalize the tangent space methods in
the sense that their trial steps are sums of not two substeps but of as many substeps
as there are constraint blocks together with a substep on the model of the objective
function with the model information computed at the points resulting from taking
the substeps one-by-one.

1.3 Theoretical Background

The global convergence theory for equality constrained optimization algorithms has its
basis in the theory for unconstrained optimization. Problem UNC is of direct interest
here because the constrained trust region subproblems of the multilevel algorithms
are converted into unconstrained trust region subproblems.

In this section we give some well-known results in unconstrained minimization
theory without proof, state some useful lemmas from multivariate calculus and linear
algebra, and explain the notation. These results can be obtained from numerous
sources—the references stated for each result are not exhaustive.

1.3.1 TUnconstrained Minimization Results

The solution of the following quadratic subproblem serves as a trial step for problem

UNC:

1
minimize f(z.) + V f(z.)Ts + -é-sTHcs (1.1)
subject to ||s|| < é..

where f,6. € R,V f,s € R*,H, = HT € R**", and || - || denotes the £; norm.

The solution is given by the following lemma.
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Lemma 1.1 Let f: R* — R be twice continuously differentiable; let
H_ be symmetric positive definite. Then problem (1.1) is solved by

s(u) = —(He + pI)7'V f(zc) (1.2)
for the unique g such that ||s(x)|| = &, unless ||s(0)]| < é, in which case
s(0) = —H 'V f(z.) is the solution. '

Reference: Dennis and Schnabel [15], p. 131.
The subproblem for the nonlinear least squares problem (NLSQ) is a special case
of Subproblem (1.1). It has the following form:
minimize ||R(z.) + VR(z:)T s]|2 (1.3)
subject to ||s|| < 4.,

where R : R* — R™ for some m < n. The solution is given by

Lemma 1.2 The problem NLSQ is solved by
s(n) = =(VR(z)VR(z.)T + uI) 'V R(z.)R(z.), (1.4)

where . = 0 if ||(VR(z.)VR(z:)T)'VR(z.)R(z.)|| < &, and pp > 0

otherwise.

References: Dennis and Schnabel [15], p. 227; Moré [24].
The step s(0) is defined by the limiting process

5(0) = lim s(u) = ~[VR(z.)"]'R(zc), (1)

where 1 denotes the pseudoinverse of VRY.

The step (1.4) is known as the Levenberg-Marquardt step. It was introduced by
Levenberg [18] and Marquardt [21].

The subproblems of the multilevel algorithm for nonlinear equations and for the
equality constraint component of the multilevel optimization algorithm are of the
form (1.3).

The following lemma describes a useful property of the Levenberg-Marquardt step.

Lemma 1.3 The steps (1.4) and (1.5) are orthogonal to all vectors in
the null space of VR(z.)T.

Reference: Dennis and Schnabel [15], p. 154.
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The Merit Function

In order to evaluate a trial step, algorithms use merit functions, which are functions
related to the problem in such a way that the improvement in the merit function
signifies progress toward the solution of the problem.

For unconstrained minimization, a natural choice for a merit function is the ob-

jective function itself. Let .
., 17
8(s) = f(ze) + Vf(ze)'s + 55" Hes (1.6)
denote the quadratic model of the merit function. We define two related functions.

Definition 1.1 The actual reduction is defined as

ared.(s.) = f(zc) — f(zc + sc), (1.7)
and the predicted reduction is defined as
pred.(sc) = ¢(0) — &(sc) (1.8)
= —Vi(z)(s0) = 35T Hese

so that the predicted reduction in the merit function is an approximation

to the actual reduction in the merit function.

The standard way to evaluate the trial step in trust region methods is to consider the
ratio of the actual reduction to the predicted reduction. A value lower than a small
predetermined value causes the step to be rejected. Otherwise the step is accepted.

Fraction of Cauchy Decrease

For practical considerations, it is important to know how exactly the quadratic sub- .
problem must be solved. For theoretical considerations, it is enough to impose the

mildest possible restriction on the step. Usually the trial step is required to satisfy at

least the Fraction of Cauchy Decrease condition. Sometimes, to strengthen the global

convergence results, the step is required to satisfy a Fraction of Optimal Decrease

condition. The latter condition is outside the scope of this thesis. To satisfy the

Fraction of Cauchy Decrease condition, s. must predict at least a fraction of the de-

crease predicted by the Cauchy step, which is the steepest descent step for the model

within the trust region. We must have

$(se) — $(0) < k[e(sET) — ¢(0)]; (1.9)
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where
s¢P = —alPV f(z.) with
v e 2 . v e 3
ofP = { Vf(zc)g‘;cv“_f(z;) if V-'_jf(z_;!c) HEZVf"(a:: < ée
c ] .
TR otherwise.

Reference: See Dennis and Schnabel [15], pp. 139—141, for details on the Cauchy
point.

The Fraction of Cauchy Decrease property implies a weaker condition which has
a more convenient form and is frequently used as a technical lemma in the global

convergence proofs.
Lemma 1.4 Let s, satisfy (1.9). Then

K [ ILf (=)
$(0) = #(se) 2 IV f(ze)|| min {W } (1.10)

References: Powell [19]; Moré [25].
Either (1.9) or (1.10) is necessary to establish global convergence theoretically.
We conclude this section with Powell’s global convergence theorem [19] for any
unconstrained minimization trust region algorithm.

Theorem 1.1 Let f : ®* — R be continuously differentiable and
bounded below on the level set {z € R"*|f(z) < f(zo)}. Assume that
{H;} are uniformly bounded above. Let {z;} be the sequence of iterates
generated by a trust region algorithm that satisfies (1.9) or (1.10). Then

liminf ||V £(z:)]| = 0.

Detailed treatment of the unconstrained minimization theory and practice can be
found in Moré [25], Moré and Sorensen [26], Sorensen [34], and Shultz, Schnabel and
Byrd [33].

1.3.2 Analysis and Algebra

Definition 1.2 (Penrose) If Ais an m xn matrix then its pseudoinverse
At is defined as the unique n x m matrix such that

1. AATA = A;
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2. AtAAY = At
3. (AANT = AAt,
4. (ATA)T = AtA.

Reference: Campbell and Meyer [32], p. 9.
The following property of the pseudoinverse is the most important one for our

purposes.

Lemma 1.5 Let A € %" b € R™. Then A!b is the minimum least
square (£, norm) solution of the problem

minimize %Hx"% (1.11)

subject to z € argmin {||Az — b||3}.

Reference: Campbell and Meyer [32], p. 28.

The following lemmas are available from many sources; for example, Dennis and
Schnabel [15], and Ortega and Rheinboldt [28]. They are necessary for producing
estimates in the proofs and will be stated without additional comments.

Lemma 1.6 Let F : " — R™ be differentiable in an open convex set
D c ®". Then for any z,y € D,

IFW) - F@)l < sup F(z+ty -2z =vl.  (112)

The notation z € (z;, ;) for z,z;,z2 € R* means that z = z; + t(z2 — z,) for
some t € (0,1).
Lemma 1.7 Let f : ®* — R be differentiable in an open convex set

D c R". Then for z € D and any nonzero perturbation p € R", there
exists z € (z,z + p) such that

flz +p) = f(z) + V£(2)Tp. (1.13)

Lemma 1.8 Let f: R" — R be twice continuously differentiable in an
open convex set D C R". Then for z € D and any nonzero perturbation
p € R", there exists z € (z.z + p) such that

flz +p) = f(z) + V(2)7p + 557 V(. (1.14)
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1.3.3 Notation

From here on, we assume that the equations in problem NLEQ or equality constraints
in problem EQC are partitioned into M arbitrary blocks.

Every algorithm proposed here has an outer loop with the loop counter : and
an inner loop with the loop counter k. Thus k corresponds to the block number
of equations for problem NLEQ or constraints for problem EQP. If the subscript k
is used with a constant, that constant refers to the properties of the k-th block of
equations or constraints.

Minimization subproblems are solved within the inner loop, yielding intermediate
steps. The sum of the intermediate steps produces the total step, the acceptability
of which is determined in the outer loop. The following notation is used in the rest
of the study.

|| - ]| — Unless specified otherwise, all norms are £; norms.

z., ¢+ — Current and next outer loop iterates.
z;, ;41 — Current and next outer loop iterates, when considered in convergence
analysis.

z. — A local solution of the original problem.

Yy, k=0,....M — (k=0,...,M+1,M <m < n for optimization.) Inner loop

iterates when considered without reference to outer iterations.

y$, y§ — Inner loop iterates when considered with reference to outer iterations.
yi, yi*! — Inner loop iterates when considered with reference to outer iterations in

convergence analysis.

sik,k=1,...,.M —(k=1,...,M +1,M <m < n for optimization.) Steps com-

puted in the inner loop subproblems.

si — The subproblem steps when the reference to the outer loop is required.

s§ — The same as s}.
sf — The same as s}’

sy — The same as s} '.
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¢ — 8. = 81+ ...+ sp in the context of equations, and 5. = s;1 + ... + sp41 in the
context of optimization; §. is the trial step.

6 — k=1,..., M for equations, and k =1,..., M + 1 for optimization. This is the
trust region radius for subproblem k; 6 takes on a superscript identical to the

ones for s when mentioned in the context of the outer loop

3.: — The radius of the total trust region centered at z. = yo.

fc, f+ - f(l'c), f(x-l-)
Hpy — In the context of optimization, Hy approximates V2f(ym)-

ér(s) — In the context of optimization, this is the quadratic model of f built about
the point yas.

Ji(z) — VFZ(z), in the context of equations.

P — A basis for the intersection of the null space of VC(z)T, in the context of
optimization.

P, — A basis for the intersection of the null spaces of Ji(¥o),.- ., Jk(yx-1) in the
context of nonlinear equations, and a basis of the intersection of the null spaces
of VCi(%0)%,..., VCi(yk-1)T in the context of optimization.

Q — Special case of P: orthonormal basis for the null space of VC(z)7, in the
context of optimization.

Qx — Special case of P;: orthonormal basis for the intersection of the null spaces of
J1(v0), - - -, Jk(yk-1) in the context of nonlinear equations, and an orthonormal
basis for the intersection of the null spaces of VCi(y0)7,..., VCk(yk-1)T in the
context of optimization. '

Z — Special case of P: reduced basis projector into the null space of VC(z)7, in the
context of optimization. (Described in Chapter 5.)

Zr — Special case of P;: reduced basis projector into the intersection of the null
spaces of J1(¥o),...,Jk(yk-1) in the context of nonlinear equations, and into
the intersection of the null spaces of VC;(y0)7,..., VCk(yk-1)7T in the context
of optimization. (Described in Chapter 5.)
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In general, when we omit superscripts, we refer to the objects within a single outer
loop. For example, Cy(yx-1) refers to Cr(yi_,) or Cr(¥§_,)-
Additional notation will be introduced as needed.
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Chapter 2

Multilevel Algorithm for Solving Nonlinear
Equations Based on Brent’s Method

2.1 Brent’s Algorithm for Nonlinear Equations

One way to present Brent’s local method* is as follows:
Algorithm 2.1 Brent’s Algorithm for Nonlinear Equations

Let F € C'(R"), z. be given. The components of F' are partitioned into M arbitrary
blocks.
Outer Loop: Do until convergence:
Yo = Z.
Inner Loop: Dok =1,M
Solve for si:
minimize 1||s||3
subject to s € argmin ||Fr(yk-1) + Ji(ye-1)sll2
Ji(yj-1)s =0,5 = 1,...,k—1.
Yk = Yk-1 + Sk.
End Inner Loop
Te =YM-
End Outer Loop
Thus, sk is the shortest ¢; norm step from the current minor iterate to the hy-
perplane formed by the restricted linearization of the component block numbered k.
The trust region strategy suggests itself as a natural approach to globalizing the local

algorithm.

*For simplicity, we use exact derivatives.
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2.2 Globalization of Brent’s Method: Multilevel Algorithm

The equations are divided into M arbitrary blocks. The inner loop of the multilevel
algorithm for problem NLEQ is as follows. The current approximation to a solution
of problem NLEQ is yo. A quadratic Gauss-Newton model of the first block is built
about the initial point, yo, and a step, s;, bounded by the trust region, is found in
such a way that it satisfies a Fraction of Cauchy Decrease condition for this model.
The step is taken to yield the point y; = yo + s1. The quadratic model of the second
block of equations, restricted to the null space of the Jacobian of the first block, is
built using the information at the new point. It is important to emphasize
that all the function and derivative information for the second block is computed at
the new point y;. The next step, s2, bouncied'by its own trust region, is obtained
to satisfy a Fraction of Cauchy Decrease condition for this restricted model of the
second block. The step is taken to yield the point y2. The process of computing steps
that satisfy sufficient predicted decrease for the restricted models of progressively
smaller dimensions continues. Again, the model for each block is built by using
the function and derivative information at the most recently computed
point. The final step, sy, is obtained to produce sufficient predicted decrease in the
quadratic model, at yas—1, of the last block of equations, restricted to the intersection
of the null spaces of the Jacobians of all previous blocks. The final step is taken to
yield the next major iterate. The total step from z. to z, is the sum of the substeps
in the inner sweep, i.e., . = sy +...+sp. Unless the convergence criterion is met, the
algorithm returns to process again the first block of equations. The current version
of the algorithm evaluates the total step 3c. It is possible that future versions of the
algorithm will also evaluate intermediate substeps s1,...,sum. Such a strategy may
prevent having to return to the first block of equations. Instead, processing may
resume at some intermediate inner iterate yj. |
To measure the progress of the algorithm toward a solution, we introduce a new

merit function:

P(x;Pl,---,PM-l) =

IFa(@)I1? + pra-1 (| Fa-1(@)I + - - + p2(lF2(2)I? + o1l Fa(=)]%))
M-1 M-1

= 1Fm(@)? + 3 (I p)lIFe(2)II%,

k=1 3=k
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where pr > 1, k = 1,...,M. The initial choice px = 1 is arbitrary and scale-
dependent. The only requirement is that pr > 1. For theoretical purposes, the
problem is assumed to be well-scaled.

We shall motivate the choice of the merit function in Sectlon 2.2.4.

At yar = 24 = 2o + &, we model each [Fi(z4)[[? by |Fi(yi-) + Ju(vemn)sll,
and so we model the merit function at z, by

Mc(S1y- s SM;PLy -1 PM—1) =
N Fre(yar—1) + Iae(ynr—1)smll® + plg—1 (1 Far-1(ynmr—2) + Im-1(ypr-2)sp1||?
+054—a (| Frsr—2(ynr-3) + Inr—2(yp—3)sm—2|l* + - -

+5(I1 Fa(31) + Ja(y1)szI® + A5l Fa(vo) + J1(vo)s1l*)))
M-1 M-1

= | Fr(yar—1) + In(yne=1)saell® + 3 CTT pi)ll Fe(yr-1) + Jr(yr-1)skll®.

k=1 ;=k

Algorithm 2.2 Multilevel Algorithm for Nonlinear Equations

Given 6y > 0,k = 1,...,M,6maz > 0,6min > 0,0 < m1 < 72 < L,eu € (0,1],
az > 1,z. € R
Outer Loop: Do until convergence:
Yo = Te.
Inner Loop: Dok=1,M
Compute sP*™, the unconstrained Brent step from yx-1.
if ||sP7e"t|| < &; then
Yk = Yk-1 + SET
sk = sBrent,
else
Compute s; that satisfies the Fraction of Cauchy Decrease
condition on || Fi(yk-1) + Jk(ys-1)s]|3 restricted to
the intersection of the null spaces of J;(y;-1)s=0,7=1,..., k=1,
and ||s]|z < 6.
Yk = Yr-1 + Sk.
End if
End Inner Loop
T+ = YM-
Sc=81+ ...+ SMm.
Update the penalty parameters using Algorithm 2.3.
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Evaluate the step and update the trust region radius:
Compute P(zc; p5, - - - » Pig—1)s P(T+3 PS5 - - - Pia-1)
M(S15---3SM; PS5+ 2 PIa—1)s .
ared = P(z¢;p5, - - -1 Pha—1) — P(z4;p5%,-- -, pPia-1);
pred = P(zc; pS,. ., Pha—1) — Mc(s1,. .o sM3 5, -+ P5r—1)-
Use Algorithm 2.4 to evaluate the step and to update
the trust region radii. '

End Outer Loop

The subproblems of the algorithm can be solved by using the QR decomposition of
Ji(yo) to find a basis for its null space and then by updating the QR decomposition for
subsequent subproblems to find a basis, Q—1, for the intersection of the null spaces
of J1(¥0),- - -, Jk(¥k-1). The procedure for finding a basis for the intersection of null
spaces is discussed in Chapter 5. A change of variables, v = Qk-1s, converts the
constrained subproblems to unconstrained ones. In the test version of the algorithm,
the reduced quadratic subproblems are solved by the subroutine GQTPAR (Moré
and Sorensen [26]). As the inner sweep progresses, smaller and smaller dimensional
problems are solved.

We attempt to take the unconstrained Brent step first, because we would like
to retain local quadratic convergence of Brent’s local algorithm, that is, once an
iterate comes sufficiently close to a solution, we would like the algorithm to take
unconstrained Brent steps until convergence occurs. At present, we are not certain
that our merit function will allow us to recognize this situation. Local convergence
analysis is beyond the scope of this thesis, but it is included in the research plans of
the immediate future.

Once the subproblems with null space constraints are converted into unconstrained
trust-region subproblems, the steps may be chosen in any manner, as long as they
satisfy the Fraction of Cauchy Decrease condition. Let us consider two choices: the
optimal step and the truncated Brent step.

2.2.1 The Levenberg-Marquardt Step

The following proposition establishes the relation between the Levenberg-Marquardt
step and the Brent step.
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Proposition 2.1 Let s; be the Levenberg-Marquardt step from yx_; to
yr with trust region radius §;. Then s is equal to the unconstrained Brent
step on the shifted equation Gi(y) = Fi(y) — [Fr(yx-1) + Jk(yx-1)sx] = 0.

Proof:
Let £ = 1. The Levenberg-Marquardt step from yo to y; is a solution of the
subproblem
minimize || Fi(yo) + J1(¥0)s]|?
subject to ||s|| < é:.

By Lemma 1.2, the solution is

s1 = s1(1) = —[1(y0) "1 (%0) + 117 J1(¥0)T F1(vo)-

Now let us compute the Brent step from yo on the shifted equation

Gi(y) = Fi(y) — [F1(yo) + J1(yo)s1] = 0.
The linearization of G;(y) at yo is
Li(s) = Gi(yo) + VGi(yo)Ts
= —Ji(yo)s1 + J1(%0)s,

where s = y — yo. The unconstrained Brent step is the solution of the subproblem
minimize 1|s]|?
subject to  J1(yo0)s — J1(yo0)s1 =0,

and by Lemma 1.5 we have

s = J1(y0) 1 (yo)s1-
If 5,(0) is inside the trust region, then

51(0) = —J1(30) Fi(3o)

and
slBrent — —J1(yo)TJ1(yo)J1(yo)TFl(y0) = —Jl(yo)TFl(yo) = $1(0),

by a property of pseudoinverses (Definition 1.3).
Now, for u > 0,

slBrcnt = Ji(yo) V1 (yo)s1 = -—Jl(yo)*Jl(yo)[J1(yo)TJ1(?/0) + pI]“l,h(yo)TFl(yo).
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By Lemma 1.3, s; is orthogonal to the null space of Ji(yo), i.e., s1 € (M[J1(yo)])* or
s1 € R(J1(y0)T). Therefore,

s1 = J1(y0) J1(yo)s1 = 7™
So, for both g = 0 and g > 0, the Levenberg-Marquardt step from yo to y, is the
same as the unconstrained Brent step on the shifted equation.

Taking the step yields y1 = yo + s1 and y; resides in the 'hyperplane J1(yo)s —
J1(yo)s1 = 0.

Now we linearize F3(z) = 0 restricted to this hyperplane, which must also contain

y2. Thus, s, must lie in the null space of J;(yo), i.e., it must satisfy
Ji(yo)s =0

In particular, let @; be an orthonormal basis for A[J1(y0)]; then change variables to

s = Qv and linearize F; about y;:

F2(y1 + le) ~ FQ(yl) + Jz(yl)le.

We obtain s; as a Levenberg-Marquardt step on
minimize || F3(y1) + J2(y1)@Q1v]|?
subject to ||v|| < 62,

i.e.,

s2 = Q2(J2(31)Q1)T (J2(31) Q1) + pI] 7 [J2(y1) @1]T Fa(w1)-
The shifted equation is

Ga(y) = Fa(y) — [Fa(y1) + J2(y1)s2]-

Linearizing this equation restricted to J1(yo)s = 0 and following an argument identical
to the one for k = 1, we arrive to the conclusion that s; is also the unconstrained
Brent step on the shifted equation.

Taking into account successive restrictions to (=1 [N (VC;(yj-1)T)], the reasoning
is unchanged for any k, which proves the proposition. O

Thus, each subproblem step in the inner sweep is a Brent step from the current
minor iterate to the hyperplane formed by the linearization of the next equation,

“shifted” to be inside or on the boundary of the trust region.
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2.2.2 The Truncated Brent Step

The subproblem steps can also be approximated by attempting the unconstrained
Brent step first, keeping it if it is within the trust region and shortening it to lie
within the trust region if it is not, i.e.,
_ 61: * sErent

llsEem |l

This strategy preserves the sufficient predicted decrease property of the step, which

Sk

is shown in the following proposition.

Proposition 2.2 Let sP™" be the unconstrained Brent step from yx_;
to yx with trust region radius 8. If ||sP7*"|| < 6k, then let s = sPremt.

Otherwise let
61: * sfrent

= 2.1
e 1

Sk

Then s satisfies the Fraction of Cauchy Decrease condition on subproblem
k.

Proof:
If s = sf""‘, then the conclusion is obvious. So for (; = "—’kg%,.—,“ assume that
0 < (x < 1. We can express sP™*™ as sP™" = Qi_ivk, where v is the Levenberg-
Marquardt step for the problem
minimize ||Fk(yk_1) + Jk(yk_l)Qk_lv”z
subject to ||| < ||sBm™||.

Therefore,
| Fe(yr-1) + Jr(yu-1)s2™ | < 1 Fe(ye-1) + Je(yx-1)s8°7,
where sB°P = Q;_ ux and u; solves

minimize || Fi(yk-1) + Jr(¥r-1)Qr-1u||?
subject to |lul| < ||sEm™||
u = —a(Je(Yk-1)Qr-1)T Fe(yx-1), a20.
Clearly, since the unconstrained Brent step lies outside the trust region,

A= {.S I "‘S” < 51:,3 = "'aJk(yk—l)TFk(yk_l),a 2 0}
is a proper subset of

B={s|llsll < llsf™"|l,s = —aJi(yk-1)" Fe(yr-1), @ > 0},



25

and since
min {||Fe(yk-1) + Jk(ve-1)sll,s € A} = min {||Fi(ye-1) + Je(ye-1)sll, s € B},
we have

I Fi(vi-1) + Je(¥r=1)sECF|| < 11 Fi(yk-1) + Je(ve-1)s5 7 |l

which implies that

I Fi(yre1) + Je(¥a-1)s27™|| < || Fi(ya-1) + Je(yr-1)s5 7 1l,

Now we have

1 Fx(yro1) + Je(wror)sell = 1 Fe(yr-1) + Jr(yr-1)Cesi ™|l

1 Fx(ye-1) + Je(yr-1)Cesi ™™

Gk Fr(yr-1) — CeFr(yr-1)ll

Cell Fre(yr—1) + Je(yr—1)sgm ™|l + (1 = Gl Fi(yi-1) |l
Cell Fe(yk-1) + Je(yr-1)s8 7l + (1 = Gl Fi(ye-a)|
Cell Fie(yr-1) + Je(wr—1)sE I+ (1 = Gl Fi(yw—)ll

IN ININ +

which proves the proposition. O
For very large problems, shortening the unconstrained Brent step may be prefer-
able to solving quadratic subproblems.

2.2.3 Updating the Penalty Parameters

To update the penalty function parameters, we use the following procedure.

Algorithm 2.3 Penalty Parameter Updating Algorithm (Done on
completion of each inner sweep of minimization problems.)

At the beginning of Algorithm 2.2, set pT = ... = p3_, = 1 and choose 3 € (0,1).
1. Compute Fpredi(s1) = || F1(yo)|I* — | Fi(30) + J1(yo)s1ll?
2. Compute Fpredy(s1,s2;p1) =
| F2(yo)lI> — | F2(y1) + Ja(y1)s2ll? + py Fpredi(s1)
if Fpreda(si, s2;07) 2 5 IF1(30)|I* = 1Fi(vo) + Ji(y0)s1]l%] then
p5 = p7 |
Fpred,(s1, sq2; p5) = Fpreds(s1, $2;p7)
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else
pi = p + B,
where g1 = M%Wmm
Compute Fpred,(s1, s2; ps)

end if

3. Compute Fpreds(s1, s, s3; p§,p2) =
(1 Fs(vo)lI2 = || F3(y2) + Ja(y2)ssl|*] + p3 Fpreda(sy, s2; p5)
if Fpreds(si, sz, 53505, p7) = % Fpred;(s1, ss; p3) then
Pz = P2
Fpreds(s1, 2, 53; p5, p§) = Fpreds(si, s2,53;p1, P2 )
else '
P§ = /)_2 + :33
2“|Fg!yzl+Jajyz!ag”z-—"F;!mmzl
Fpredz(s1,32:p§)

Compute Fpreds(s1, Sz, S3; p§, P3)
end if
Continue the process until all M — 1 penalty parameters are updated.

End

This penalty parameter updating scheme generalizes the scheme proposed in El-Alem

where g2 =

[8], [9]. It ensures that our merit function has an essential property, namely, that
unless an iterate is optimal, the predicted reduction should always be positive.

Note that without updating the penalty parameters we can be assured of the
positive predicted reduction from z. only for the first block of equations, i.e., only
Fpred,(s;) is definitely positive without additional considerations. To ensure that
Fpred,(s1,sz2; p1) is positive, we may have to increase p;. Now that Fpred,(s1,s2;p1)
is positive, we use it to ensure that the next partial predicted reduction is positive,
and so on. Thus the predicted reduction of the first block is the most heavily penalized
one. This is another argument for placing the linear equations or constraints first, if
at all possible.

The properties of the penalty parameters are discussed in more detail in the next
two chapters.

It should be emphasized that the step computation is completely independent of
the penalty parameter computation.
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2.2.4 Motivation for the Merit Function

Once the connection between the truncated Brent step and the Levenberg-Marquardt
step became clear, the statement of the algorithm followed naturally. However, dis-
covering an appropriate merit function required some effort.

Our original intention was to construct a good algorithm and to apply existing
theory, e.g., Shultz, Schnabel and Byrd [33], to prove its global convergence. To
accomplish this, we wanted our merit function to have the property that the predicted
reduction associated with a step be the reduction in the merit function caused by this
step when the merit function is applied to the model problem.

Toward this aim, we conjectured that the conventional merit function f(z) =
L|F(z)||3 would have the required property. Since the underlying problem was un-
changed this conjecture seemed reasonable. So, an explanation of why the conven-
tional merit function has proved inadequate is in order.

The first indication that we were too optimistic came with the question, “What is
our model problem?” To answer it, we attempted to express the model of f (z) in the
form of a quadratic. We approximated our merit function at z4 by U (81,.--58M) =
M | Fe(yker) + Je(yk—1)sk]|? and noticed that :

M
Ue(st,oorom) = 9 1 Fu(yr-1) + Je(yn-)sell?

k=1
M
= Y | Fe(yr-1) + Je(yr-1)(sk + ... + sa)|?
k=1
= ”Fc + jc§t=”2
where

F. = [Fi(%0), Fa(1) — J2(y1)s1, - - - Fre(ym—1) — Im(yar-1)(s1 + ... + sp-1)]T

and
Je = [J1(¥0), J2(#1), - - - » Iar(war-1)]T

So, consider the quadratic
- 1 = =
Ye(s) = §||Fc + Jes||?

where s is the step from z. = Yo to T, = yar. With the merit function f(z) =
LI|F(z)||%, the actual and predicted reductions become ared = f.—f,, pred = ¥.(0)—
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. (3.). This merit function / model combination seemed promising, but we could not
prove that the total step, ., produced a Fraction of Cauchy Decrease in the model.

Other definitions of the model and predicted reduction have been attempted. As
a rule, several of the main ingredients needed for a global convergence proof could be
proven, but not all of them.

We believe that these difficulties arise because the conventional merit function does
not take into consideration the multilevel structure of the algorithm, in particular,
that the equation blocks are modelled at different points. The function f(z) =
2IIF(z)||? treats all blocks equally, without taking into consideration the order in
which minimization proceeds.

The problem can be summarized as follows:

e The result of the k-th minimization subproblem predicts decrease for the k-th
component from point yx-; to point yix. It predicts no change for all previous
blocks. However, there is no prediction at all about how s; + ... + s changes
and likely increases the norms of the blocks numbered k +1,..., M.

The above mentioned attempts to apply existing theory to our algorithm brought
us to the conclusion that the merit function must take into account the multilevel
structure of the scheme. The modified ¢, penalty function, described in the previous
section does just that, by penalizing for the possible predicted increase in the equation
blocks k,..., M, that may have occured during inner loop iterations 1,...,k — 1.

2.2.5 Step Evaluation and Trust Region Updating

It is an interesting and challenging aspect of the proposed algorithms that they can
accommodate (theoretically, if not practically) several ways to evaluate the trial step.
As a related issue, several strategies for updating the trust region radius are also pos-
sible. This subject will be discussed in more detail in the chapter on implementation.
Here we would like to point out the possibilities and to say that there is a strong
~ indication that no single strategy may solve all problems equally well.

In the current version of the algorithm, the total step, §., is evaluated via the
merit function outside the inner loop. It is also possible to use the merit function
each substep within the inner loop or to use a hybrid strategy with both the total
step evaluation outside the inner loop and the substep evaluation within inner loop.

Possible trust region radius updating strategies follow.
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1. In the first scheme, all radii are updated simultaneously by the same factor.
A competing strategy suggests simultaneous updating of all radii by different
factors, based on individual subproblem performance.

[SV]

. In the second scheme, simultaneous updating of all radii, followifxg an inner
sweep in which all subproblems are solved once, is contrasted with individual
updating of the radii within an inner sweep in which subproblems may be solved
several times to achieve a required actual to predicted reduction ratio for all
subproblems. The latter strategy seems reasonable because it treats the radii of
the subproblems individually, based on their possibly wildly varying behavior.

For the purposes of this thesis, the following strategy is used:
o The total trial step is evaluated outside the inner loop.

e All individual trust region radii are equal and are updated simulta-
neously by the same factor.

In the context of equations, the last statement means that the total trust region
radius centered at z. satisfies

be = VM 6§ for all k. (2.2)
In the context of optimization, we have
be = VM + 16 for all k. (2.3)

The values 6ni;n and &maz refer, respectively, to the smallest and largest values
allowed for the subproblem trust region radii.

We would like to emphasize that the simultaneous expansion or contraction of the
trust region radii is not a technical requirement. It is just a current updating strategy,
and it is convenient for the purposes of the global convergence prodf. However, all that
the convergence theory requires is that the norm of the total step 5. =s1+ ...+ sm
be less than or equal to 5., while the norm of each substep s,k = 1,...,50 is less
than or equal to some fraction of 5c.

The algorithm for evaluating the step and updating the trust region radii follows.

Algorithm 2.4 Step Evaluation / Trust Region Update
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Given 6y >0,k =1,...,M (or k=1,...,M + 1 for optimization), émaz > 0, min >
0,0<m <7n2<1l,0; € (0,1], a2 > 1,z. € R*, ared, pred,

ared
pred’

Compute r =
if r < m; then (step not accepted)
or = aq * O.
else if 7 > 7, then (step accepted)
8k = min{bmaz, max{min, 2 * 6 }}.
T = Ty
else ( step accepted)
8r = max{bmin, 6k }-
T = Tq.

end if

We note that if the step is not accepted, the trust region radii are decreased
without any safeguard. However, if the step is accepted, the next trust region radius
is set to be no smaller than a predetermined positive value 6. This strategy is
extremely important in the global convergence theory. It ensures that the trust
region radius is bounded away from zero and hence that the penalty parameters are
bounded from above. This technique was introduced in Maciel [20].

2.2.6 Convergence Properties

Let {z;} denote the sequence of iterates generated by Algorithm 2.2, and let {3;} be
the corresponding sequence of steps.
The following assumptions are made for the algorithms for solving nonlinear sys-

tems of equations:
AE1: There exists a convex set, € R", such that z; and z; + $; are in Q for all s.
AE2: Ji(z),k=1,...,M, are uniformly bounded in norm in Q.

AE3: J(z) has full rank for all £ € . This implies that Ji(z),k = 1,...,M, also
have full rank.

AE4: The projectors into intersections of the null spaces of the equation blocks are
uniformly bounded in norm. -

The following result holds.
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Theorem 2.1 Under assumptions AE1—AE4, given any €. > 0, the
algorithm will terminate because

| Fi(z:)ll < €tal (2.4)
will be simultaneously satisfied for some i and all k = 1,..., M.

The proof of this theorem is a corollary of the global convergence theorem for
equality constrained optimization in Chapter 4. It will be discussed there. In Chapter
3, we will discuss in more detail the termination criterion that requires the norms of

all component blocks to be less than or equal to a certain tolerance parameter.
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Chapter 3

Multilevel Algorithm for Equality Constrained
Optimization Based on Brent’s Method

We study the optimization algorithms in two stages. First, we propose a modification
of an existing algorithm, and then we use this modification to propose a general
multilevel algorithm.

3.1 Modification of an Existing Algorithm

In Dennis, El-Alem, Maciel [16] and Maciel [20], the authors present a global conver-
gence theory for a class of algorithms for solving problem EQC. These algorithms use
the trust region approach as a globalization strategy.

The general algorithm suggested in [16] and [20] computes the trial step as a sum
of two components, normal and tangential’. The normal component, s*, satisfies a
* Fraction of Cauchy Decrease (FCD) condition on the quadratic model of the con-
straints, 1||C. + VCTs||?. The tangential component, s!, satisfies an FCD condition
on the quadratic model of the Lagrangian, g.(z. + s™ + s), restricted to the null space
of VCT. The Lagrange multiplier and Hessian estimates are only assumed to be
bounded. To evaluate the trial step, sc = s? + s, the algorithm uses the augmented
Lagrangian. The penalty parameter is updated via the method proposed by El-Alem
8].

Some of the interesting and surprising results are that the convergence theory
goes through even when the Lagrange multipliers are taken to be zero and the model
Hessians are arbitrary but bounded.

As an initial step toward our goal of a multilevel algorithm, we propose a mod-
ification of the general algorithm in [16]. In essence, we replace g. by a quadratic
model of the objective function, but we construct the model at z. + s™, not at z..

'The step may be computed as a single 'step, but it is crucial for the theory that the step can be
represented as a sum of two components that satisfy the appropriate conditions.
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Our motivation is the hope that the model at z. + s™ will lead to a better s* because

it is more local. The modified algorithm follows.
Algorithm 3.1 EQC Algorithm for a Single Block of Constraints

Let P(z;p) = f(z) + £IIC ()%
Let ¢%(s) = f(:c% + Vf(a:%)Ts + %sTsz_s.
Stép 0. Initialize:
Given zg, compute Z, a basis for N'(VC(zo)7).

Choose 6.miny Omaz, €101 > 0.
Set po =1 and 5> 0.

Step 1. Test for convergence:
if |ZTV £ + ||Ce]l € €t then exit
end if

Step 2. Compute a trial step:
if C. =0 then

1. Compute a step, s, that satisfies an FCD condition on the quadratic model,
®c(s), of the objective function about z..

2. Set s, = st.

else

1. Compute a step, s?, that satisfies an FCD condition on the quadratic model
of the constraints about z..

2. Set Ty = Ze + s7.

3. Compute a step, s!, that satisfies an FCD condition on the quadratic model,
¢%(s), of the objective function about z 1 and also satisfies the condition
VCTs = 0. (This is the major modification.)

4. Set s, = s? + st.

end if
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Step 3. Update the penalty parameter:
Compute pred.(sc; p-)-
if pred.(sc; p-) 2 %[”Ccllz ~ |Ce + VC7sc||?] then
Pec = p-.
else

pe = pe + B, where

_ 2063 (0)—¢4 (s2)]

Pe = fICdP-NICc+VCT sl *
end if

Step 4. Evaluate the step:
Compute ared.(s¢; pc) = P(sc; pc) — P(S4; pe)-
Compute pred.(sc; pc) = P(c; pc) — $1(st) — &l|Ce + VCT sc||%.
Evaluate the step and update the trust region radius using Algorithm 2.4.
if the step is accepted then
Set ¢, = . + s..
go to Step 1.
else
go to Step 2.
end if
end

The differences between Algorithm 3.1 and the algorithm proposed in [16] and
[20] are as follows:

1. Algorithm 3.1 uses the £, penalty function as a merit function instead of the
augmented Lagrangian. The definitions of the actual and predicted reductions
and the penalty parameter updating scheme are changed accordingly.

2. The tangential component of the step is evaluated by minimizing the quadratic
model of the objective function, restricted to the null space of VCZ, about
Ty, instead of minimizing the quadratic model of the Lagrangian, similarly
restricted, about z., i.e., the quadratic model of the objective function is built

from the information at Ty, instead of z..

The global convergence theorem for Algorithm 3.1 is a corollary of the theorem

proved for the multilevel algorithm in Chapter 4.
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In this context, it is clear why the Lagrange multipliers can be taken to be zero.
We are solving two minimization subproblems, each with its own starting point. The
second subproblem has only the null space constraint and thus is really an uncon-
strained problem.

This intermediate result also provides an insight into the role played by the penalty
parameter for a two-step method. It is important to observe that in the global
convergence proofs of both Algorithm 3.1 and the algorithm proposed in [16] and
[20], the penalty parameter has a function in addition to the usual one of penalizing
the constraint violations: it penalizes the possible increase in the Lagrangian or in
the objective function caused by the substep s™.

The same reasoning as in the case of nonlinear equations applies here. At the first
stage, the minimization is performed only on the quadratic model of the constraints,
without any reference to the model of the Lagrangian or the objective function. It
is possible that the normal component, s, produced independently, decreases the
predicted value of the constraint model but increases the value of the Lagrangian
or the function. In fact, s* does not predict anything about the behavior of the
Lagrangian model in the same sense as it predicts the behavior of the constraint
model. The only “prediction” that the theory provides is a negative lower bound on
the effect of s” on the function. In such a case, the penalty parameter serves to ensure
that total reduction predicted in the model of the merit function by the total step
is positive. It does this by putting an appropriately heavy weight on the decrease
predicted for the already processed components.

3.2 Extension of Brent’s Method to Equality Constrained
Optimization: a Multilevel Algorithm

The inner loop of the multilevel algorithm for problem EQC based on the method
of Brent can be described as the following extension of the algorithm for nonlinear
equations. The constraint system of the problem is divided into M arbitrary blocks.
In practice, this block decomposition is obvious in most cases. The current approxi-
mation to a solution of problem EQC is yo. A quadratic Gauss-Newton model of the
first block of constraints is built about the initial point, yo, and a step, s;, bounded by
the trust region, is found in such a way that it satisfies a Fraction of Cauchy Decrease
for this model. The step is taken to yield the point y; = yo+s1. The process continues
along the same lines as Algorithm 2.2 for solving nonlinear systems. When all the
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constraint blocks have been processed, n — m degrees of freedom still remain. The
remaining variables are used in building a model of the objective function, so that
the final substep, sas4+1, is obtained to produce sufficient predicted decrease in the
quadratic model at yps of the objective function, restricted to the intersection of the
null spaces of the Jacobians of all constraint blocks. The final step is taken to yield
the next major iterate, i.e., the next approximation to a solution of problem EQC.
Unless the convergence criterion is met, the algorithm returns to process again the
first block of constraints at the new point.

3.2.1 The Merit Function and Reductions

The new merit function is an extension of the merit function used for nonlinear

systems:

P(z;p1,- -2 oMm) = f(z) + pr(||Cre(2)|I?
pr—1(||ICr=1(2)|> + par=2([|Cr=2(z)|I> + . . . + p2(||C2(2)|* + p1]IC1(2)1I?))))
M M
= f(z) + D_(II e)IIC(2)II%,

k=1 j=k

where pp, > 1, k=1,..., M.
We define the actual reduction as

aredc(sl, <o s SM+13P1y -+ ¢ PM) = ’ﬁ(mc) - ’ﬁ($+) (31)
= P(y) = P(ym).

Let

$a0(s) = flyne) + V f(m)Ts + 357 Hies, (32)

where H)s is either the Hessian of f at yas or an approximation to it. The only
assumption imposed on H)s is that it must be uniformly bounded in norm from
above.

The predicted reduction models the actual reduction and is defined as

P"edc(sl,---,3M+1;P1»-~aPM) = (33)

M M .
f(yo) + 2_(IT P)lICi(vo)II* (3-4)

k=1 j=k
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M M
—[m(sms1) + 2 (TT Pi)lICk(yk-1) + VCi(ya—1)T skll]

=1 j=k

= f(yo) — [f(ym) + Vf(yM)TsM+1 + ';‘3'.1’\~4+1HMSM+1]

M M
+ 3 (IT p)UICK(w)I* = IChlyk-1) + V Cilyi-1)T skl

k=1 j=k

Notice again that the model information is computed at z. = yo only for the first

block of constraints.

3.2.2 The Statement of the Algorithm

The formal description of the algorithm follows.

Let the constraints be enumerated in the following way. The constraints in the
first block are numbered from n; = 1 to n, — 1; the constraints in the second block
are numbered from n, to ns — 1, and so on, until the constraints in the last block are
numbered from njs to npse = m.

Algorithm 3.2 Multilevel Algorithm for Equality Constrained
Optimization

Given 6 > 0,k = 1,...,M,6pmaz > 0,6min > 0,0 < m < 72 < 1l,0q4 € (0,1},
as >1,z. € R
Outer Loop: Do until convergence:
Yo = ZT..
Compute the trial step.
Inner Loop: Dok =1,M
Compute the unconstrained Brent step s2™™ from yx_;.
If ||sPm™|| < 6k then
Yk = Y1 + ST
sk = sPrent,
else
Compute si that satisfies the Fraction of Cauchy Decrease
condition on || Fi(yk-1) + Ji(yk-1)s||3 restricted to
the intersection of the null spaces of J;(yj-1)s =0, =1,...,k—1,
Brent

and ||s||z < 8. (sx = figwmy is allowed, by Proposition 2.2).
k
Ye = Yk-1 + Sk



End if

End Inner Loop
Compute spr41 to satisfy the Fraction of Cauchy Decrease
condition on the subproblem: minimize @ar(sar41) restricted to
the intersection of the null spaces of J;(yj-1)s =0,7 =1,..., M,
and ||s||2 < om.
YM+1 = YM + SM+1.
T+ = YM+1-
The trial step is: S =s1 + ...+ Sm+41-
Update the penalty parameters using Algorithm 3.3.
Evaluate the step and update the trust region radius
using Algorithm 2.4.
If the step is accepted, set z. = 4.

End Outer Loop

We should note that an option is to eliminate only a subset of constraints via

the described procedure. In this case, the rest of the constraints and the objective

function would be restricted to the intersection of the null spaces of the Jacobians of

the processed constraints, and the resulting reduced optimization problem would be

solved by a chosen method. The discussion of this approach is left for later work.

3.2.3 Updating the Penalty Parameters

To update the penalty function parameters, we use the following procedure.

Algorithm 3.3 - Penalty Parameter Updating Algorithm (Done on
completion of each inner sweep of minimization problems.)

At the beginning of Algorithm 3.2, set pT = ... = pp; = 1 and choose 8 € (0,1).
1. Compute cpred;(s1) = |[|C1(yo)||* — [IC1(¥0) + VCi(yo)T sal>.
2. Dok=1,M-1
Update px.
Compute
cprediia(sy, - - -y Sk+1; P55 - - s P10 PE) =
(ICk+1(wo)lI* = I Crsa (ye) + VCrsi(yr) sknll?
+pi cpredi(sy, ..., Sk P5, - -+ s Pic1)-
if cpredis1(S1y. -y Sk1;P5- -5 Pt PR ) =
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Lecpredi (s, ..., Sk; p5, - - - Piy) then
Pk = Pk -
Cpredk+1(sly o ooy Sk41; Pi’ vy Pi_p pi) =
cprediy (s, ..y Sk+15 A5, -+ +» Plcrs PR )-
else
pi = P_k + ,Ba

2[|Ck41(vx)+VChk1 (U) T sk 4112 =|ICo+1 (v0)l1]
cPredk(’l l'"”k;p:v-"vpi_l) )

where g =
Compute cpredis1(S1y- -5 Sk+1; P55+ -+ Pi1y PR)-

end if

end Do

3. Update pas.

Compute

pred(syy ... SM+1; P52 Pise1r Prr) =
[f(y0) — ém(sm+1)] + parepredas(su, ..., smi PS5 - - Pig—1)-

if pred(s1,.-., SM+1; 055+« Pot—1>Prt) =
fé-‘cpredM(sh ey SM; PS5y -y Piy—1) then
Pi = Prr-
pred(syy ..y SM+1; PS5y - s Pit—1> Por) = Pred(S1,. .oy SM415 P5, - - - s Phs—1> P21)-
else
Py = PM + B,

2[éar(sar+1)=f(wo)l

cpred s (8110ees 803051 1Pg 1)

where par =
Compute pred(si, - .., SM+1; PS5y« -+ Pir—11 Pix)-
end if
End
The reasoning behind this update is simple: we want the predicted reduction to be
positive. We can achieve this, for example, if for each substep sk, the predicted
reduction accurnulated by the step sy + ...+ sk is at least a fraction of the predicted

decrease accumulated by the step s; + ...+ sg-1; i.e.,

cpredirr = ||Cis1(mo)lI® = |Cke1 (W) + VCis1(yx)T sk ll* + pi cpredi > %k‘cpredk
(3.5)
or
ICksr Wo)I? = |G (ws) + VCota (y) st ll* = —Frcpreds.
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Therefore, pr must satisfy

S 2l Cha(ys) + VCis1(ye)T sksall® = ||Ck+1(yo)||2]
cpredy :

Pk 2= (3.6)

So, if (3.4) is not satisfied, we set px to the right-hand side of (3.6) plus a small
number B € (0,1). To check, after pi is updated we have

cprediiy — /;—kcpredk = ||Chs1(¥0)lIZ = IChe1(¥) + VCii1(yx) sl

\V/ T 2 __ 2
+ [2[||Ck+1(yk)+ Ci+1(¥£)T sk41 > = | Cr1 (o)l ]+ﬁ] cpredy
cpredy
[[”Ck-H (yx) + VCk+1(yk)T3k+1”2 - ||Ck+1(y0)”2] ] cpred
cpred; 2
= gcpred;c
>0.

Thus .

cprediyr = l%kcpred,c

will always hold. This fact gives us the following lemma.

Lemma3.1 Let the penalty parameters be updated according to Algorithm
3.3. Then the partial and the total predicted reductions satisfy

cprediyr 2> E‘)icpredk (3.7)
> Hf;: Pi cpred, | (3.8)
and
pred. > %McpredM (3.9)
> D—%%,—picpredl. (3.10)

This very useful lemma is used in the proof of convergence.

3.2.4 An Alternative Penalty Parameter Scheme

As mentioned earlier, the only step that is naturally assured to predict a positive
decrease from the value at z. of the norm of its block of constraints is s,, which is



41

why it is the most heavily weighted substep. The accumulated predicted reduction
has to be made positive with the help of the penalty parameters.

An alternative scheme is to place the penalty parameter only on the first block of
constraints, i.e., to have a merit function of the form

M
P(z) = f(z) + 2_IIC;(@)I* + plICr(2)|I?
1=2 .
with an appropriate scheme for updating p.
While theoretically this scheme would not be fundamentally different from the one
we adopted, in practice it is expected to have more severe problems with conditioning
as p grows large. ‘

3.2.5 The Stopping Criteria

In the beginning of this study, the termination criterion similar to the one in [16],
[20] was used; namely

M
P f(yan)ll + 22 ICk(yr-1)ll < €tor. (3.11)
k=1
It proved inadequate for the purposes of the convergence theory.
While we still use the first order necessary conditions for problem EQC to termi-
nate the algorithm, we now require that

IC1(wo)ll < et (3.12)
IC2(y)ll < €t

ICM(ym-1)ll < €

IPHV fn)ll < €t

hold simultaneously.
Lemma 4.2 in Chapter 4 will show that

llskll = OUICk(yx-1)I1)-

Thus, if ||Ck(yk-1)|| is small, ||sk]| will be small and the inner loop iterates y; will be
close to each other, and in the limit we will show that at least a subsequence of the
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generated sequence of the outer loop iterates will converge to a stationary point of
problem EQC.

The tolerance parameters €, need not be the same, but for convenience, they are
taken to be the same throughout this thesis.

The reason for requiring a stronger stopping criterion is that (3.11) does not
differentiate between the individual ||Ck(yk—1)||- It is essential for the convergence
proof to determine how close to feasibility an iterate must be in order for the penalty
parameters not to be increased. This is a measure of feasibility versus optimality. The
stopping criterion (3.11) allows only the total feasibility to be measured and thus to
determine when pys does not have to be increased. But even if pps is not increased,
p1,.--,PpM—1 mMay have to be increased because of the relative sizes of the component
block norms. Criterion (3.11) does not allow us to measure relative feasibility of
one block of constraints with respect to the others.

Several stopping criteria provide this capability, for example, we may require that

ICi ()l + IC2(y)ll < €t
<

IC1(yo)ll + IIC2(y)Il + ICa(y2)l €4l
NC1 o)l + - - - + ICMym=1)l| < €471,

1PEY fan)ll + ICa(yo)ll + - - - + ICm(ym-)Il < €y

M-1

where €}, < €&, < ... < e ! < €, hold simultaneously. However, this is an

awkward and artificial criterion, while (3.12) is simple and reasonable.
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Chapter 4

Global Convergence Theory

In this chapter we present the global convergence theory for Algorithm 3.2. The gen-
eral reasoning follows the lines of that in Dennis, El-Alem, Maciel [16] and Maciel [20].
Of course, many modifications are necessary in order to accommodate the multilevel
nature of the subproblem solving procedure. However, two crucial properties of the
algorithm allow us to retain the basic flow of the argument: the substeps generated
by the subproblems are orthogonal to each other and the merit function together with
the penalty parameter updating strategy ensure that the overall model behavior has
satisfactory reduction properties.

Algorithm 3.1 is an intermediate step between the algorithm of [16] and [20] and
our multilevel algorithm. We have pointed out that it differs from the algorithm of
[16] and [20] in a crucial way, namely, the model of the constraints and the model
of the objective function (or the Lagrangian) are built using information at different
points. However, given the convergence theory of [16] and [20], only moderate effort
is required to prove convergence for Algorithm 3.1 alone. The situation changes
drastically when the constraint system is partitioned into an arbitrary number of
blocks. each having its own penalty parameter. Whereas in Algorithm 3.1 and the
class of algorithms in [16] and [20] we have to balance total feasibility with optimality,
in a multilevel algorithm we must balance optimality with total feasibility and with
relative feasibility among the individual constraint blocks, to account for the behavior
of individual penalty parameters.

4.1 Basic Ingredients of a Global Convergence Proof

Before beginning the proofs, let us give an overview of the necessary steps that usually
comprise a global convergence proof and point out the consequences of our algorithm’s
distinguishing characteristics for the proof.

The first three ingredients are identical to those required for a typical analysis of
an unconstrained minimization algorithm.
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1. The trial step must be shown to satisfy a sufficient predicted decrease condition,
usually the FCD condition, frequently expressed in the practically useful form of
Lemma 1.4. Our algorithm assumes that the substeps satisfy the FCD condition
on the subproblems. It remains for us to show that the total step from z. to

r, satisfies a suitable decrease condition.

2. The difference between the actual and predicted reduction must be bounded
above by at least a constant multiple of the square of the total step norm.
This is easily shown for Algorithm 3.2. Some terms of the actual estimate for
Algorithm 3.2 involve products of penalty parameters. These terms involve
higher powers of the total norm step. This technical detail is necessary for the

" global convergence proof.

3. The algorithm must be shown to be well-defined, i.e., we must prove that the
ratio of the actual reduction to predicted reduction can be made greater than
a given 7, € (0,1) after a finite number of trial step computations. Given 2, it
is easy to show that as the trust region radius approaches zero, the ratio of the
actual reduction to predicted reduction approaches one. For the algorithm to
be well-defined we must show that the ratio of the predicted to actual reduction
approaches one faster than the trust region radius goes to zero. This is easily

established for our algorithm.

An algorithm for constrained optimization that uses penalty parameters in its

merit function requires the fourth ingredient.

4. The penalty parameter in the merit function must be shown to be bounded.
The technique is to prove that the product of the penalty parameter and the
trust region radius is bounded by a constant independent of the iterates. The
sequence of the trust region radii is then shown to be bounded away from zero.
Here a crucial role is played by the trust region updating technique introduced
in [20]: after a successful iteration and before starting the next iteration, the
trust region radius is set to be no smaller than a pre-defined value. This way of
updating allows us to prove that the sequence of penalty parameters is bounded
from above.
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The method for updating the penalty parameter ensures that the sequence of
penalty parameters is nondecreasing *, which, together with its boundedness,
allows us to conclude that the penalty parameter sequence converges and, more-
over, remains constant after a finite number of increases. This fact is used in

the global convergence theorem.

Because of the multilevel nature of our algorithm, proving boundedness of the
penalty parameters requires extensive modifications of the theory in {16] and [20].

4.2 Assumptions

Let {z;} denote the sequence of outer iterates generated by any of the proposed
algorithms, and let {s;} be the correspondmg sequence of steps. Let {y.} be the
sequence of iterates generated in the inner loops of the algorithms, and let {s;} be
the corresponding substeps.

The following assumptions are made for the optimization problems:

AO1: There exists a convex set. Q € R, such that z;, z; + s, ¥}, and yi + s} are in
Q for all 7 and all %.

AO2: f,C € C}(Q).

AO3: VC(z)has rank m for all z € Q. This implies that each VCi(z),k=1,..., M,
has full rank for all z € Q. This is a strong assumption, but it is a standard
practice to require it for the sake of convergence proofs. Practical experience
suggests that the breakdown of this assumption does not necessarily diminish
the efficacy of our algorithm.

AO4: The projectors P,k = 1,...,M, and P are continuous functions. This as-
sumption is necessary for proving global convergence. Methods for constructing
continuous orthonormal null space bases are described in [33], [31], [30] and
will be discussed in more detail in Chapter 5. In addition, these matrices are

assumed to be bounded away from zero in norm.

AOS5: f(:t), Vf(x)v sz(x)a H.\!’ C(.’E), VC(II), VC’k(x), Vij(x)v.j = 1’- .
{[PL_,VCk(z)T[PL,VCi(z)]} ",k = 1,..., M, are all uniformly bounded in

!The global convergence theory for algorithms with nonmonotone penalty parameters has been
investigated by Mahmoud El-Alem [10].
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norm for all z € Q, i.e., there are positive constants oy, ..., 010, such that

If (@)l < o1,

IVF@ < o,

V2 f(2)]l < o3,

| Har|| € o4 for all inner loops,

IC(z)|| < os,

IVC(2)]l < s,

IV2C;(z)|| L 07,7 =1,...,m,
I{[PLVCx()T [P VC()} T S 08,k =1,..., M, (P = I),
| Pell < o,

IP|l < oo

The bounds o5 and o on the constraint system and its gradient, respectively,
imply the same bounds on the component blocks and component gradients of

the system.

Note that if instead of generic P, and P, we use orthonormal Q& and Q to project
into intersections of constraint block null spaces, the boundedness assumption is auto-
matically satisfied. Reduced basis projectors Zx, Z, which we will discuss in Chapter
5, also satisfy the boundedness assumption by virtue of the assumptions on the gra-

dients and hessians of the constraint blocks.

4.3 Technical Lemmas
The following simple lemma is important to the proof of global convergence.

Lémma 4.1 Let §. = s; + ... + sp41 be a trial step generated by
Algorithm 3.2. Then for N < M + 1 the following inequality holds:

N
IS sell < ll8ell, 1<j<N.

k=3

Proof:
By construction, the substeps s1, .. ., Sar41 are orthogonal to each other. Therefore,

by the Pythagorean theorem we have

lls;l? + ... + llswll®
< lsull? + ..o+ llsaall®

lsi + ...+ s~]?



lls1 + ... + sara]l?

= [I&lI*,

and the result is proved. O

The following lemma bounds the substeps in terms of the norms of the constraint
blocks. It will allow us to conclude that in the limiting case our termination criterion
(3.12) will cause convergence to a stationary point of problem EQC.

Lemma 4.2 Let s, 1 <k < M, be a substep generated by solving the
k-th subproblem of an inner loop. Then, under assumptions AO1—AOQ5,
there exists a positive constant K;, independent of & and the outer loop

index z, such that

llskll < KillCrlyr-1)Il- (4.1)

Proof:

If Cx(yk-1) = 0. then sz = 0 and (4.1) holds. If Cik(yx-1) # 0, then we obtain sy
by approximately solving for vy (i.e., requiring that vy satisfy the FCD condition) the
problem

minimize ||Ci(yx-1) + (PL, VCi(yx-1))Tv]|?
subject to || Pr-1v||? < 62,

where P, is a projector into ﬂj‘f;% [M(VC;(y;=1)T)], and then setting sy = Pr_jvk.
Our strategy of taking the unconstrained Brent step whenever it is within the

individual trust region ensures that

lsell < Nlsgmem |
= ||Peca[VCr(yr=1)T Pec1] Ch(ye-1)ll
- ”Pk_IPkT_lVCk(yk_l)[(P,?_lvck(yk-l))rp,i_lVCk(yk-l)]—ICk(yk-l)”
< 020806 Crlyr-1)ll

K1l|Cr(yk-1)ll-

This concludes the proof. O
The following lemma offers a way of expressing the sufficient predicted decrease
condition imposed on the solutions of the inner loop subproblems.
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Lemmad4.3 Letsy,...,Spm41, be the trial substeps satisfying the Fraction
of Cauchy Decrease condition imposed on the inner loop subproblems
1,...,M + 1 of the outer loop i. Then, under assumptions AO1—AO3,
there exist positive constants K2, K3, K4, independent of k and the outer
loop index ¢, such that

Ci(r-1)II? = ICk(yi-1) + VCi(yr-1)Tsill* . 2 (4.2)
1 .
5Cal|C(yk-1) | min {KsllCi(yi-1)ll, 8¢},
where k =1...., M,

and

oM (0) — drr(sm+1) = (4.3)
Flsr) = () + 9 Fm) vt + 3% Elnronen] 2

SIPLY f(yar)llmin (KAl PV Funn)l, Saesa}.

where Py is a projector into N, [M(VC;j(yj-1)T)].

7=1

Proof:
For 1 < k < M, letting P, = I, we find a step vi that satisfies a Fraction of
Cauchy Decrease condition on the problem
minimize ||Ck(yk-1) + (Pi_1 VCr(yr-1))Tv|I?
subject to || Pi-1v]|® < 63,

and then set the substep sy = Py_jvi. Therefore, by Lemma. 1.4 we have

ICk(yr-1)II* = ICh(yr-1) + VCi(ye-1)"sell* 2

1 . | PZ_; V Ci(yr—1)Cr(yr-1)ll
NPE YV Cr(yk-1)Cr(yi- ,
2|| -1V Cr(yr-1)Cr(yx-1)|| min{ 1P,V Cr(yx-1)V Ci(yx—-1)T Pe-1|

&)

Since

|PZ, 9 Ci(yk)Chle-n)ll 2 2= Ci(weca)l

and

| P,V Cr(yr=1)V Cr(yr=1)T Pell | Pe=1I*IV Ci(yr-1)I?

2.2
GQUSa

IN A
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we obtain (4.2) by setting

Ky = — and K= ot

o IC1 odol

Letting K4 = ;17 yields (4.3) as a direct application of Lemma 1.4 to subproblem
M+ 1.

This concludes the proof. O

The next lemma accounts for the effect of each substep, sk,1 < k< M, on the
constraint blocks numbered k+1,..., M and on the objective function. As mentioned
previously, this is a crucial estimate since the computation of s, guarantees a reduction
in the Gauss-Newton model of |Ck|| from yx_; and predicts no increase for the models
of |C;ll,7 = 1,...,k — 1, but does not take into account any information about
ICill,j = k+1,...,M or the objective function.

Lemma 4.4 Under assumptions AO1—AQOS5, there exist positive con-
stants pi,..., MM, independent of the iterates, such that

k-1
ICk(wo)lI> = ICh(yr-DII* = —pe—1 3 ICi (wi—)ll, kK =2,...,M, (4.4)
1=1
and

f(yo) — fyar) 2 —ﬂ\fz_:llc(J]-ll (4.3)

Proof:
By Lemma 1.8, for some zx € (yo,Yx—1) We have
ICk(wo)lI* = ICk(we-1)II* = ICk(¥o)II* = ICi(yo + 51 + - . + sk-1)I”
= |Ck(wo)lI* = ICx(0)lI* — 2[VChi(y0)Ci(y0)” (1 + - . . + sk-1)
—-;—(sl + oot 50))T[VCa(20) VCh(2)T

nky1—1
+ 20 Ci(z2)ViCi(ze)l(s1 + -+ + sk-1)
ngg41—1
2 = {2IIVCi(wo)llICx(yo)ll +[ IVC()IP+ 3= ICi(z0)IlIV*Ci(z0)l]

X||s1 4+ ...+ sk1llHIs1 + .o+ sk-al]
nk.,,;—l

> —{20605 + [_0'6 + Z 0506](1” = D)émaz}lls1 + ...+ skl

Jj=ngk
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Nk41 -1

> —(20eos + oot S os0?)(k = 1mac} Ku 3 G55l

2 j=nk j=1

k-1
= — k-1 Z NC;(y;-1)Il-

=1
The last inequality follows from Lemma 4.2, and so (4.4) is established.

Similarly, for some zp € (Yo, yar),

f(wo) = flum) = f(yo) — f(yo+s1+...+5m)
f(yo) = f(yo) = V(o) (s1+ .- + sm)

1 .
- 5(31 + ...+ SM)Tvzf(ZM)(S1 + ...+ SM)

IV Ao + 59 FGa)lllss + -+ saalllss + ..+ sl

>
> —[o2+ 3 ‘73M5ma= 1K1 Z I1C;(y;-1)ll
j=1
1
> —[o2+ 503Mbémaz + pr-1]K1 Z |C;(ysi-1)l

2

=1

M
—pm 2 NIC (wi-)ll,

=1

which concludes the proof. O

The last inequality of the proof was used to ensure that by construction,

pr < p2 < ... < pM-

This fact will be needed in a later proof.

4.4 The Behavior of the Model

The following lemma provides a workable expression of the Fraction of Cauchy Decrease
conditions similar to the one in Lemma 1.4.

Lemma 4.5 Let sq,....5:41 be the substeps generated at the current
iterate z. = yo. Then under assumptions AO1—AOS35, the partial and the
total predicted reductions satisfy the following estimates:

cpredi(S1y -« s Sk P1y -+ s PR—1) = (4.6)
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_;.)Q”Ck(yk_l)“ min{Ks||Ck(yk-1)|l; 6}

k—1
—tr-1 3 IG5 (=)l

i=1
+pr-1cpredi_1(s1,. .-, Sk=1;P1, - - -+ Pr—2)
and
predc(sla--'931\f+l;pla---’pJW) 2> (47)
1 .
SIPEY f(yan) | min{Kall PV £ (yan)ll, v}
M
—HM Z IC;(yi-1)ll
i=1
+parcpredar(sy, ...y SMiP1y - - -5 PA-1)
Proof:

In the proof we omit the arguments in the predicted reduction expressions.

cpredi = ||Ce(yo)lI* = ICk(yr-1) + VCi(yr-1)Tsl|* + pr-1cpredi—
[Ck(wo)lI* = I Ck(yx-1)II%]

+ UICk(yr-1)II> = ICk(yx-1) + VCi(yr-1)T st|1?]

+

pr-1cpredi_1.

Applying Lemma 4.3 and Lemma 4.4 to the right-hand side yields

' 1 .
cpred;, > 3/C2||Ck(yk-1)||mln{’C3||Ck(yk-l)||,5k}

k-1
- Hk-1 Z ”Cj(yj—l)”

=1

+  pr-1cpredi_;.
Similarly, for the total predicted reduction we have
pred = f(yo) — om(sm+1) + prcpredys
= [f(yo) — f(ym)]

+ [f(yrr) — damr(spr41)]
+ parcpredag
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L PEY Sl mindCal PRV F(uae)l, Baea)

M
— pm 2 NICi(y5-1)ll

i=1

+ pmcpredy,

which concludes the proof. O

The following standard lemma provides an upper bound on the error between the

actual reduction and the predicted reduction by repeated application of Lemma 1.6,

Lemma 1.8, and the Cauchy-Schwarz inequality.

Lemma 4.6 Let pred = predc(s1,...,5M+1;P1,---,pnm) and let ared =
ared(Sy1, ..+, SM+1; P1,- - - » pm)- Under assumptions AO1—AOS5, there ex-

ist positive constants Ks, Ks, and K7, and v,k =1,..., M, independent
of the iterates, such that
lared — pred| < Ks||5c||® (4.8)
M M M
+ Ko(TT p)lISell® + D_(TIT p5)vell Crlyi-1)lllIScll®
j=1 k=1 j=k
and
M
|lared — pred| < Ko(I] p5)lI3:11%. (4.9)
=1
Proof:
We have
lared — pred| |f(yo) — fyo + 81+ ..+ Sm+1)

M M
ST(IT 2)ICEw)I? = ICk(yo + 51 + - - - + sam+1)1I7]

k=1 j=k

{f(yo) — dm(sm+1)

M M
S (I p)UICKwO)I* = ICk(ye-1) + VCi(ye-1)"sell*1}]

k=1 j=k

| —flym+1) + Flym) + VF(ym) smn +

~ o~

A

1

T
23M+1HM3M+1

M

M
S (IT )= NCk(yar+)II? + ICk(yk-1) + VCi(yr-1)"skl*] |

k=1 j=k

J/

—

B
|Al + 1B
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By Lemma 1.8, we have

1
Al = | = f(ysar) = VF(ya) T spen — 53{(+1V2f(2)5.\1+1
1
+ flym) + Vf(yar) sarea + §SL+1HJ\13M+1I

%Isﬂ+l[H-V = V2 (2)sml

< 5l = V@il
< S+ 1977 Mispesall?
< %[03'*'04]”5.\“1”2,

where z € (ym, ym+1)-
By Lemma 4.1,

Therefore,

lsarsall S Ml15cll.

1 .
|4l < Z[os + ad]ll3c]|*

Now, since VCi(yk-1)Ts; =0 for j =k +1,...,M + 1, we have by Lemma 1.8

| B|

M M
| 3T p)UICK Yk=1) + VCi(yha1)T (sk + - .. + saraa) I

k=1 j=k

ICk(yk—1 + sk + .. + sare1)|?]]
M M
I ST p)UNCk(yr-1)I1* + 2(VCi(yk-1)Cr(yr=1)1T (sk + - . . + sar41)

k=1 j=k
IV Ci(yr-1)(sk + - - - + sar42)|l?
ICxk(yi-1)II* = 2[V Cie(wr=1)Cr(yr-1)1" (5k + - . . + 5ar41)
IV Cr(ze)T (sk + - - - + sar1)lI?

Nkl -1

%(sk + .ot sar)T[ D Cilz)VECi(26))(sk + - - - + sare1)]}]

i=nj

M M
| E(H Pj){”vck(yk-l)T(Sk +...+ ~‘>‘M+1)”2

k=1 j=k
IV Ch(26)T (s + - .. + sar41) I

Nk4+1—1

1 r
-2-(sk + ...+ s_\[.+.1)TL Z C,-(zk)V"’C,-(zk)](sk +...+ s‘\1+1)}|,

i=ng
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where zx € (Ye-1,ym+1),k=1,..., M.
Using Lemma 1.6, we have

M M
1Bl < (I pi)Mosorllse + ... + sarnll®

k=1 j=k
M M
+ S(II pi)(ksr = nk + Dorllsk + - - + sara| P Cr(yi-1)l
k=1 j=k ’
M
< (II pi)Mosor|lcl®
j=1

M M
+ Y (IT p)(nesr — mx + DorllScl* I Cr(yr-1)ll

k=1 j=k

M M M
(IT p)Ksll3ell® + D_(TT pi)vallsell*li Cr(yr-)ll-

=1 k=1 j=k

Denoting [o3 + 4] by Ks and putting A and B together, we have

lared — pred| < Ks||5c||?

M M M
+ (T pi)Kellscll® + 2o(TT pdwellscl®NICryi-)ll,
j=1 k=1 j=k
which establishes (4.8).
Continuing,
Ks M
lared — pred| < [=37 + K6bmaz + Y V0]
Hj:l P; j=k
M
x (IT pi)ll3cll
j=1
M
< [Ks + Kebmaz + Z VO]
1=k
el 2
x (II pi)ll3cll

j=1

M
Ko(TT pi)llscll®

=1

since px > 1 for all k, which establishes (4.9) and completes the proof. O
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Both the algorithm in [16], [20] and Algorithm 3.2 have the property that if an
iterate is feasible, the penalty parameters are not increased. We must show that if
the iterates are sufficiently close to feasibility, then the penalty parameters
will not be increased either.

The lemma that answers this question is crucial for the proof of convergence. In
the process of proving the lemma, it became apparent that the standard termination
criterion was not satisfactory for the theory of a multilevel algorithm. This was
discussed in Section 3.2.5.

Lemma 4.7 Assume that Algorithm 2.3 does not terminate because
for some k = 1,..., M, the termination condition is not satisfied, i.e..
ICr(yr=2)Il > €tor. If f;ll 1C;(yj-1)]l £ wk-16., where wi_; is a positive
constant that satisfies
K2€tol

CAMAITE, p

A\ M + 1K36tol 1

677162

Wit min{ 1, (4.10)

then

cpredi(S1y-- -3 Sk PLs - Proy) = (4.11)
1 . [1n
7 CallCrlyi-1) | min{ K| Ci(ye-1)ll, e}
+pr_1cpredi—1(S1y .. Sk=1; P12 Picz)-
If the algorithm does not terminate because the (M +1)-st termination cri-

terion is not satisfied, i.e., || P&V f(yar)|| > €to, and if M NCi(yi=)ll <

warb., where wyy is a positive constant that satisfies

€tol . { Vv M + 1K:4€tol

Wy = —F=————— min , 1}, 4.12
wM 4 M + 1/1M 6maz: } ( )
then
pred(sy, ...y SM415 P15+ 2 Pir—15P31) 2 (4.13)
1 .
Z“P‘\ﬁvf(yM)H min{ K[| PGV f(yar)ll, 41}
+,0;16P7‘€d.\l(51, « ey SM; piv oo ,wa-1)-

Proof:

S B . T A L €8N TA L AR £



For this proof let

cpred;

cpredi—
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. A€ -
= cpredi(S1y---1Sk3PLr -+ > Pr-1)s

. AC c
= cpredi_1(81,--+3Sk=1;P1s -+ s Pr-2)-

For k =2,..., M, we have by Lemma 4.5,

cpred

>

= KallCulye-1)l| min{Kl| Ce(yr-)l, )

k-1
— k-1 2 NCi(yi-1)ll + pircpredi—1.

=1

Since ||Ck(yk—1)|| > €01, We have

cpredy

>

+

Since 6, = 7%, we have

cpredy
Since
Wg-1 =
<
we have
cpredy

which proves (4.11).

1 .
X Ck (i)l min{Ks| Cu(y-1)ll, 6k}

1 .
ZK:2€tol min{Ks€ol, 6k}

k-1
Hk-1 Z "CJ‘(yj-l)” + P;-1CP7'6dk—1-

=1

1 .

> ZIC2I|Ck(yk-1)H min{Ks]|Cx (yx-1)ll, 6%}
KZCtolgc . V A’I + 1’C3€tol

+ ———=min{ ,1}

4\/ JW + 1 6maz
—  Pk-1wWk-16c + pr_ cpredi-1.

K26tal . V M + 1K3etol

— Vi min{ ,1}
4\/ M+1 2 i=k—1 M3 6maz

Ka€tol . VM 4+ 1K3€00

min{ , 1},

4\/M + lﬂk—l 61na.::

1 .
> Zlczllc'k(yk-x)ll min{Cs||Cr(yx-1)|l, 6k}
+  pr-icpredi-i,
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Similarly, for k = M + 1, let pred = pred(s, ... ySM+1;PLs -+ P11, Par)- Then

by Lemma 4.5,

) . |
pred > §I|Rffvf(yM)l|mln{’C4IIPA7}Vf(yM)II,5M+1}
M
— uv ) NICi(y;-0)ll + pi_ycpredi—s,

=1

and since ||P5V f(yar)|l > €tor and Spr41 = 71%:_—1, we have

1 .
pred 2 ZIPEY f(yan)ll min{Call PV F(uar)l, )
6tolé.c . V M + lK:‘letaI

o 1
4 l‘j + 1 m]n{ 6maz ' }
—  parwarbe + pyrcpredys.
Since
€tol . VM 4+ 1K €100
wyr min{ .1},

6771.03

- 4V M + lup
we have (4.13), which concludes the proof. O

Thus we have a sufficient condition for any of the penalty parameters not to be

increased.

Note that by construction w; < wy < ... < wp, which is necessary for a later

proof.

The following lemma provides a useful bound on the predicted reduction if the

iterate is sufficiently close to feasibility.

Lemma 4.8 Assume that Algorithm 3.2 does not terminate because
for some k = 2,...,M, the termination criterion is not satisfied, i.e.,
IC(yk=1)ll > €rotr and that SF2HIC;(ys—1)| € wko1de, where wy_; is
defined in Lemma 4.7. Then there exists a positive constant 7x—; such

- that

cpredi(Sy.. ..y Sk; P1y--y Ph=1) = Tho10.. (4.14)
If | PLV F(yam)ll > €ror and T3 [1Ci(yi-1)l| € warbe, with war defined in

Lemma 4.7, then there exists a positive constant 7ys such that

pred(s1.....SM415 P15+, PM) 2 marbe. (4.15)
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Proof:
In this proof, let

cpredy = cpredi(s1,- - - Ski P1s -+ - 2 Ph=1)

and let
pT’Cd = pred(sl, ety SMH13 Py -0 0 pM) )
By Lemma 4.7,
1 .
cpredy 2 Zlczllck(yk-l)ll min{Ks||Cr(yx-1)ll, 6} + pr-1cpredi—

1 o,

> Z}CZHCk(yk—l)“ min{/C3||Cx(yx-1)ll, 6x }

> ix2€tol min{K3ésol, Ok }

Z 1 gc . Kaetol

—Kq€t0i———— —, 1}
4 2t I\/ JM + 1 mln{ 6ma: 1}
1

. _ : Kae
Setting Tk—1 = mngem mln{fn—::‘, 1}, we have
cpredi > Tk-16c.

Similarly,

v

1 )
pred IllP.ﬁVf(y.u)ll min{Ks||PEV f(ya)|l, 6ar+1} + parcprednm

1 .
2 ;llpﬁvf(ym)ll min{K4l| PiyV f(ym)ll, drr41}
1 .
2 Zetol mm{’C4€tal, 5M+1}
1 €tol . x4€tol -
> T min{*2,1}4
- 4mmln{ 5ma:l: ’ }
= T.\fsca

which completes the proof. O

4.5 The Behavior of the Penalty Parameters

As mentioned previously, to prove global convergence we must have the boundedness
of the penalty parameters. This is achieved by establishing an upper bound on the
product of the penalty parameters with the trust region radius, and then showing
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that the radii are bounded below. The penalty parameter sequences are shown to be
nondecreasing, which, together with their boundedness from above, will allow us to
conclude that the penalty parameters tend to a limit, and, moreover, stay constant
after a finite number of outer iterations. The limit is shown to exist, but its explicit
expression is not known.

In order to prove some of the lemmas below, a nested approach is required to take
into account the multilevel nature of the algorithm.

The following lemma summarizes the properties of the penalty parameters that
follow directly from the method of their updating.

Lemma 4.9 Let {p;},k = 1,..., M, be the sequences of penalty pa-
rameters generated by the algorithm.

1. If p is not increased. then

cpredis1(S1, -« -5 Sk+15 Ty« o5 Phots PR ) = (4.16)

P c
Tcpredk(sl, ey SE DTy s PRet)

and if pi, is not increased, then

pred(si.....sM41:p1- s Piy—15 Par) 2 (4.17)

p—cpredM( ..... SMiPTs s Prr—1)-

2. If p} is increased, it is increased by at least 3, i.e., if

. ‘ c -
cpredis1(S1y- - s Sk41; PTs - - -5 Pl1s PR ) <

pk - c
—;cpredk(sla cee9SkyPrye .- 7pk—l):

then p§ — p; > 3, and if

pred(sy..... SM41:P1e ooy Prr—1: Par) <

PM .
CPTCd\{(Sh R 7sMsp‘1:7 ... ’wa-l)’

‘-a

then p§; — p3r 2 8.

3. The sequences {p.} are nondecreasing.
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Proof:

1. For k=1,...,M — 1, if pi is not increased, then

b= pp > 2N Chra (yx) + VCiar () skl = 1 Cia (o) I’]
kTR cpredi(s, -« -y Ski P5y - s Pi1)

||Ck+1(3/o)||2 - ”Ck-l—l(yk) + vCk+1(3/k)T51=+1 H2 + p?kcpredk(sh ey SESPLyees Pi-l) >0

| Craa(yo)|I? = ICh1(yx) + VCir(vr)Tsksall? + prcpredi(siy---s Sk pls- -5 Pio1)

> %"—cpredk(sl,---,sk;p‘{,---,pi_x)
or

Pr
cpredis1(S1y- -« s Sk415PSs - - - Pic1s PE) 2 —cpredk(sl, ey SE PYy ey PRey)-

Similarly, if pas is not increased. then

5y = prp > r)[f( Yu) +Vf(yM) SM41 + 3M+1HM3M+1 f(yo)]
M - CpT‘CdM(Sl, . 73M’p11 7PM—1)

£(30) = [F(an) + 9 Fem) spes + 3% Haesaraa

+£2McpredM(sl, ey SMi PS5 s PA—1) 20

£(u0) = [Fluae) + ¥ Fuae Tsstsn + 55T Emesaeas]

p_
+pMcpredM(sl, «eoySM; p‘l:, RN} p?\l—l) Z —g’—cpredM(sl, « ooy SM; Pi, ey P?vt—l)

or

>PM

pred(sy, ..., SM+1; P71, 5 cpredpr(Suy - -y SM; PLy -+ Pir—1)-

oo Prr—1s Pr)
2. By part 1, if
- Px
Cpf'edk+1(31a- -°73k+1;p(1:a'°°7p‘l:c—17 pk) < —2"—cpredk(sl, 3k,p1 """ pk—l)a

then the penalty parameter is increased. We have

Cer1(@o)lI? = |Ch42 (¥k) + VCir1(wx)Tsesall® + prcpredi(sy, -5 skip5, -, Pi-1)

< p2k “Ecpredi(s1, .-y SkipYy- -2 PR1)
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or

2(lICes1(o)lI* = 1Chsa(ve) + VCiaa(yr) T skall’] < —picpredi(sy,- .., 58505, .., pfy)

and so

2(lICrs1(¥0)I* = 1Chs1 () + VChs1 () senall’] _ _ _
cpredi(sy, ...y Sk PS5y Picy) = TPk

By the updating procedure, the left-hand side of the inequality is —5$. Hence
Pi = pr or

pi — B = pr and finally

Pi — Pk 2 B
Identical reasoning yields

Pu—Py 28
if we replace cprediy1(S1,- -« Ska1; 5, - -5 Pi—1: Pr ) and cpredi(sy, ...,k pS, .-y PE1)
with pred(si,...,Sa+1; 05, - P5¢-1>Pn) and cpredap(sy,...,sar; 05, .-, P%—1)s TE-

spectively.

3. The method of updating px and part 2 directly imply that the sequences of
penalty parameters are nondecreasing.

This concludes the proof. O

The next lemma establishes a relation between the trust region radii and the

penalty parameters.

Lemma 4.10 For each & = 1,..., M, there exists a constant 'k, inde-
pendent of the iterates, such that if p is increased, then

pL 6. < Tk (4.18)

Proof:
| Since pi and &} refer to a single outer iteration, we shall omit the superscripts :
on all the entities in this proof.

Let cpred, denote cpredi(s:....,Sk;p1,...,pk=1) forall k=1,..., M.

Let us consider the most general case first, i.e., suppose pas is increased. We call
this case the most general, because it requires the longest branching argument. The
arguments for all other pi start at a lower level of the argument “tree”.
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pu is increased according to the formula

2[¢M(SM+1) - ¢0(0)] + ,B

cpredys
A
2 {n(sm+1) = F(wo)]
- cpredpy +h

Applying the triangle inequality, Lemma 1.8, and Assumption AO5, we have for some
z € (ylW’yM+1)’

|bae(saaa1) — Fuman) + Fynar) — Fwo)l
|bm(sars1) — Funsd)| + 1f (yaea) = F(wo)l

|A]

1
< 518§4+1(HM — V2f(2))smsl + sup IV f(yo) + t(yar+1 — vo))ll lym+1 — yoll
0<t<1 —_—
1 n
< SlHEMI+ IV f(2)sarll® + o2l
1 . .
< 5los+allsll® + aalléell,

and we have
pumcpredy < 209)|3c|| + (o3 + 04)||.§c||"’l+ﬁcpredM. (4.19)
B

Since pys is increased, by Lemma 4.6, ¥ ||C;(y;-1)ll > wprd.. Let us consider two

cases.

SMIIC;H (g5l < w6

Applying Lemma 4.7 to the left-hand side of (4.19), we have

1 ]
pu (7Kl Crr (yar-) min{Ks||Crm(ym-1)ll; 6m} + prr—1cpredas—i]
< B + B[ICMmwo)lI*> = ICrm(yr—1) + VCum(yrr—1)Tsml|® + par—1cpredar—i]

or

1 )
ZPM’CZHCM(?JM—I)” min{K3||Crm(yar-1)ll, 6m}

< B+ B[ICu(o)ll* = ICm(ym-1) + VCml(yar-1) smll’]
D

+prr-1(8 — 1)cpredpr—1
< B+ 3D,
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since 5 —1<0 (8 €(0,1)).
Now for some zar € (yar—1,¥nr),

|D|

IN + A

IN +

INA

<

NCMmwo)lI* = ICM(yar—1) + VCu(yar—1)T smll?|
ICrm(wo)ll* = ICa(yan)|I?|
NCxm(yan)ll> = ICx(yrr-1) + VCar(yar-1)Tsarll?|

Sup. IV Car(yo + t(yar — ¥0))Crr(yo + t(yar — o)) lllyar — woll

1
|53V Car(yarr-1)VCu(yamr—1)T — §VCM(ZM)VCM(ZM)T

1 m
5 2 Ci(zm)V*Ci(2ar)]sml
= j=na
os0el|sk + ... + samll
1 1 &
IV Car(yar=1)|I* + §HVCM(2M)H2 +3 > NCi(za)NIV2Ci(za0) ]l saell?

j=npm

3 1 &
o506k + ... + sm| + (;ag +3 > oea7)|lsmll?

= J=ny

. 3 1 & .
ososlldell + (506 + 5 2 geon)llel’.

T i=nm

Putting B and D together, we have

1 .
'4"\'2”0‘\!(1/4&!-1)” min{Ks||Car(yar-1)l, é»r}

X 3 1 .
< (202 + Bosos)||3cll + o3 + 04 + B(598 + 5(m = nar + 1)oeor)]l|cl’

3 1 .
< {202 + Bosos + [03 + 04 + ﬁ(§0'§ + =(m — np + 1)0607)|0maz VM + 1} 6.

2

-~

E

Since T3, [1C;(yi-1)ll > wmds and TETHICi(yj-1)l| < wmr1be, we have

ICMm(yrr-2)ll > (war — ‘-UM—1)3C > 0,

where the last inequality follows from was > war41. Hence

1 - - b N
ZPM’CZ(WM - WM-1)5c min {’Ca(wM - WM-1)6ca ""'—} < Eé.

POt . 1 .
prré? [I’C2(UJM — wp-1) Min {’Ca(wM — wpm-1), ——} < Eé.

~

—

G
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or
ngcG <E
d h
and we have . E
PMOc = G
Denoting
E _ 203 + Bosce + (03 + o5 + B(202 + § Tien,, 0607 NbmacV I +1 -
G K (war — war- 1)m1n{)C3(wM — wrr-1): ) M
we have

,DM5c < Ta,-

[Case 2:] =M1t |IC; (W5-)ll > wrrsbe

Again consider two cases.

T IC (yj-1) | € war—abe.

We have

paepredyy < B + Bepredyy.

Applying Lemma 3.1 once to the left-hand side gives

BL?I;ICPTCdMq < B+ 3|ICu(wo)ll> = ICrm(yar-1) + VCar(yar—1)Tsml?]

4

+ 3par-rcpreda-a,

and since p; > 1 for all j,

pTMCPTfEd.\fq < B + Dé, + 3pa-icpredas_y.

And now, following the argument similar to the one for Case 1 leads us to

prrb. < Tagy-

SMICilyi-1)ll > whr—2be.

Again consider two cases.
[Case 2.2. 1:] 21_1 NCi(yi=1)]| < war— 3¢ gives us

parde £ Tagy.

[Case 2.2.2:| =M73|C;(y;-1)ll > was—3d again gives us two cases to consider.




Zinl ”Cj (yj—l) ” > wMSC

RN

_1—1 ”C (¥i-1) || £ wm- 1‘S M—
parbe < T,y

J"‘ll IC; (yi-1) Il > war- 15

/

1—1 2G5 (yj=1) || € wm- 26¢
parbe < Tar,

/

;‘{13 IC; (yi-1) |l < ‘-UM-35

pt\«[6c S I‘Ms

.1=12 “C (yJ—l) | > war— '2‘S

65

M311C; (yj1) || > war-3b

T~

prde < Taty,

IC1 (yo) Il < wié

ICx (wo) Il > wré.
pM‘SC S PMM

Figure 4.1 Flow chart for the proof of Lemma 4.10.
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Continuing the process of branching, we obtain upper bounds on pM&, until we
reach the branch on ||C1(yoll-
For ||C1(0)|l < wy 6., the reasoning is identical, resulting in

A[éc < r\fu 1°

Finally, for Ci(yo) > w, b, repeated application of Lemma 3.1 to (4.19) yields

p1p2 - - - PM

o3 cpred; <

+

B + cpredps

B + BlICu(wo)lI* = IICa(yar—1) + VCar(yar—1)Tsarll’]
M-=1 M-1

85" (TI p)UICK(y)I* = lICklyk-1) + VCrlyx- 1) skll].

k=1 j=k

Again, taking into account p; > 1 for all j and applying Lemma 4.3 to the left-hand

side, we have

I |Ci(30) | min{Ks || Ca (wo)ll, 61}

oM +1

< B+ 83 UICk(uo)l1? = ICrlyics) + TCu(et) sl

k=1

Adding and subtracting |Ck(yx=1)||* from the right-hand side, using assumption AOS3,
and taking into account ||Ci(yo N> wlsc, we have

PM

f))\!+1k2w16 mln{ngu.15c,\/\_I-+—}

M

<B+ 52[0'50'6”51 + .okl + (20'6 +5 . 5 2. 7607) )Isell?]

k=1 J—l

B + 3Mosos|$cl| + ﬁ]\l(ga’é + _—)-.-Wa'sa'-;)llécll ]

1
B -+ [,31”0’50’6 + 3‘\4(%03 + 3‘.‘"[0’60'7)\/ ‘/I ma,]é

or. replacing B with its value,

2 1 ) 1
P.wﬁ[m’czw min{Kaw, _\/M=+1}

3 1 .
< {20’2 + B Mosoe + [0‘3 + o4 + 5.\[(;0’2 + 3."10‘60’7)]\/ M+1 5ma3}6c.

Denoting

{'20'2 + ,BIWUSO'B + [0'3 + o4 + 3.‘[(%0’% + %.“510’60'7)]\/ RV +1 6-,,,“_-}

Cary =

sorKowr min{Kawr, 7y}
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we have

pre6? < Tagy,d.
or

prbe < Tagy -

Now setting I'as = max{Tas,..., s, }, we have
PM‘Sc < FM

For py,k=1,..., M —1, the proofs start with the formula for updating that particular
Pk, and then employ the same branching argument as for pps. For example, suppose
prr-1 is increased. This is done according to the formula

_ NCMm(yar=1) + VCMm(yar—1)Tsml* = ICu(wo)l|? | |
PM-1 = + 8.
cpredpr—1

Now we apply the triangle inequality, Lemma 1.8, and Assumption AO3 to obtain an
upper bound on the numerator of the fraction, so that we have

pm-1cpredyr—y < X + Bepredyr-a,

where X is an expression that consists of a constant times ||5.|| plus a constant times
|3c|>. From this inequality the argument proceeds analogously to Case 2 of the
argument for pys.

This concludes the proof. O

The Penalty Parameters Are Bounded Above

In Dennis, El-Alem, and Maciel [16], the boundedness of the trust region radii from
below and hence the penalty parameters from above is established as two separate
results.

Here, only after this pair of facts is proven for p; can we prove it for p,, and then
for p3, etc. So, the two statements are combined in the following lemma. For p,,

however, the reasoning is similar to that of [16].
Lemma 4.11 Under assumptions AO1—AOQOS3,

1. there exists a positive constant § such that if the algorithm does not
terminate and any of the penalty parameters are increased, then we

have
b > 8. (4.20)
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9. For k=1,...,M, {pi.} converges to a limit p;. Moreover, there exist
positive integers i,,,k = 1,..., M, such that pi = p; for all i > ¢,,.

Proof:

The general idea of the proof is to use the two upper bounds on the difference
between the actual reduction and the predicted reduction from Lemma 4.6 and the
lower bound on the predicted reduction from Lemma 3.1 to obtain an upper bound on
the ratio of the difference of the reductions to the predicted reduction in terms of the
step norm. We require both estimates from Lemma 4.6, because in order to obtain
a suitable estimate. we have to eliminate its dependence on the penalty parameters.
Appropriate powers of the step norm in the bounds given by Lemma 4.6 serve just
this purpose. V

We will first consider the case k = 1. Assume that p; is increased. Then by
Lemma 4.7, ||C1(vo)|| > wié..

Let §. = s1 + ...+ sar41 be the trial step generated by the outer loop ¢ and let 5_
be the last acceptable step. Let the rejected steps between §_ and 3. be numbered

i1,12,...,1L, so that we have the sequence
S SiysSigy--sSipySipy = Se
unacceptable

The current trial step 3. can be either acceptable or unacceptable.

There are three possibilities:

1. There are no unacceptable steps between $_ and 3., i.e., ;; = $..
2. 4, # & and ||Ci(yo)|| > widy, forall=1,...,L +1.

3. &, # $. and ||C1(yo)]| > w;8;, only for someof I =1....,L+1.

Case 1: If there are no unacceptable steps between 5_ and 3, then the method of
updating the trust region radius ensures that

-

On

¢ > max{b_,6min} = bmin. (4.21)
Case 2: In this case, for all the unacceptable steps, ||C1(yo)|| > w13,~,. Let

. —_ 1. (<M 1 KT i
ared;, = ared;(sy,...;Sa1415P1:-+--Pr1):

. (M i, u i
pred;, = pred;(s¥,....S3413P1s-+--Pr1)-
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By Lemma 4.6,
M

|ared;, — pred;, | < K7(]] P}‘)Ilsull2

ij=1
By Lemma 3.1 and Lemma 4.3, we have

pred;, 2> 2M(HP MIIC1(wo)lI? = IIC1 (o) +V01(90)T5 I

J—l

2 2M+1(Hp )K2|C1 (o) | min{Ks]|C1 (yo)ll, &1'}-

j=1

Since ||C1(yo)|| > «.‘.'15;‘ and 8;,_ =M + 16,

1 | . 1 .
preds 2 gorx (T AVl O (3o min{Ksin, 15,

i=1

Therefore, since ||3;, || < &,

|ared;, — pred;,| 2M+LIC, |15, |
predi, = KallCi(vo)l min{Kawr, 73mm}
Since all the steps between 5_ and $§. are rejected,
ared;,
< M.
pred;,

where 7, € (0,1) is defined in Algorithm 3.2, or

ared;,

1-— >1—m..
pred;, n
Hence
|ared;, — pred;| > 1—n,
pred;,
?’nd 2M+1K 3
7”3'1“ > 1 — 771,

K2l C1(yo) | min{Kswr, 7zpr}
which yields

i = 2M+1)C,

HCi(wo)ll,1=1,...,L.
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We have §, = 511.4.; > a)|3i, ||, where o is the trust region radius updating factor in

the case of a trial step rejection. Since ||C1(yo)|| > w1 6;, , it follows that

(1 - 171))C2 mm{Ingl, m}
2M+1]C7

But since 5,-, is the first step after a successful step,

6

8. > el = enl Jwn 6, - (4.22)

ih = ma-x{g-v 6min} > 6min-
Therefore ) )
w15m,~nal(1 - m)ng mm{lCawl, m} _ K
oM+, =
Case 3: In this case only for some of the unacceptable steps ||Ci1(yo)|| > wl&‘.
Let J be the largest index such that ||Ci(yo)|| < w1 8;,. Since after each step is
rejected, the trust region radius is decreased, the following situation holds:

be >

IC1 (wo)lISw1éi, ucl(yo)n»ué.»,
S5—,8iy: 8igs-nns v 8iss Sigprree s 511.’51;“ Sec.
una:c;ted
i.e., once Ci(yo) > wléu, then ||C1(yo)|| > .‘.16,, holds forall/l=J+1,...,L +1.

The case $;,,, = 3. is covered by Case 2. so that we have
bc 2 aill$i,||-
If 3:,,, # Sc, then from (4.22) we have

. (1 = m)wi1K, min{Kawy, 717}'-'4-_1} 3
b > ML, 1341

because ||C1(yo)|| > w:b;, for all I =J +1....,L + 1. Letting

(1 — m)wia1K, mm{lewl, VW}

Ko = min{ QMFLC, a},

we have
6c = Koll3i,]|-

Now. keeping the same notation for the actual and predicted reductions as in Case
2, by Lemma 4.6, we have ‘

|ared.~,-—p7‘edi,| < Ks|léia||2

M M M
+ Ks(TT p)13all® + 2o (TT pidwell Cielyi-n)lllIS:c 1.

Jj=1 k=1 j=k

Sy AT R s
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By Lemma 3.1 and 4.8, we have

P2...PM

pred;, 2> W__lcpred;‘ |
P2---PM _ ;
2 —oam b
And since p; > 1 for all 7, we have
lared;, — pred;,| <
pred;, -
2MKCs 134112 + KopallSi lI® + 2L, vall3ill2NCr(yr-)Il + prvall$a Il Ca (wo)]
Tlafl ’
< 27K + 05 Tkl vk + Kep I3l + 210l Ca(wo) 11134112
- 7‘15i,

But ||C1(yo)|| < w16;, and ||3;]| < 6;,. Hence

lared;, — pred; | < M5 + s UM, vi + Keprdy, + prvrw: 8,113 |I2

pred;, - 16,
But pIS;, <T,. Hence
Iared;, bl pTCd,’,I < 2“!_1[K5 <+ Ts 22{:2 Vi -l: Ksrl + 1"1 Vlwl]”éiauz
pred;, - m16;,
- 2M-1[KC5 + o5 M, vk + K6y + Tivian] 13|
= ) Tl iyl
Kao
Since §;, is rejected, y
M-1K0 . .
(1 =m) < —==lll
Therefore, a )
- — M)
> A= 717 4.23
Iall 2 G (4.2)
and so
i > Kol =m)n
e > ———
= ToM-1C,,
Defining

z . ) Ko(1 —m)n
61 = min {5mim/Cs, m—} ,
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we have
b = &1,
which proves the first part of the lemma for k = 1.
Now we know that {pi} is a nondecreasing sequence; we wish to show that it is
bounded from above.
If pi is increased, then by Lemma 4.10 and the preceding result on the boundedness

of é. from below we have

S R
Pl = < =,
p1_5c_51

Hence {pi} is a bounded nondecreasing sequence and therefore it converges to some
p; < o0, i.e.,
. i =
lim py = py.
By Lemma 4.9, if p} is increased. it is increased by at least 3 > 0. Therefore, since

{pi} converges to a finite number. the number of increases has to be finite, i.e..
; i
pr=p"
for some index i,, and all i > i,,. Hence both results of the lemma are established
for p;.
Next consider the case k = 2. Now we assume that p, is increased and show that
6. is bounded from below.

If p, is increased, then the case k = 1 applies. So. assume that p; is not increased.

Since p, is increased, by Lemma 4.7,

IC1(wo)ll + 1C2(y1)ll > wab..

If ||Ci(yo)ll > w1 b,, then this situation is covered by the case k£ = 1. So, assume
that ||Ci(yo)ll € wib.. Then ||Ca(y1)ll > (w2 — w)8. > 0, since w; > w;. Since
IC1(%o)|| € wib., using Lemma 4.7 and ||C2(y1)| > (w2 —w1)é., we obtain the estimate

-

1 : be
cpred; 2 I/Czllcz(zh)ﬂmln{’Callc-z(yl)H-,—':\m}+PICPT6d1
1 , be
> Z’Czllcz(yl)”mm{’C3||Cz(y1)”,—:ﬁ}

1 : L
> HGalICalyn) | min{(wn — w1 )Ks, s M

Now we consider three cases:
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1. There are no unacceptable steps between 5_ and 3., i.e. 3, = §..

2. 8, # 3 and ||Cay(y1)|| > (w2 —wy)é;, forall I=1,...,L +1.

3. &, # 3. and ||Ca(y1)|| > (w2 — w;)é;, only for some of I=1,...,L +1.

Case 1: The reasoning is identical to the one for the case of k& = 1.
Case 2: In this case, following the same reasoning as for k£ = 1, we now use

c o PM
pred;, > %—cprcdz
from Lemma 3.1 to arrive to the estimate
|ared;, — pred;| 2M KCapi |34, |
predi;, = Kol Co(y1)l min{Ks(wz — w1), 7}

However, we proved that p; < pJ, so

|ared;, — pred;,|

YL o
i — 3 ll,
pred;, }

= Ko||Ca(ya)|| min{Ks(wz — w1), ey

and the rest of the argument is identical to that of the case k = 1.
Case 3: Here again we use p; < p] to remove the dependence of the estimates on

the penalty parameters, and the argument proceeds identically to the case k =1 to

yield

N
v
S)l

Now, if p; is increased, we have

<

s
ttls

py <

and we obtain that p) — p; and that there exists an index ,, such that

i o)

P2 = P2
for all i > ¢,,.

Continuing this procedure, at the general step k, we have the estimate

< 2K+1’CTP1 eos PR=-1 |
= K2||Cr(yk=1)|| min{K3(wr — wk-1), A}H}

di — d:
|ared;, — pred;,| 134l

pred;,




T4

But at this point, pi,. .., pk—1 have been shown to be bounded by p3,. .., pi_1, respec-
tively, thus ehmmatmg the dependence of the estimates on the penaltv pararneters
The rest of the argument proceeds identically to the case k = 1 to show that &,
bounded and this result is then used to show that the sequence {pL} is bounded frorn
above by pi.

Setting 8§ = min{é;,. .., 6} concludes the proof. O

4.6 The Trust Region Radius Is Bounded Below

We have shown that the total trust region radius 5. is bounded away from zero if any
of the penalty parameters are increased. Now we will show that &, is always bounded
away from zero. The trust region updating strategy ensures that §. is bounded from
above.

Theorem 4.1 Assume that the algorithm does not terminate. Then un-
der assumptions AO1—AQOS3. there exists a constant 6. > 0, independent
of the iterates, such that

§; > 6. for all 7. (4.24)

Proof:

The proof follows the same lines as in Lemma 4.11, but we do not have to consider
separate cases based on which penalty parameter is increased. Regardless of which
termination criterion is not satisfied, using the notation of Lemma 4.11 we consider
three cases:

1. There are no unacceptable steps between 5_ and 3., i.e. §;; = 3..
2. 8; # 3. and [|Ci(yo)ll > wiby foralll=1,...,L +1.
3. &, # . and ||C1(yo)|l > w1é;, only for someof I=1,...,L+1.
Case 1: By the same reasoning as in Lemma 4.11 we have

5. > ma.x{t%.7 8min} = Omin-

Case 2: The proof is identical to that of Lemma 4.11.
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Case 3: Here ||Ci(yo)|| > wls,-, does not hold for at least one l = 1,...,L. As
in Lemma 4.11, letting J be the largest index such that ||C;(yo)|| < w1¢§;, for all
1 =1,...,17, we have ‘
. > Kol I (4.25)

By Lemma 4.6, |ared;, — pred;,| < K7(TTY, p;)||5:]|*>. By Lemma 4.8, cpred, > né;,
and so by Lemma 3.1,

red;, > (&i—2 epred, > (I-I"M=2 )i
Predic = \5aryPs JePredr Z (G721 Pi) 10

Therefore, since 3;, is rejected,

|ared;, — pred;,|
pred;,
2M-1Cq 7|34 )I2
T 3{,
2M_1_’C7p;”§il ”

T

(1-m) <

Hence
I=m)n

A >
”s'( ” - K7p;

Then by (4.25) we have
A > (1 - 7]1)T1K9

be
-~ Kl
Letting
5‘. = min{(i%){l)?—g, (Sm;n} .
1

we have &, > §., which concludes the proof. O

4.7 The Algorithm is Well-Defined

The following theorem guarantees that the algorithm is well defined, i.e., that after
a finite number of outer loop iterations an acceptable step 5. with

ared

>
pred — 771

will be found.



Theorem 4.2 Unless the current iterate z. satisfies the termination
criteria of the algorithm, an acceptable step 3. from z. will be found after

a finite number of trials.

Proof:
In this proof we omit the arguments in the reduction functions ared and pred.
Assume that the algorithm does not terminate. Regardless of which termination
criterion is violated, it suffices to consider two cases.
Case 1: ||C1(o)|| > wib., where wy is defined in Lemma 4.7.

By Lemmas 3.1 and 4.3, we have

1 M
pred 2> W(Hpj)cpredl

i=1
1 A! 3
> ) i ) -
= 9M+1 (11-_-[1 p;)Ka||C1(yo)ll min{Ks||C1(yo)ll, M+ 1}

1 & - 1 s
Z W(]_l:_[l pi)C2||C1(yo) |l min{Ksws . \/—A/-T'T—'l‘}‘sc-

By Lemma 4.6, the last inequality gives us

lared — pred| _ 2|52
pred = K2||Ci(yo)|| min{Kaw,, :7‘»11+1 }ée
-2.\["'1&’:_

: 5.
KC2]|C1(yo) | min{Kawr, Zapmr }

The last line shows that

ared :
pred

approaches 0 as 5. becomes smaller. Therefore the criterion

ared
pred

will be satisfied after a finite number of outer loop iteration.
Case 2: ||C1(yo)|| £ wibe.
By Lemma 3.1 and Lemma 4.8. we have

M
pred 2 W—_—;(H pi)cpreds
= k=2

1 . M .
> oo (kH pi)T1de.
2 =
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Hence
lared — pred| < 2M-1KC, 5, 62
pred - Tlgc
2 ey,
T

Again the ratio goes to 0 with decreasing &., so the acceptance criterion will be
satisfied after finitely many trials. O

4.8 The Global Convergence Theorem

In the global convergence result, we show that if the objective function is bounded
below, then the sequence of iterates generated by Algorithm 3.2 has a subsequence
convergent to a stationary point of the equality constrained minimization problem.
The proof proceeds in stages, block-by-block, but the argument for each compo-

nent of the proof is almost identical to the argument in Dennis, El-Alem, and Maciel
[16].

Theorem 4.3 Assume that f(z) is bounded below. Then, given any

€01 > 0, the algorithm will terminate because

ICk(yi))ll < e, k=1,...,M and (4.26)
1PV fuan)ll < € (4.27)

will hold simultaneously for some :.

Proof:
Since px, k= 1,...,M, are bounded below by 1 and the norms of the constraint

blocks are bounded below by 0. the boundedness of f implies that the merit function
P(z) is bounded below.
Assume that the algorithm does not terminate.
Case 1: k= 1.
Assume that there exists § > 0 such that ||Cy(y3)|| > @ for all i. Let
J 2 max{is,... %5}
that is, J is an index for which every pi has reached its upper bound. We have for

all y € Q.
IC1)Il = I1C1 )N = IC1(y) — Cr(w)Il = IC1 (vl = oelly — w3 |I-
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Let a = '—E‘,‘,—(Jfﬁl—‘ and consider a ball B of radius a centered at yJ. We have for all
y €B .
Il 2 S1CED)I-

Now assume that for all i > J,y§ € B. Then from Lemmas 3.1 and 4.3 we have

pred; = BmPMIC )P~ 101 (6) + VO (w) s

2
> k2 Ol min{Xs||C1 (s S
> rlCiw)lmin{KsllCilwoll: 7372
K, : J bi
2 sllCa(ud)l min{KalCawa)ll NAES U
.0 .
gare min{Kel, )
= K10>0.

where the last inequality follows from the boundedness of ; from below.

Recall that P denotes our merit function introduced in Section 3.2.1.

Since the algorithm is well-defined, we will find an acceptable step after finitely
many outer loop iterations, and for all y§ in the ball ¢ > J. we have

P; — Piy1 = ared; > mpred; = Kio. (4.28)

which means that P is increased by a positive value infinitely many times. This
contradicts the assumption that f and therefore P are bounded from below. Thus,
eventually {y5} must leave B.

Let I be the smallest index among the ¢’s which are greater than J such that ygt!

is outside B. Since yit* # yJ, there exists at least one acceptable step between the

iterates J and [. For these acceptable steps we have

l 1 {
Ps—Piy1 = Z('Pt — Piy1) = Z ared; 2 Z mpreds. (4.29)
t=J t=J t=J

And now by (4.28), :
Ps; = Prar = mKio =K > 0. (4.30)

The sequence P; has a limit P..since it is decreasing and bounded below. Let J — oo;
then [ = I(J) — oc and (4.30) gives us a contradiction. Therefore, ||C1(yg)|| cannot
be bounded away from zero. i.e.. there exists a subsequence {i;} of {i} with

lim [|Ca(yo)ll = 0.
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Case 2: k= 2.

Now assume that ||C5(yi)|| is bounded away from 0, i.e., that there exists ¢ such
that ||C2(yi)|| > € always holds. Since ||C'1(yé’)|| goes to zero, and the the sequence
of trust region raglii is bounded below, there exists an iteration J; > 0, such that for
all i; > J1, ||Ci(yd)]| < wl&j, where w; is given in Lemma 4.7. Then by Lemma 3.1
and Lemma 4.8, we have

M
1 i
pred;; > (][ pp)QM—_l—cpredz’

p=2
> 2—M_—1cpred;’
1 -
2 —'—"2M_1 7’15i,
1 a
2 2M_17'15..

But for any ! among the ¢;’s greater than ¢,,, we have
_ _ 1 A
Pi — Piy1 = ared; > mypred; > 2—M_—1r/11'16. > 0. (4.31)

As we take the limit as [ goes to infinity, we obtain a contradiction. Therefore,
|C2(¥})|| cannot be bounded away from zero and there exists a subsequence {i;,} of
7; such that '

Jim [|Co(,")ll = 0.

'Jl_‘w
Now suppose that ||C3(y)|| is bounded away from zero. Since both ||Cg(y:j‘)|| and
C1(yg" o to zero, there exists an index J; > 0, such that for all z;, > J3,
g it

IC1(ws)Il + IC2(i™)I| < wids,

and the argument proceeds as for k =1 and k = 2.

We apply the same argument to each subsequent block of components and, finally
to ||PLV f(ym)||- For each case we show that there exists a subsequence of indices
for which the norm of each block and finally the norm of the projected gradient go
to zero.

This means that

' M
liminf{I| PV F(wholl + 2 ICu(wi-0)lll = 0,

k=1
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which contradicts the assumption that the algorithm does not terminate and con-
cludes the proof. O

By Lemma 4.2, the norms of the substeps are bounded from above by constant
multiples of the norms of the constraint blocks. Therefore, as the norm of each block
goes to zero, so does the norm of the substep. Since all the projection matrices
are assumed to be continuous and bounded above and below, we have the following

immediate corollary of Theorem 4.3.

Corollary 4.1 Under the assumptions of Theorem 4.3,

liminf| PTV f(z)ll + |C(z:)l] = 0.

Thus, at least a subsequence of the generated sequence of iterates converges to a
stationary point of problem EQC.

4.9 Corollaries

We can now conclude that the multilevel algorithm for nonlinear equations and

Algorithm 3.1 are also globally convergent.

e Algorithm 2.2. (Nonlinear Equation Solver): The assumption on the
boundedness of f from below is automatically satisfied in the case of nonlinear
equations, since ||F(z)||? = 0. The only assumption that we place on Hys in
the optimization algorithm is that it must be bounded from above. The role of
Hy in the equation solver is played by Jar(yar—1)T Jar(yar-1) which is assumed
to be bounded from above.

Therefore, we can consider Theorem 2.1 proven.
e Algorithm 3.1: Algorithm 3.1 is just Algorithm 3.2 with a single block of

constraints and thus a single penalty parameter. Therefore, all arguments con-
cerning Algorithm 3.2 apply to Algorithm 3.1.

The global convergence theory presented here is applicable to the theory presented
in [16] in the case that Lagrange multipliers are taken to be zero.
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Chapter 5

Implementation

In this chapter we discuss the implementation problems that must be resolved for the
algorithm to become robust. We support some of the conclusions by the results of
preliminary testing.

Preliminary testing was done only for the equation solver. The following test set
consists of sixteen nonlinear equation problems extracted from the Moré, Garbow,
Hillstrom [27] test set and one linear problem from Noble and Daniel [2]:

1. Rosenbrock Function

2. Powell Singular Function

3. Powell Badly Scaled Function

4. Wood Function

5. Helical Valley Function

6. Watson Function

7. Chebyquad Function

8. Brown Almost-Linear Function

9. Discrete Boundary Value Function
10. Discrete Integral Equation Function
11. Trigonometric function
12. Variably Dimensioned Function
13. Broyden Tridiagonal Function

14. Broyden Banded Function
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15. Freudenstein and Roth Function
16. Box 3-dimensional Function

17. Linear Function

The problems are stated in Appendix B. Since all the testing was done for the prob-
lem of solving nonlinear systems of equations, “equations” rather than “constraints”,
will be mentioned frequently in the following discussion. .

Notation: “max” in the tables signifies that the problem failed to converge in
500 major iterations; t means that the algorithm converged to a stationary point of

| F(z)||? which is not a root of F(z).

5.1 Trust Region Updating Strategies

In standard trust region globalization methods, the trust region updating strategies
are directly related to the step evaluation procedures. The accumulated wisdom based
on computational experience suggests halving the size of the trust region if the step
is unacceptable, leave it unchanged if the step performs “reasonably” well, and to
double it if the step produces a very good ratio between the actual and the predicted
reductions in the merit function.

In the case of the multilevel algorithms, while it is clear how to evaluate the trial
step, it is not at all clear how the trust region radii should be updated. The theory
does not object to the trust region radii being increased. but it does require that they
not be decreased unless necessary. The current strategy of contracting or expanding
the subproblem trust regions simultaneously based on the ratio of the total actual
reduction to the predicted reduction works for most problems, but with this strategy
the method is not as robust the single block trust region method.

With the current updating strategy, the method proved to be sensitive to the
initial trust region setting. We attempt three different initial settings:

1. The initial value is set to the length of the longest unconstrained Brent substep

for all the subproblems.

2. The initial value is set to the shortest unconstrained Brent substep for all the
subproblems.

3. Individual initial values of the length of the unconstrained Brent substeps are
set for every subproblem.
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Tables 5.1 and 5.2 compare the number of iterations to convergence for these
three settings for two different starting points. The last column contains the number
of iterations for the standard one-block case. _

The strategy of internal doubling has not yet proven effective because it is appli-
cable only to the first substep.

Further trials are necessary, but preliminary testing indicates that there is a corre-
lation between the algorithm’s behavior with respect to the trust region initial setting
and the relative nonlinearity of the equations. If a comparatively large block of linear
equations precedes a small nonlinear block, the algorithm benefits from a large initial
radius setting. When all the equations are nonlinear or linear and nonlinear equations
are mixed, a small initial setting gives better results.

The problem is, of course, that different components may exhibit very different
behaviors based on their nonlinearity. It is possible that a poor predicted versus actual
behavior of one component may force unnecessary shrinking of the trust region radii
for all subproblems. One approach to preventing this situation is a strategy that will
allow substep evaluation and trust region updating within the inner loop. If the total
step is rejected, such a strategy will permit us to return to the last successful inner
iterate instead of returning to the first iterate. A disadvantage of the intermediate
substep evaluation is a possible increase in the number of function evaluations.

Table 5.3 compares the number of function and Jacobian evaluations for one of the
multilevel algorithm variations (the initial radius is set to the minimum Brent step
norm) to the subroutine LMDER from the MINPACK package. For test purposes,
we use exact derivatives. With the exception of Problems 3 and 12, the number of
evaluations is comparable, but at present the LMDER code is much more robust than
the multilevel algorithm with respect to different starting points. However, we should
point out that the multilevel algorithm is coded exactly as it is stated in the thesis
and it is very far from being a “production” code. Table 5.3 is provided only to give
a very general idea of the number of function evaluations in a very preliminary stage
of the code.

To conclude, the related issues of the step evaluation and trust region updating

are still under investigation.



Problem No. | 60" = | 6™ = | §i* = | One Block
max min | indiv
1 2 2 2 17
2 11 12 11 10
3 50 max 50 max
4 68 37 53 22
5 9 7 8 9
6 363 o1 244 13
7 3 4 3 4
8 3 3 3 6
9 3 5 3 )
10 3 3 3 3
11 4 4 4 4
12 max 88 max 20
13 4 5 4 )
14 5 5 5 b}
15 7 7 T T
16 16 6 45 4
17 1 2 2 1

Table 5.1 Three initial radii strategies. Starting point 1.
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Problem No. | §i* = | 6™ = | §i™* = | One Block
max min | indiv

1 4 2 2 6

N 2 15 14 15 13
3 5 6 5 A

4 53 37 31 39

5 12 7 15 7

6 max 71 max 90

7 14 5 8 33

8 6 5 4 18

9 7 6 7 10

10 4 4 4 4

11 6 6 6 7

12 max 7 max 26

13 8 7 8 7

14 11 6 11 11

15 28 8 24 13

16 50 7 6 5

17 2 2 2 1

Table 5.2 Three initial radii strategies. Starting point 2.
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Problem No. | Mult. nfev | Mult. njev | LMDER nfev | LMDER njev
1 2 2 21 16
2 11 11 25 25
3 30 50 18 16
4 37 37 32 27
5 7 7 11 8
6 51 51 45 37
7 4 4 8 6
8 3 3 14 12
9 5 5 6 5
10 3 3 5 4
11 4 4 8 8
12 88 88 22 21
13 ) ) 6 5
14 ) 5 T 6
15 7 7 8 7
16 6 6 6 5
17 2 2 3 2

Table 5.3 Multilevel vs. LMDER: function evaluations.

5.2 Projectors

86

In order to resrict the models of the constraints and the objective function to the

intersection of the null spaces of the previously processed constraint blocks, we have

to find a matrix whose columns form a basis for the intersection of the appropriate

null spaces.

The null space of a matrix and the orthogonal projection onto it are uniquely

defined. However, a basis for the null space is not uniquely determined.

The global convergence theory requires for the basis matrix to be continuous,

bounded away from zero, and bounded from above. In practice, the matrix should

be easily computed.

In this section we consider two specific choices for the generic matrix P used in

the description of the algorithm.
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5.2.1 Using QR-Factorization

Let A € R™*",m < n. A common approach to computing a basis for the null space
of A is based on the QR decomposition of AT: '

AT = RQI" = [Q:|Q,) RTI,

where @ € R™"*" is orthonormal, R € R"*™ is upper-triangular, and II € R™*™ is a
column pivoting permutation matrix.

Let rank(AT) = r. Then the first r columns of @, denoted by Q;, form an
orthonormal basis for the column space of A7, while the last n — r columns, denoted
by @2 form an orthonormal basis for the null space of A. The QR decomposition
allows us to estimate the numerical rank of A.

Now consider two matrices A € RP*" and B € R7**. To find an orthonormal
basis for the intersection of .\ (A) and .V(B), we could just compute the null space
of the matrix C formed by appending B to A:

[

However, it is more efficient to compute the basis based on the following theorem
proved in Golub and Van Loan [13], p. 583:

Theorem 5.1 Given 4 € R7*" and B € R7*", let Z be an orthonormal
basis for .V (A). If W is an orthonormal basis for \"(BZ), then the columns
of ZW form an orthonormal basis for A (A)N.V(B).

The use of QR factorization has several advantages:

1. Orthogonal transformations are stable and do not cause deterioration in condi-

tioning of the problem.

o

While theoretically A must have full rank. in practice the drop in the rank does
not seem to affect the performance adversely. The QR factorization allows us
to compute the basis for the null space when A does not have full rank.

3. Adding rows to A does not necessitate a complete recomputation of the basis
matrix. For instance, Theorem 5.1 above can be used to update Q.

4. The basis matrices are trivially bounded.
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5. The software for the QR factorization is widely available.
There are also drawbacks.

1. For the proof of convergence, we have to assume that the basis matrix is con-
tinuous. Coleman and Sorensen [35] pointed out that the usual method of
computing the QR factorization via Housholder transformations may not result
in a continuous basis matrix. They suggest three variations on the standard
methods that ensure the continuity of the computed basis, but the region in
which the basis is continuous is not under the user’s control. In addition, dis-

continuities may occur in arbitrarily small regions about A.

Given a continuous function A(z), Byrd and Schnabel [31] showed that it is not
possible in general to compute an orthonormal basis Q(z) of A as a continuous

function of z, although it is possible to do so in special cases.

In practice, however, the modifications proposed by Coleman and Sorensen and
by Gill, Murray, Saunders., Stewart and Wright [30] will be helpful in improving
 the continuity properties of the orthonormal basis.

)

The QR factorization software for large, sparse problems has not been fully
developed.

3. The QR factorization is expensive.

5.2.2 Using Reduced Basis Projectors

The second approach to finding a basis for V(A) arises from partitioning A € ®™*"
with rank(A) = m as

A = [B|N],
where B is an m x m nonsingular matrix. Here we assume that the columns of A are
interchanged so that B is formed by the first m columns of A.

_B-1;
Z=[ B V]
I m

forms a basis for the null space of A.

Then the matrix

Given our assumptions AO1-AQO5, Z for the Jacobians of the constraint blocks
are clearly continuous and bounded.

There is a number of drawbacks.
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1. As the algorithm progresses. we cannot guarantee that, once selected, the same
m columns of A will stay linearly independent. Thus pivoting may be required.
While this may be a workable option, it has not been considered yet either
theoretically or practically.

o

. Not just in theory, but also in practice A must have full rank for the invertibility

of B.

3. Software for computing Z is not as readily available as for computing the QR
factorization.

5.3 Order of Constraints

Testing even on a limited set of problems confirms the expectation that the proposed
algorithms are sensitive to the order of constraints or equations.

Although the methods do work on the problems composed only of nonlinear—and
sometimes highly nonlinear—equations, they seem ideally suited for the problems in
which a large block of linear or nearly linear equations preceeds the more nonlinear
of the equations.

For the test problems of dimension n < 4, all permutations of the equations were
tested. Table 5.4 shows that the difference in the number of iterations to convergence
for different permutations can be quite dramatic.

Optimal partitioning of equations is a research topic. Martinez [22], [23], inves-
tigated some equation arrangements. At present there is no rule for arranging the
equations other than attempting to place the most linear ones first. However, the
"linear first” placement may result in great improvements in efficiency. Thus, if the
algorithm is to be used over and over again, it is a worthwhile undertaking to establish
the best possible ordering for a particular problem.

5.4 Scaling

The initial setting of the penalty parameters to 1 is arbitrary and presupposes that
the problem is well-scaled, i.e.. that the constraint blocks are well scaled with respect
to each other and to the objective function. If this is not true in practice, then the
constraints should be re-scaled or the initial choice of the penalty parameter setting
should be adjusted. The only requirement is that it must be greater than or equal to

one.



Perm. No. | Pr.1 | Pr.2 | Pr.3 | Pr.4 | Pr.5 | Pr.15 | Pr.16
1 2 11 50 68 9 7 16
2 8 11 13 53 10 6 7
3 11 29 6 17
4 10 31 6 6
5 11 43 11 12
6 10 37 6 8
T 11 31
8 11 50
9 11 75
10 11 33
11 11 48
12 11 48
13 11 32
14 10 41
15 11 39
16 11 62
17 10 45
18 10 56
19 11 57
20 10 25
21 11 46
22 11 41
23 10 42
24 10 14

Table 5.4 Order sensitivity.

90



91

5.5 Penalty Parameters

It is well known that too rapidly growing penalty parameters will adversely affect the
performance of the algorithm. Preliminary testing has indicated that in the problems
which are stopped because they reach the maximum allowable limit of 500 iterations
the penalty parameters become large quickly.

Robust trust region algorithms with nonmonotonic penalty parameters have been
investigated by El-Alem [10]. The nonmonotonic updating scheme must be incorpo-
rated into the multilevel algorithms.
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Chapter 6

Applications and Conclusions

In this chapter we say a few words about the expected applications of the proposed
multilevel algorithms, state the plan of research, and then conclude with the highlights

of the dissertation.

6.1 Applications

The proposed algorithms are expected to be very useful in the scientific and engineer-
ing applications that require their constraint systems to be processed by blocks.
The design of complex engineering systems is by nature a multicriteria optimiza-
tion problem. The design projects are distinguished by very large numbers of vari-
ables, constraints, and expensive analyses. To solve the problem, it is necessary to
break it into disciplines, each of which produces its own optimal design. The discipline
designs are then incorporated into a total design. The multilevel methods proposed
here would allow researchers to integrate constraints obtained from different sources.
To solve the multicriteria optimization problem, it is necessary to decide when an
iterate is optimal. One of the approaches to optimality is the statement of the multi-
criteria problem as a multilevel optimization problem, i.e., the problem of minimizing
a function on a feasible set, which is an optimal set for another function, and so on.
In such an approach, the user places priorities on the optimization problems that are

to be solved sequentially. We believe that the multilevel algorithms proposed here
will serve as a beginning for a detailed study of the general multilevel optimization

problem.

6.2 Research Plan

The multilevel algorithms proposed in this thesis together with their global conver-

gence theory will serve as a basis for investigating several promising directions.
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For practical purposes, it is important to extend the material of this thesis to
multilevel algorithms based on Brown’s method. We are interested in Brown-
based algorithms, because they will be less expensive than the Brent-based
algorithms and they will provide a better opportunitiy for taking advantage of
sparsity. The theory should also allow us to prove convergence for the entire
class of Brown-Brent based methods.

Another theoretical issue that must be studied is the local convergence proper-
ties of the multilevel algorithms. We believe that it may be necessary to modify
the merit function to include the Lagrange multipliers in order to prove conver-
gence for the optimization algorithm. We suspect that although the algorithm
attempts to take unconstrained Brént steps whenever possible, the current merit

function may not recognize these steps as acceptable ones near a solution.

The issue of implementation is extremely important if the algorithm is to be-
come practically usable. We must investigate different step evaluation and trust
region updating strategies, both from theoretical and from practical points of
view. Extensive testing of the algorithms will be done for small and for large

problems.

The next step is to consider extensions of the multilevel algorithms to bound

constraints and inequality constraints.

The new algorithm for constrained optimization is a multilevel optimization
algorithm with a very special structure: all functions. but the outermost one,
are norms squared of the constraint blocks. In the algorithm for nonlinear

equations, all functions are of this form.

A natural extension would be a multilevel optimization algorithm for solving
the general multilevel optimization problem (MLO). The extension is difficult
to accomplish. A crucial feature of our algorithm is that, despite its multilevel
optimization structure, some of its crucial theoretical and practical features
are based on the equality constrained optimization problem in its conventional
form EQC. For example. we use the first order necessary optimality conditions
for problem EQC as a convergence criterion for our multilevel algorithm. The
regularity assumption for the constraints plays a vital role in the theory. No
such clear-cut, familiar foundation exists for the general multilevel optimiza-
tion problem. Theoretically and practically, it is not clear how the feasible set
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should be described or even how optimality should be recognized. Despite the
difficulties, we believe that the new algorithms provide sufficient foundation to
initiate a study of problem MLO.

6.3 Summary

In this study, we presented a class of multilevel algorithms for. solving the nonlinear
equations problem and the equality constrained optimization problem.

The new algorithms are extensions of the local algorithms of Brown and Brent for
solving nonlinear systems of equations.

The main practical appeal of the multilevel algorithms is that in the case of
equality constrained optimization, they allow the user to partition the constraint
system arbitrarily and to process the blocks of constraints separately. In their finite-
difference derivative form, they require fewer function evaluations than the Newton’s
method.

The multilevel methods differ from the standard trust region algorithms in that
their major iteration involves finding an approximate minimizer of not one quadratic
model over a single restricted region, but a sweep of quadratic models, each approx-
imately minimized over its own trust region. Each model is computed at a different
point.

We presented a global convergence theory for the algorithm optimization based
on Brent’s method. The theory implies convergence of the nonlinear equations solver,
which, to the author’s knowledge, is the first theoretically supported method for glob-
alizing Brent'’s algorithm via the trust region strategy. The global convergence theory
was made possible by the introduction of the merit function with nested penalty pa-
rameters updated by a modification of the scheme proposed by El-Alem [8].

The algorithrhs are expected to be applicable to the problem of the multidisci-
plinary design optimization and to serve as a foundation for the study of the general

multilevel optimization problem.
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Appendix A

Glossary of the Lemmas and Theorems

In this appendix we list all the Lemmas. Theorems, and Corollaries by chapter, in
the order of appearance. Each is followed by a brief description.

IN CHAPTER 1 ...

The lemmas of this chapter are some well-known results in unconstrained minimiza-
tion, analysis, and algebra stated without proof and used throughout this dissertation.
Lemma 1.1

This lemma gives the solution of the quadratic subproblem used in the trust region
approach to unconstrained minimization.

Lemma 1.2

This lemma gives the solution of the quadratic subproblem used in the trust region
approach to the nonlinear least squares problem. It is a special case of Lemma 1.1.

Lemma 1.3

The Levenberg-Marquardt step is orthogonal to the nullspace of the Jacobian of

residuals.

Lemma 1.4

This lemma expresses the Fraction of Cauchy Decrease condition in the form of a
useful inequality.

Theorem 1.1

This is Powell’s global gonvergence theorem for the trust region algorithms for un-

constrained minimization.
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Lemma 1.5

This gives the least norm solution of the linear least squares problem.

Lemma 1.6
This lemma provides an estimate on the difference between two values of a continuous
function.

Lemma 1.7

This lemma gives us a linear approximation of a differentiable function.

Lemma 1.8

This lemma gives us a quadratic approximation of a twice continuously differentiable
function.

IN CHAPTER 2 ...

The propositions of this chapter describe some properties of two possible subproblem
solutions.

Proposition 2.1

This is a statement of the relationship between the Levenberg-Marquardt step and
the unconstrained Brent step for the subproblems of the multilevel nonlinear equation

solver.

Proposition 2.2

This result ensures that if the unconstrained Brent step, whose norm is greater than
the trust region radius, is shortened to the length of the trust region radius, it has
the Fraction of Cauchy Decrease property with respect to the inner-loop subproblem.

Theorem 2.1

This is a global convergence theorem for the multilevel nonlinear equations solver.
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IN CHAPTER 3 ...
Lemma 3.1

This lemma shows that the strategy for updating the penalty parameters guarantees
that the partial and full predicted reductions satisfy the Fraction of Cauchy Decrease
condition.

IN CHAPTER 4 ...

This chapter contains the main theory of the dissertation.

Lemma 4.1

This lemma ensures that the total trial step is no shorter than the sum of the substeps
that comprise it.

Lemma 4.2

This lemma bounds the norm of each substep from above by a constant times the

norm of the constraint block that gave rise to this particular substep.

Lemma 4.3

This lemma expresses the Fraction of Cauchy Decrease condition in a workable form

for each subproblem of the inner loop..

Lemma 4.4

This lemma establishes a lower bound on the effect of the step sk on ||C;j(y;-1)||%,7 =
k+1,...,M and on the objective function.

Lemma 4.5

This lemma places a lower bound on the partial and total predicted decreases.

Lemma 4.6

This lemma places an upper bound on the difference between the actual reduction

and the predicted reduction which approximates it.
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Lemma 4.7

This lemma determines how close to feasibility the inner loop iterates must be in
order for the penalty parameters not to be increased.

Lemma 4.8

This lemma bounds the partial and total predicted reductions from below by a con-
stant times the trust region radius when the inner loop iterates are sufficiently close
to feasibility.

Lemma 4.9

This lemma summarizes the basic properties of the penalty parameters that follow
from the strategy for their updating.

Lemma 4.10

This lemma stablishes a relationship between the trust region radii and the penalty
parameters.

Lemma 4.11

This lemma bounds the trust region radii from below when the penalty parameters

are increased and, at the same time, it bounds the penalty parameters from above.

Theorem 4.1

This theorem states that the trust region radii are bounded below.

Theorem 4.2

This theorem states that the algorithm is well-defined, i.e., that, given a current outer

iterate z., an acceptable step will be found in a finite number of outer iterates.

Theorem 4.3

This is the main result of the dissertation. The theorem ensures that the algorithm
will terminate because at some outer iterate the stopping criterion will be satisfied.
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Corollary 4.1

As a consequence of Theorem 4.3 and the properties of the substeps, we conclude
that at least a subsequence of the sequence of iterates generated by the algorithm
converges to a stationary point of the equality constrained minimization problem.
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Appendix B

Test Problems

The first sixteen of the following problems were taken from the Moré, Garbow, and
Hillstrom [27] test set. The last one was taken from Noble and Daniel [2].

Rosenbrock Function
n=2

Fi(z) = 10(z; —z})
F(z) = 11—z,

o = (-1.2,1)

f = 0at(1,1)

Powell Singular Function
n=4

Fi(z) = z1+ 10z,
Fy(z) = V5(z3 —z4)
Fi(z) = (z2 — 2z3)?
Fy(z) = V10(z1 - z4)?
zo = (3,-1,0,1)
f = 0at(0,0,0,0)

Powell Badly Scaled Function
n=2

Fl(:lt) = 104(1:11‘2 -1
Fy(z) = e ™ +4e™™ —1.0001



g = (0, 1)

f = 0at(1.098...107%,9.106...)

Wood Function
n=4

) = —200z;(z4 — 23) — (1 —z,)
) —18013(234 - .1‘3) (1 - I3)
)

zo = (=3,—1,-3,—1)
f = 0at(1,1,1,1)

Helical Valley Function

180(z4 — z3) +20.2(zy — 1) + 19.8(z2 — 1)

n=3
Fi(z) = 10[z3 — 100(z,, 2)]
Fy(z) 10[\/1:l + 23— 1]
F3(z)
To (—1.00)
f 0 at (1,0.0),
where

0(‘7:1’ 1'2) = {

Watson Function

n=206

n

Larctan & ifz; >0
arctan +0.5, ifz; <0

F(z) = 3.0 - Dt — (3 zti ) —1

=2

i=1

zo = (=3,-1,-3,-1),

where t; = 35,1 = 1,...,n.
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Chebyquad Function

F() = =3 T - [ Te)de
o = (&),

where ¢; = ﬁ and T; is the i-th Chebyshev polynomial shifted to the interval [0, 1],

i.e.

1
/ Ti(z)dz = 0 foriodd,
(]

/01 Ti(z)de =

for ¢ even.

12 —

Brown Almost-Linear Function
n =10

Fi(z) = x,-+2"2z,-—-(n+1)

=1

Faz) = (IJz)-1

=1

)

F = 0at(a,...,a,a™"),

|-

1
g = (-2-,

where a satisfies na™ — (n + 1)a®! + 1 = 0; in particular, a = 1.

Discrete Boundary Value Problem

n =10

2 . . 13
Fiz) = 22— mig + & s )

zo = (&),

where fj = tj(tj - 1),h = ;:l*_T,t,' = ih.
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Discrete Integral Equation Function

n =10
Fe) = =4 M0 t) Lica ti(z; +t; +1)° -:t,-)z;}:,.ﬂu — )z + 15+ 1))
zo = (&),

where & =t;(t; — 1), h = 2=, t; = ih.

Trigonometric function

n=10

n
n-— Zcos:cj + (1 — cos z;) — sin z;
Jj=1

1
2D
n

Fi(z)

( 1

n’

Zo

Variably Dimensioned Function

n =10

h, = Z](:r, -1)
J=1

t, = t(1+2t%)
0o = (&)
F=0 = at(l,...,1)

where {; =1 — ;E
Broyden Tridiagonal Function
n =10

F,'(:t) = (3 - 2:1:,‘)1:" - Tij-1 — 21‘:’4—1 +1
o = (—1,.,'—1)
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Broyden Banded Function
n =10
F'(I) = I,‘(z + 5:!:'2) +1- E :t_,‘(]. + :BJ')
Jjedi

g = (—1,...,—'1),

where J; = {j|j # {,max{1,i —m;} <j < min{n,i + my}} and m; = 5,m, = 1.

Freudenstein and Roth Function
n=2 v
Fl(l') = -13 + + ((5 - .'132)1'2 - 2).’1:2
Fz(l') = =29 + + ((1.‘2 -+ 1):172 - 14).’1:2
To = (05, —2)
F = 0at (5,4)

Box 3-dimensional Function
n=3
F,(.‘L‘) — e—t.'z:l _ e—t.-z:z _ 1‘3[6-“ _ e—lOt.’]
zo = (0,10,20)
F = 0at(1,10,1),(10,1,-1)
and whenever , = z, and z3 =0,

where t; = 0.1z.

Linear Function 1
n=3
Fi(z) = 3z, —z2+2z3— 12
Fy(z) = z+2z3+3z3—11
F3(I) = 21‘1 —2$2 —.’B3—'2
zo = (-5,-5,-5)
F = 0at (3,1,2).



105

Bibliography

(1] M. Avriel. Nonlinear Programming. Prentice-Hall, 1976. -

2]
3]

[4]

(9]

[10]

Ben Noble and James W. Daniel. Applied Linear Algebra. Prentice-Hall, 1988.

Richard P. Brent. Some efficient algorithms for solving systems of nonlinear
equations. STAM J. Numerical Analysis, 10(2):327—344, April 1973.

Kenneth M. Brown. A Quadratically Convergent Method for Solving Simultane-
ous Nonlinear Equations. PhD thesis, Purdue University, 1966.

Kenneth M. Brown. Algorithm 316. Solution of simultaneous nonlinear equa-
tions. Communications ACM, 10:728—T729, 1967.

Kenneth M. Brown. A quadratically convergent Newton-like method based on
Gaussian elimination. SIAM J. Numerical Analysis, 6(4):560—569, December
1969.

Kenneth M. Brown and J. E. Dennis. Jr. On the second order convergence
of Brown'’s derivative-free method for solving simultaneous nonlinear equations.
Research Report 71-7, Yale University, Department of Computer Science, New
Haven, Connecticut, June 1971.

M. M. El-Alem. A Global Convergence Theory for a Class of Trust Region Algo-
rithms for Constrained Optimization. PhD thesis, Rice University, Department

of Mathematical Sciences, 1988.

M. M. El-Alem. A global convergence theory for the Celis-Dennis-Tapia trust
region algorithm for constrained optimization. SIAM J. Numerical Analysis,
28:266—290, 1991.

M. M. El-Alem. Robust trust-region algorithm with non-monotonic penalty
parameter scheme for constrained optimization. Technical Report TR92-30, Rice



1]

[12]

[13]

[14]

[17]

[18]

[19]

106

University, Department of Computational and Applied Mathematics, Houston,
Texas 77251, September 1992.

R. Fletcher. Practical Methods of Optimization. Wiley, 1989.

David M. Gay. Brown’s Method and Some Generalizations, with Applications to
VMinimization Problems. PhD thesis, Cornell University, 1975.

Gene H. Golub and Charles F. Van Loan. Matriz Computations. The Johns
Hopkins University Press, 1989.

J. E. Dennis, Jr. Non-linear least squares and equations. In The State-of-the-Art

in Numerical Analysis, 1976.

J. E. Dennis, Jr. and Robert B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, New
Jersey, 1983.

John E. Dennis, Mahmoud El-Alem, and Maria Cristina Maciel. A global conver-
gence theory for general trust-region-based algorithms for equality constrained
optimization. Technical Report TR92-28, Rice University, Department of Com-
putational and Applied Mathematics, Houston, Texas 77251, September 1992.

L.S. Lasdon and A. D. Waren. Generalized reduced gradient software for linearly
and nonlinearly constrained problems. In H. J. Greenberg, editor, Design and
Implemetation of Optimization Software, pages 335—362. Sijthoff and Noordhoff,
Netherlands, 1978.

K. Levenberg. A method for the solution of certain problems in least squares.
Quart. Appl. Math., 2:164—168, 1944.

A J. D. Powell. Convergence properties of a class of minimization algorithms.
In O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, editors, Nonlinear
Programming 2. Academic Press, 1975.

Marfa Cristina Maciel. A Global Convergence Theory for a General Class of
Trust Region Algorithms for Equality Constrained Optimization. PhD thesis,
Rice University, Department of Computational and Applied Mathematics, 1993.

L]



[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31]

[32]

107

D. Marquardt. An algorithm for least squares estimation of nonlinear parameters.
SIAM J. Appl. Math., 11:431—441, 1963.

José Mario Martinez. Generalization of the methods of Brent and Brown for solv-
ing nonlinear simultaneous equations. SIAM J. Numerical Analysis, 1(3):434—
448, June 1979.

José Mario Martinez. Solving nonlinear simultaneous equations with a general-
ization of Brent’s method. BIT, 20:501—510, 1980.

J. J. Moré. The Levenberg-Marquardt algorithm: Implementation and theory.
In G. A. Watson, editor, Lecture Notes in Mathematics 630, pages 105—116.

Springer-Verlag, 1978.

J. J. Moré. Recent developments in algorithms and software for trust region
methods. In A. Bachem, M. Grotschel, and B. Korte, editors, Mathematical
Programming: The State of the Art. Springer-Verlag, 1983.

J. J. Moré and D. C. Sorensen. Computing a trust region step. ‘SIAM J. Sci.
Stat. Comput., 4(3):553—572, September 1983.

J. J. Moré, Burton S. Garbow, and Kenneth E. Hillstrom. Testing unconstrained
optimization software. ACM Transactions on Mathematical Software, 7(1):17—
41, March 1981.

J. Ortega and W. Rheinboldt. Iterative Solution of Nonlinear Equations in Sev-
eral Variables. Academic Press, New York, 1970.

Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical Optimization.
Academic Press, 1981.

Philip E. Gill, Walter Murray, Michael A. Saunders, G. W. Stewart, and Mar-
garet H. Wright. Properties of a representation of a basis for the null space.
Mathematical Programming, 33:172—186, 1985.

Richard H. Byrd and Robert B. Schnabel. Continuity of the null space basis and
constrained optimization. Mathematical Programming, 35:32—41, 1986.

S. L. Campbell and C. P. ;\'Ieyer, Jr. Generalized Inverses of Linear Transfor-
mations. Dover Publications, 1991.



108

[33] Gerald A. Shultz, Robert B. Schnabel, and Richard H. Byrd. A family of trust-
region-based algorithms for unconstrained minimization with strong global con-
vergence properties. SIAM J. Numerical Analysis, 22(1):47—67, February 1985.

[34] D. C. Sorensen. Newton’s method with a model trust region modification. SITAM
J. Numerical Analysis, 19(2):409—426, April 1982.

[35] Thomas F. Coleman and Danny C. Sorensen. A note on the computation of an
orthonormal basis for the null space of a matrix. Mathematical Programming,
29:234—242, 1984.



