Space-time Concurrent Multigrid
Waveform Relaxation

Stefan G. Vandewalle
Eric F. Van de Velde

CRPC-TR93308
April 1993

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

CRPC-93-2 April 8, 1993

Space-time Concurrent Multigrid
Waveform Relaxation*

Stefan G. Vandewalle! and Eric F. Van de Velde?

! Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 2004
B-3001 Leuven, Belgium

2CRPC and Applied Mathematics
California Institute of Technology
Mail Code 217-50
Pasadena, California 91125

* This work was supported in part by the NSF under Cooperative Agreement
No. CCR-9120008. The government has certain rights in this material.

Space-time Concurrent Multigrid
Waveform Relaxation

Stefan G. Vandewalle* Eric F. Van de Velde!

Abstract. Multigrid waveform relaxation is an algorithm for solving parabolic partial
differential equations on multicomputers. It is shown in this paper that the algorithm
allows a partitioning of the computational domain into space-time blocks, i.e., subdo-
mains of the space-time grid that are treated concurrently by different processors. The
space-time concurrent multigrid waveform relaxation method is compared to two meth-
ods that use spatial concurrency only: space-concurrent multigrid waveform relaxation
and standard time-stepping. It is illustrated that the use of space-time concurrency
enables one to harness the computational power available on large-scale multicomput-
ers. Timing results obtained on an Intel iPSC/2, an Intel iPSC/860 and the Intel
Touchstone Delta are presented.

Keywords. parabolic partial differential equation, waveform relaxation, parallel com-
puting, multigrid.

1 Introduction

Consider a system of ordinary differential equations obtained by semi-discretization of a
parabolic initial boundary value problem,

dit"h(t)=Lh"h(t)+fh(t), u*(0)=ug, t€0,T]. (1)

The value A is a measure of the mesh size, e.g., the largest distance between adjacent grid
lines or grid points. u”(t) is the unknown function, whose components u’(t) approximate the
solution of the partial differential equation at grid points z;. The operator L* is derived by
spatial discretization of an elliptic operator, and f%(¢) is a known function constructed from
the boundary conditions or from a known source function. The computational complexity
of solving (1) by a standard time-integration method is proportional to the number of time
steps and grows linearly or superlinearly with the number of spatial discretization points.

*Senior Research Assistant of the Belgian National Fund for Scientific Research (N.F.W.0.), Katholieke
Universiteit Leuven, Department of Computer Science, Celestijnenlaan 200A, B-3001 Leuven, Belgium.
tCalifornia Institute of Technology, Applied Mathematics 217-50, Pasadena, CA 91125.

The computational complexity rapidly becomes intractable when a high accuracy or an
integration over a long time-interval is required. The computation of the solution to (1) is
therefore an obvious candidate for implementation on a multicomputer.

Standard parallel approaches for solving systems of ordinary differential equations usually
use parallelism across the system, also called parallelism across space when the equations are
derived from a partial differential equation. In a time-stepping method spatial parallelism
amounts to parallelizing the linear algebra on each time-level, e.g., the explicit update in
an explicit scheme, or the direct or iterative linear system solver in an implicit scheme
(15]. Time-stepping algorithms have the disadvantage of being fundamentally non-scalable.
The parallelism in the algorithms does not scale linearly with the problem size, i.e., the
total number of grid points in space and time. A doubling of the number of grid points,
e.g., in order to increase the length of the integration interval, or in order to improve the
accuracy of the approximation, usually doesn’t allow one to double the number of processors.
At any given moment in the computation all processors are active on the same time-level.
Consequently, for a given spatial problem size, there is maximum number of processors that
can be used effectively. This maximum is independent of the number of time steps that have
to be computed. A truly scalable algorithm for solving ordinary differential equations will
therefore have to combine parallelism across space with parallelism across time.

Practical experience with algorithms for ordinary differential equations that allow dif-
ferent processors to execute on different time-levels is rather limited. These algorithms are
usually based on a Picard-like iteration or on the waveform relaxation method, see, e.g.,
(1, 2, 3, 4, 5]. In these methods time-parallelism is found in the quadrature methods and in
the solvers of the linear recurrence relations underlying the ODE integrators. There is more
experience with time-parallel algorithms for problems derived from time-dependent partial
differential equations. The time-parallel PDE methods are often based on extensions of stan-
dard iterative methods for elliptic problems, like Jacobi, Gauss-Seidel and multigrid. These
iterative methods are then adapted to operate concurrently on several time-levels. Some
very impressive results have been reported in the literature, impressive both due to the com-
plexity of the problems that can be solved (Navier-Stokes equations in [6, 7]), and due to
the size of the multicomputers that can be used effectively (a 1024 processor Ncube in [16]).
The time-parallel PDE methods, however, are less robust than their sequential counterparts.
The convergence properties are strongly dependent on the discretization parameters, i.e., on
time step and spatial grid size, and also on the number of time-levels treated concurrently.
Their numerical efficiency in general deteriorates when the number of processors in the time-
direction is increased. For a given problem size, i.e., a given space-time grid, convergence
characteristics of the algorithms strongly depend on the way processors are allocated to the
space- and time-dimensions.

In this paper we shall describe a scalable algorithm for solving equation (1), that uses
parallelism both in space and in time. The algorithm has good convergence characteristics,
that are independent of any particular allocation of processors. The algorithm extends the
work on multigrid waveform relaxation described in [12, 13, 14]. The multigrid waveform
relaxation method is briefly recalled in section 2. Two ways of introducing time-parallelism
into this algorithm are presented in section 3. In section 4 we report experimental results

obtained on a 64 processor Intel iPSC/2 multicomputer, a 128 processor Intel iPSC/860, and
the 576 processor Intel Touchstone Delta. Finally, in section 5 we comment on the extension
of our space-time concurrent method to nonlinear problems.

2 Multigrid Waveform Relaxation

A multigrid waveform relazation method for solving (1) was presented in [8]. We briefly
recall the two-grid cycle. It is a continuous-time iteration; it iterates with functions. Similar
to classical two-grid methods it uses a fine grid, Q*, and a coarse grid, QF. The former is
the grid on which the solution of the problem is sought. The latter is used for calculating
corrections to the approximations of the fine grid solution. Note that Q¥ Q" and that,
typically, H = 2h. The two-grid cycle starts with an approximation, @*, to the solution
on Q*. It determines a new approximation, ", in three steps: pre-smoothing, coarse grid
correction, and post-smoothing. We shall only consider the case of an operator L* that is
linear. Let D* be a diagonal matrix, and let A* and B* be strictly lower and upper triangular
matrices, so that L* = A* — D* 4+ B*, The two-grid method proceeds as follows.

e Step 1: pre-smoothing. Set z(® = @#*. Perform v; classical Gauss-Seidel waveform
relaxation steps. For v = 1,...,1;:

%z(v) + (D — A*) z0) = Bhat-) A 20 (0)=wh, te(0,T]. (2)

Observe that the Gauss-Seidel nature of the splitting of L* makes the above iteration compu-
tationally straightforward. The grid points are visited the one after the other. At each grid
point the corresponding differential equation is solved as an equation in a single variable,
using the most recently obtained approximations of the functions at the other grid points.

e Step 2: coarse grid correction. Compute the defect of approximation z(*1):

d = %x(w) — Lhz) — b = Bh(g(a-1) _ ™)) (3)

It can be verified that the error z(*) — u*, denoted by v*, satisfies the following ordinary
differential equation (the so-called defect equation):

%vh =LrP* 4+ d*, vH0)=0, te0,T]. (4)

Since (4) is of similar complexity as (1) we cannot expect to solve it in reasonable time. The
two-grid cycle therefore continues by solving a coarse grid analogue to the defect equation.

—vf = LHoH 4 [Hd" | 7 (0)=0, te(0,T]. (5)

Its solution, v¥, defined on 0, is an approximation to v*. In (5), I¥ : Qb — Qf is a
restriction operator, and corresponds to calculating weighted averages of functions. L¥ is

3

the coarse grid equivalent to L". The coarse grid solution vH is prolongated to QF, using a
waveform extension of a standard interpolation operator, Ik : QOf — QP and approximation
(1) is corrected,

zh = (1) — IhoP . (6)

e Step 3: post-smoothing. Perform »; more smoothing relaxations of type (2), starting
with z© = z*, and set @" = z(*2).

The two-grid cycle can be applied in recursive way to solve (5). This leads to a genuine
multigrid waveform relaxation algorithm. The algorithm is usually combined with the idea
of nested iteration or full multigrid. The problem is first solved solved on Q. The coarse
grid solution uH is then interpolated to Q" and used as the starting iterate for one or more
two-grid or multigrid cycles. The full multigrid interpolation step is as follows:

ah(t) == It (1) + (ub — Thug') - (M

Here, I : QF — QF is an interpolation operator, often of higher order than I%. The
second term in the interpolation formula is needed in order to satisfy the initial condition,
#"(0) = uh. This “correction” is not required in the full multigrid algorithm for solving
elliptic problems.

For a convergence analysis of the method, we refer the reader to [8]. Extensive numerical
experiments, a comparison to classical time-stepping schemes, and a description of how the
algorithm can be extended to nonlinear, to time-periodic, and to systems of equations, is
given in [12]. The use of multigrid waveform relaxation as a solver in fluid flow calculations,
modelled by the Navier-Stokes equations, is discussed in [11].

3 Space-time Concurrency

3.1 Introduction

An implementation of the algorithm necessitates the choice of a representation for all vari-
ables, of a time-integration scheme and of a spatial discretization method. For simplicity’s
sake, we will, as in [12], only consider discretization with a constant and global time step
determined a-priori. Spatial discretization is with finite differences on a regular mesh. The
waveform method is, however, in no way limited to these choices. In fact, in [8] a numerical
example is provided where the time step is chosen adaptively, during the computation, with
different time steps from one grid point to the next.

Our choice leads us to solve a discrete problem defined on a regular space-time grid.
Figure 1 illustrates three different grid partitioning techniques for a problem defined on a
three-dimensional rectangular space-time grid (two space- and one time-dimension). The
picture to the left depicts the standard partitioning as it is used in classical time-stepping
schemes, [15]. The partitioning is in the spatial direction only, and is repeated every time
step. The picture in the middle shows the partitioning that is used with the waveform
relaxation method in [12, 13, 14]. Each processor is responsible for updating the functions

4

¢ . = P % 24
X

Figure 1: Grid partitioning used for parallelizing parabolic solvers on a two-dimensional rect-
angular domain: time-stepping method (left), space-concurrent waveform relaxation (mid-
dle), space-time concurrent waveform relaxation (right).

associated with a subset of the spatial domain. The time-direction is not partitioned. In the
current paper we suggest the use of the partitioning graphically illustrated in the figure to the
right. The partitioning divides the space-time grid in blocks that are treated concurrently
by different processors.

The discrete-time analogues to the waveform relaxation operators operate on discrete
functions, or vectors. It is straightforward to see that the restriction, prolongation, correction
and defect calculation operators are entirely space- and time-concurrent. The main operation
of the multigrid algorithm is the smoothing step. It is easily parallelized across space when a
red/black ordering of grid points is used. Its parallelization across time is non-trivial because
of the inherent sequential nature of the ODE-integration phase. However, the sequential part
is limited to a small fraction of the computation.

Consider a two-dimensional spatial domain. At each grid point (z;,y;) an ordinary
differential equation in a single unknown is to be solved,

%uﬁ:(t) = aﬁ,(t)ufa(t) <+ wk,(t) , U:J(O) = uO(zi,yj) , te [0, T] . (8)

The right-hand side function w?;(t) is a linear combination of functions defined at (z;,y;)
and neighbouring grid points. In the case of a five-point stencil, one obtains a formula like

w:h,j(t) = f;-l(t)uh,g-l(t) + af—l,;(t)u?-l,j(t) + a?+1,j(t)u?+1,j(t) 9)
+at,1+1(t)u ,_7+1(t) + f (t)

Note that the calculation of w? ; is trivially time-concurrent. The use of a one-step time-
discretization method for (8) leads to a first order recurrence relation extending in the
positive time-direction. It is of the following form

h h
u; ., = bi'j,ﬂui,j,n—l +Cijn, = 1,...,N, (10)

LI L

5

where “,j,n” is an index in the space-time grid. It denotes a value at grid point (z;, Yistn)-
With the trapezoidal rule, for example, the coefficients b; j» and cijn are determined by

. 1+al;, 1AL[2

b: ;. = (w:}.j.n + w?.j.n—l)At/2
BT] — al; W Atf2

1 bl af"J'nAt/2

a.nd c"’j’n = (11)
These coefficients can be calculated concurrently on all time-levels.

To conclude, the only operation in a time-concurrent multigrid waveform relaxation cycle
that requires special attention is the computation of a linear recurrence.

3.2 The pipeline method

A first approach for calculating (10) extracts parallelism in a pipeline fashion. It is closely
related to the wavefront approach mentioned in [4, 5], the time-segment pipelining method
discussed in [10], and the sequential smoothing variant described in [6]. The computation at
a grid point is started by a processor allocated to a block of grid points that borders time-
level t = 0. This processor calculates the recurrence as far as possible, until it reaches the
“ypper” boundary of its space-time block. It then communicates the last computed value to
processor that is adjacent in the positive time-direction. While the latter processor continues
the calculation of the linear recurrence, the former starts a new recurrence computation at a
different grid point, e.g., at a grid point of the same color. A third processor comes into play
when the second processor reaches it space-time block boundary and communicates its last
value to its upper neigbour. After having received the necessary value from processor one,
the second processor continues with the second recurrence, while the first processor starts
a third recurrence computation. When the time-dimension of the grid is partitioned into P
blocks, it takes a total of P —1 steps before all processors are actively computing (different)
recurrence relations.

The pipeline algorithm retains the nature of the sequential computation. The numerical
results are independent of the number of processors. The algorithm is perfectly parallel,
except for the “filling” and “emptying” of the pipeline. When the number of spatial grid
points is small or when the number of processors assigned to the time-dimension is large,
the pipeline effect may be substantial and may dominate the computation. There is no
parallelism when only one equation is to be solved (e.g., on the coarsest grid in the multigrid
method). The communication complexity of the algorithm is large. It requires a very large
number (of the order of the number of spatial grid points) of small messages (one value).

3.3 The partition method

The partition method, also referred to as the algorithm of Wang, is a well-known method
for the parallel solution of tridiagonal systems, see, €.g., [9, 12] and the references therein.
A slight modification of the algorithm can be used for calculating (10) on a multicomputer.
We shall first consider the case of a single recurrence.

Equation (10) can be rewritten as a system of linear equations with a bidiagonal coefficient
matrix, with ones on the main diagonal and the —b; j» values on the subdiagonal. This matrix

6

[] []
%o °
o s,
Tee e 0
[X] [J []
[X] [[}
oo ° .o
“ee o0
[X] [] [
o0 [[]
o0 [] []
initial matrix partitioned elimination

o e

intermediate system solution backsubstitution

Figure 2: Three stages of the partition method applied to a bidiagonal matrix.

is graphically represented in the upper left part of Figure 2. Due to the grid partitioning
in the time-dimension, the equations of the system are physically distributed onto different
processors. Each processor contains one block of equations, in the figure separated by dotted
lines. The algorithm proceeds in three steps. A first step, the partitioned elimination step, is
entirely time-concurrent. In this step each processor locally eliminates its subdiagonal. This
introduces some fill-in elements. It is easily checked that the resulting system is decoupled.
An intermediate system with one equation per processor can be solved independently from
the other equations. The unknowns that are calculated in this step are graphically indicated
by squares, in the lower left figure. The intermediate system can be solved in various ways,
all of which require interprocessor communication. The most straightforward approach is to
calculate the unknowns sequentially, see [9]. This requires one receive and one send operation
per processor. A different but more complex approach would be the use of a parallel cyclic
reduction or recursive doubling method. The third step is a backsubstitution step, and is
again completely time-concurrent. The complexity of the algorithm is analyzed in [9]. It
can be checked that the algorithm requires 5N/ P floating point operations per processor,
whereas the sequential computation of (10) requires 2V operations. The achievable speedup,
disregarding the effect of data transport and the computation in the intermediate system
solution step, is therefore limited to 2/5P.

The algorithm immediately extends to the case of multiple bidiagonal systems. To min-
imize communication overhead each step is applied to all systems before proceeding to the
next step. The messages in the intermediate step are grouped together and sent as one large
message. Note that the communication complexity is very different from the communication
complexity in the pipeline method. The algorithm requires only a few large messages.

7

3.4 Remarks

The pipeline approach can be applied without change to time-integration methods different
from simple one-step schemes. While this is in principle also possible for the partition
method, in practice it suffers from an increased arithmetic complexity. It suffices to consider
the use of a two-step method, which leads to a tridiagonal matrix with two subdiagonals.
Apart from the linear recurrences in the smoothing, there is one more operation that
requires communication among processors assigned to different blocks of time-levels, namely
the correction in the full multigrid interpolation (7). The correction term ub — Ihull is
calculated by the set of processors assigned to the space-time blocks that border the ¢t =0

time-level, and then broadcast in the time-dimension.

4 Experimental results

The numerical properties of the multigrid waveform relaxation method are discussed at
great length in [12], where a large number of examples is given. These properties are not
altered by the space-time concurrent implementation. In this paper we will therefore only
consider the parallel characteristics of the method. We have implemented the space-time
concurrent algorithm on three generations of Intel multicomputers: a 64 processor iPSC/2,
a 128 processor iPSC/860, and the 576 processor Touchstone Delta. The knowledge of
some of their hardware properties is required for a good understanding of the timing results
that are given further below. The iPSC/2 and iPSC/860 are machines with hypercube
topology, whereas the Delta is a two-dimensional mesh. The iPSC/2 nodes are Intel 386/387
processors with peak performance of 0.36 Mflops. The nodes of the iPSC/860 and the Delta
consist of Intel i860 processors, with peak performance of 60 Mflops. The cost of sending
a message of n bytes from one processor to another is modelled by the following formula,
T(n) = a+ fn+ (I — 1)y , where a is the startup-time, B the per byte transfer cost,
[the number of links (hops) between the communicating processors, and v the so-called
hop-penalty. The values of these parameters are given in Table 1.
We consider solving the two-dimensional heat equation,
2 2
b _Zurlt, Guebuxpl, teb, (12)
with Dirichlet boundary conditions that are derived from a known solution, which is given
by u(z,y,t) = 1 + sin(7/2z) sin(w/2y)e~""/4* . This problem is discretized in space with
central differences on a regular rectangular grid with grid size h. Time-discretization is by
the trapezoidal rule with a constant global time step At. Throughout the remainder of this
section we will use the full multigrid algorithm with one multigrid V-cycle on each grid level.
It is illustrated in [12] that this leads to a solution with an algebraic error smaller than the
discretization error. That is to say, further iterations on the fine grid do not reduce the
actual error of the approximation.
Tables 2 and 3 present execution times of the space-time concurrent full multigrid algo-
rithm on different set of processors. (pz,Py,p:) stands for the number of processors in z-, Y-

8

and ¢-dimensions. The performance of the pipeline method is compared to the performance
of the partition method. Notwithstanding its higher arithmetic complexity, the partition
method proves to be the better choice. The pipeline method is competitive, only when the
number of processors in the time-dimension is small. Table 3 also clearly illustrates the
importance of choosing a partitioning of space and time. ‘

In a second set of experiments we compare the execution time as a function of the number
of processors for the three algorithms that were illustrated in Figure 2. The first algorithm is
a parallel implementation of a standard time-stepping method based on the trapezoidal rule
(Crank-Nicolson method). It applies one full multigrid cycle on each time-level. Details of the
implementation are given in [12]. The second method is space-concurrent multigrid waveform
relaxation. The third method is space-time concurrent multigrid waveform relaxation using
the partition method and an experimentally determined “best” space-time grid partitioning.
The three algorithms solve the same problem, on the same space-time grid, to a similar
accuracy (algebraic error smaller than discretization error). Their implementation is of
similar complexity, with a similar programming style and similar optimizations.

Figure 3 presents execution times on the iPSC/2 and iPSC/860 machines. Observe that
the curve for the time-stepping method rapidly levels off because of the high communica-
tion complexity of the method. This is especially so on the iPSC/860, a machine with
very unbalanced communication/computation hardware. The performance of the waveform
methods is clearly superior. This is due to a dramatic reduction in communication require-
ments. In [14] it was shown that the waveform algorithm requires only a small fraction of
the number of messages of the time-stepping method. The space-time concurrent method
is more performant than the method with spatial concurrency only, because of better load-
balancing properties. Load-imbalance is mainly caused by the impossibility of assigning an
equal number of spatial grid points to each processor. The larger the number of processors
in the spatial dimension, the more important this problem becomes. Note that even on a sin-
gle processor waveform relaxation would outdo the time-stepping method, provided enough
memory is available. This is due to a slightly smaller arithmetic complexity, see [12], due to
smaller programming overheads (e.g., indexing and loop overheads), and (for the Intel i860
processor) due to the fact that operations on vectors usually run at a larger fraction of the
peak Mflop rate than operations on scalars.

Similar curves for the Touchstone Delta are presented in Figure 4. It is especially inter-
esting to compare the performance of the methods for the large problem (h = 1/256 and
At = 1/512). The speedup obtained by the time-stepping method is about 19, whereas the
(scaled) speedup obtained by the time-parallel method is about 320.

5 Concluding Remarks

The space-time concurrent method can be extended straightforwardly to nonlinear prob-
lems, by using the full approzimation scheme described in [12]. The smoothing part of this
algorithm consists of a Gauss-Seidel waveform relaxation Newton method. Each nonlinear
differential equation is linearized once in every smoothing step, around the current approxi-

Table 1: Communication parameters: a: startup cost, 3: byte transfer cost, 4: hop penalty
(in usec). The values between brackets are for small messages (n < 100 bytes).

| [« T B8 | 1«

iPSC/2 || 700 (372)] 0.4 (0.2) [33 (11)
iPSC/860 || 136 (75) | 0.4 (0.2) [33 (11)
Delta || 72 0.08 0.05

Table 2: Execution time, in seconds, for executing the full multigrid algorithm with different
numbers of processors (h = 1/64, At = 1/128).

processors Intel iPSC/2 Touchstone Delta
Pz X py X p; | partitioning | pipelining partitioning | pipelining
2x2x1 58.5 58.5 3.80 3.80
2%x2x2 33.7 29.9 2.26 2.83
2x2x4 17.7 18.3 1.22 1.86
2%x2x8 9.76 11.6 0.73 1.79
2%x2x16 5.77 8.40 0.50 1.71

Table 3: Execution time, in seconds, for executing the full multigrid algorithm with different
processor configurations on a 64 processor machine (h = 1/64, At =1 /128).

processors Intel iPSC/2 Touchstone Delta

Pz X py X py | partitioning I pipelining | partitioning | pipelining
8x8x1 6.80 6.80 0.89 0.89
4x8x2 6.10 6.02 0.73 0.88
4x4x4 5.73 5.76 0.54 0.93
2x4x8 5.54 6.44 0.48 1.30
2x2x16 5.77 8.40 0.50 1.71
1x2x32 6.80 14.1 0.75 2.80
1x1x64 9.88 23.1 1.09 4.97

10

300 5 INTEL IPSC/2 - 300
200 -200
100 ~100
70 : =
exec. g . time-stepping | 70 oxec.
. - 50
time . = time
(sec.) 30+ - 30 (sec.)
20 space-conc. WR | 20
10 - 10
7 space-time-conc. WR -7
5 - 5
I I 1] 1
1 2 4 8 16 32 64
number of processors
30-(INTEL IPSC/860 - 30
20 _\ - 20
time-steppi
ime-stepping . 1
10 S - 10
7 -7
exec. 5: K 5 €xec.
time - = time
(sec.) 3- - 3 (sec.)
5. space-conc. WR |,
P
17 - 1
0.7 7 space-time-conc. WR - 0.7
0.5 0.5
1 1 I 1 I ! 1
1 2 4 8 16 32 64 128

number of processors

Figure 3: Execution time, in seconds, as a function of the number of processors, for executing
the full multigrid algorithm (h = 1/64 and At = 1/128).

11

30 TOUCHSTONE DELTA - 30
20 -\\Nﬂ\@__e_ﬁ__——@-—_‘- 20
time-steppin
10 - ‘ me s ree - 10
77 - T
5 1 - 5
exec. . - exec.
time - 3 time
(sec.) 2 space-conc. WR [2 (sec)
1= = 1
] -
gg . space-time-conc. WR gg
0.3 1 0.3
0.2 0.2
1 1 1 1 I 1 1)]
1 2 4 8 16 32 64 128 256 512
number of processors
1500 - 1500
ETE TOUCHSTONE DELTA E 700
500 - - 500
300 - 300
200 . . - 200
time-stepping
exec. 12?) 3 = 128 exec.
E;?ce) 50 F 50 E;?ce)
307 - 30
207 space-conc. WR - 20
10 5 \: 10
(= = 7
54 E 5
3: space-time-conc. WR 3
2 i 1 1 1 2

T 2 1 &8 16 32 64 128 956 512

number of processors

Figure 4: Execution time, in seconds, as a function of the number of processors, for executing
the full multigrid algorithm (upper graph: A =1 /64 and At = 1/128, lower graph: h =1/256
and At = 1/512, Touchstone Delta).

12

mation, and solved by a linear ODE-integrator. The computational complexity is therefore
very similar to that of the linear solver described in this paper. The algorithm can be
extended in a similar way to systems of (nonlinear) parabolic partial differential equations.

Note that the memory requirements of the waveform method are very different from
those of the time-stepping scheme. In the latter it suffices to store only one or two time-
levels, while the former requires storing the whole space-time grid. If not enough memory
is available, the waveform method can still be used by subdividing time-interval [0, T into
a sequence of windows, [0,T1], [T}, Tz), ..., [Tk, T] that are treated sequentially. For optimal
efficiency these windows should be chosen as large as possible. If memory is very limited,
so that only one or two grid levels can be stored, the multigrid waveform relaxation method
becomes equivalent to a standard time-stepping scheme.

Acknowledgments. The authors would like to thank the Mathematical Sciences Section,
Division of Engineering Physics and Mathematics, Oak Ridge National Laboratory, for pro-
viding access to their Intel iPSC/2 and iPSC/860 machines, and the Caltech Supercomputing
Consortium, for providing computing time on the Touchstone Delta.

References

[1] A. Bellen and F. Tagliaferro. A combined WR-parallel steps method for ODEs. In
P. Messina and A. Murli, editors, Parallel Computing: Problems, Methods and Appli-
cation, pages 77-86, New York, 1992. Elsevier Science Publishers B.V.

(2] A. Bellen and M. Zennaro. Parallel algorithms for initial value problems for difference
and differential equations. J. Comp. Appl. Math., 25:341-353, 1984.

[3] K. Burrage. Parallel methods for initial value problems. Applied Numerical Mathemat-
tcs, 11:5-25, 1993.

[4] C.W. Gear. Waveform methods for space and time parallelism. J. Comp. Appl. Math.,
38:137-147, 1991.

[5] C.W. Gear and X. Xuhai. Parallelism across time in ODEs. Applied Numerical Mathe-
matics, 11:45-68, 1993.

(6] G. Horton. Fin zeitparalleles Liosungsverfahren fir die Navier-Stokes-Gleichungen.
PhD-thesis, Universitat Erlangen-Niinberg, 1991.

[7] G. Horton. TIPSI - A Time-Parallel SIMPLE-Based Method for the Incompressible
Navier-Stokes-Equations. In K. Reinsch et al., editors, Parallel Computational Fluid
Dynamics ’91, pages 243-256, New York, 1992. Elsevier Science Publishers B.V.

(8] Ch. Lubich and A. Ostermann. Multigrid dynamic iteration for parabolic equations.
BIT, 27:216-234, 1987.

13

[9] P. Michielse and H. Van der Vorst. Data transport in Wang’s partition method. Parallel
Computing, 7:87-95, 1988.

[10] P. Odent. Electrical-level simulation of VLSI MOS circuits using multi-processor sys- .
tems. PhD-thesis, Katholieke Universiteit Leuven, Belgium, January 1990.

[11] C.W. Oosterlee and P. Wesseling. Multigrid schemes for time-dependent incompressible
Navier-Stokes equations. Report no. 92-102, Delft University of Technology, Faculty of
Technical Mathematics and Informatics, 1992.

[12] S. Vandewalle. Parallel Multigrid Waveform Relazation for Parabolic Problems.
B.G. Teubner Verlag, Stuttgart, 1993. '

[13] S. Vandewalle and R. Piessens. Numerical experiments with nonlinear multigrid wave-
form relaxation on a parallel processor. Applied Numerical Mathematics, 8(2):149-161,
1991.

[14] S. Vandewalle and R. Piessens. Efficient parallel algorithms for solving initial-boundary
value and time-periodic parabolic partial differential equations. SIAM J. Sci. Stat.
Comput., 13(6):1330-1346, 1992.

[15] S. Vandewalle, R. Van Driessche, and R. Piessens. The parallel performance of standard
parabolic marching schemes. Int. J. High Speed Computing, 3(1):1-29, 1991.

[16] D. Womble. A time-stepping algorithm for parallel computers. SIAM J. Sci. Stat.
Comput., 11(5):824-837, 1990. :

14

