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Abstract

SIMD architectures offer an alternative to MIMD architectures for obtaining high
performance computation through parallelism. However, to obtain the best perfor-
mance on such architectures, aggressive compilation techniques are required. One
issue that SIMD compilers must address is generating code to change the machine
context; ¢.e., disabling processors not involved in the current computation. This paper
addresses the cost of changing the machine context.

We present two compiler optimizations that reduce the cost of context changes.
The first optimization, contezt partitioning, reorders the code so that as subgrid loops
are generated, as many statements as possible that require the same context are placed
in the same loop nest. The second optimization, contezt splitting, splits the iteration
space of the subgrid loops into sets that have invariant contexts. This allows us to
hoist the code that sets the machine context out of the subgrid loops.

1 Introduction

SIMD machines offer impressive cost/performance ratios, and they are very well suited for a
large body of engineering and scientific applications. However, current compilers for SIMD
machines do not come close enough to exploiting the full potential of these machines. Within
the Fortran D project, we are developing a compiler to study advanced compilation tech-
niques for SIMD machines. This paper describes one facet of the project.

With SIMD machines there is a need to explicitly turn processors on and off. This is due
to the fact that there is only a single instruction stream and not all processors are to execute
each instruction. Only processors containing data related to the current instruction should
execute it. If a processor is not to execute a set of instructions, it must be explicitly “masked
out”. However, changing the machine state, or contezt, is an expensive operation. Setting
the machine context is an overhead that one must pay to execute on a SIMD architecture.
The work presented here addresses this overhead by reducing the number of times that the
machine context must be set.

*This work supported in part by the IBM Corporation through the Graduate Resident Study Program.



The next section gives an overview of a SIMD architecture, the Fortran D language, and
a general SIMD compilation framework. It introduces the concepts that motivate this work.
Section 3 describes our strategy for reducing the cost of setting the machine context. We
present some preliminary results in Section 4. Section 5 discusses related work by others.
We conclude in Section 6 with a brief summary.

2 Machine, Language, and Compiler Overview

In this section we will give a brief overview of the target SIMD architecture, the Fortran D
language, and our Fortran 90D SIMD compilation strategy. These descriptions will intro-
duce the concepts necessary to understand how the machine works, why the compiler must
generate certain code sequences, and why the optimizations described in later sections are
beneficial.

2.1 A Distributed-Memory SIMD Architecture

SIMD is an acronym for Single Instruction stream, Multiple Data streams. A SIMD com-
puter contains many data processors operating synchronously, each executing the same in-
struction, using a common program counter. Each data processor is a fully functional ALU
(Arithmetic Logical Unit). The SIMD architectures in which we are interested associate
some local memory with each data processor. The data processor, along with its associated
memory, is referred to as a processing element (PE). The collection of all PEs is called the
PE array. The PE array may be treated as a linear array or as an array of higher dimensions;
e.g., a 16 PE array could be treated as a 16 x 1 grid, or an 8 x 2 grid, or a 4 x 4 grid, or
even a 2 X 2 X 2 x 2 grid (= 4-d hypercube). For simplicity, we will limit our discussions to
treating the PE array as a linear array or a two dimensional square grid.

Each PE has an execution flag which can be set on or off to indicate whether the PE
should execute the current instruction. There are several reasons why a PE may be turned
off during a computation. The two main reasons are that the current operation is being
performed under a user specified mask (such as a Fortran 90 WHERE statement), or that the
PE does not have any local data on which to operate. When taken as a whole, the execution
flags of all the PEs are said to determine the contezt of the PE array. Some instructions are
executed regardless of the execution mask, for example instructions that reset the execution
flag.

There is also a serial front end processor or control unit. The front end (FE) processor
has three responsibilities. The first is to drive the PE array by broadcasting instructions
and related data to all PEs. The second is to perform all scalar computations and control
flow operations. Third, the FE is the system interface to the external world.

Finally, the PEs are connected by an interprocessor communication network. This net-
work allows PEs to access data that is stored within the memories of other PEs. The details
of such a network, however, are not important to this work.

2.2 The Fortran D Language

Fortran D provides users with explicit control over data partitioning using data alignment
and distribution specifications. The DECOMPOSITION statement specifies an abstract problem
or index domain. The ALIGN statement specifies fine-grain parallelism, mapping each array



element onto one or more elements of the decomposition. This provides the minimal require-
ment for reducing data movement for the program given an unlimited number of processors.
The alignment of arrays to decompositions is determined by their subscript expressions in
the statement; perfect alignment results if no subscripts are used.

The DISTRIBUTE statement specifies coarse-grain parallelism, grouping decomposition
elements and mapping them and aligned array elements to the finite resources of the phys-
ical machine. Each dimension of the decomposition is distributed in a BLOCK, CYCLIC, or
BLOCK_CYCLIC manner. Both irregular and dynamic data decomposition are supported. In
this paper, however, we will only be concerned with regular data distributions. The complete
language is described in detail elsewhere [12].

2.3 SIMD Compilation

This section describes our overall compilation strategy. It describes the steps necessary in
translating a Fortran 90D program for execution on a SIMD architecture. The order that
the steps are given reflects our compiler’s structure, but this does not imply that all SIMD
compilers are structured similarly. For a comparison, Albert et al. give an overview of
compiling for the Connection Machine in Paris mode (2], and Sabot describes compiling for
the Connection Machine in Slicewise mode [20].

2.3.1 Array Distribution

To exploit parallelism, the Fortran 90D SIMD compiler distributes the data arrays across
the PE array so that each PE has some of the data to process. The manner in which arrays
are distributed is very important for maximizing parallelism while minimizing expensive
communication operations. When arrays are distributed across the PE array, each PE will
locally allocate an equal-sized subgrid to hold its portion of the distributed array. The rank
of the subgrid matches the rank of the distributed array. The extent of the i-th subgrid
dimension is Eztent; = [N;/P;|, where N; and P; are the extents of the distributed array
dimension and the PE array dimension, respectively. P; = 1 for dimensions which are not
distributed. The PE array itself will be considered has having a rank equal to the number
of distributed dimensions of the distributed array. To simplify our discussion, we will limit
the number of distributed dimensions to two.

The compiler uses a distribution function [14] to calculate the mapping of an array element
to a subgrid location within a PE. Given an array A, the distribution function ,uA(') maps
an array index 7 into a palr consmtmg of a PE index iproc and a subgrid index ). Inverse
distribution functions, pj (zproc, 7), give the reverse mapping. Figure 1 shows examples
of distribution functions and their inverses for one-dimensional arrays with either BLOCK or
CYCLIC distributions. In this paper all arrays, whether a user array or the PE array, use
one-based indexing.

The Fortran D code in Figure 2 illustrates the concepts of data distribution. Given
a SIMD machine with P = 16 PEs, the compiler would distribute array X as shown in
Figure 3. Each PE would allocate a local subgrid X’(16). The distribution function for X
is:

px(?) = ((t—1)mod 16 +1,[:/16]).

On the same machine, array Y would be distributed by the compiler as shown in Figure 4.



usock(i) = ([i/Eztent,], (i — 1) mod Eztent; + 1)
pili(iproc,j) = (iproc —1) * Extent, +7
Poyelic(t) = ((z-1) mod P; + 1, [l/PI])
poeiic(iproc,j) = (j —1)* Py +1proc

Figure 1 Distribution functions and their inverses.

REAL X(256), Y(20,20)
DECOMPOSITION A(256), B(20,20)
ALIGN X(I) WITH A(I)

ALIGN Y(I,J) WITH B(I,J)
DISTRIBUTE A(CYCLIC)
DISTRIBUTE B(BLOCK,BLOCK)

Figure 2 Fortran D code dgcllaring two distributed arrays.

Notice how the PE array is now treated as a 4 X 4 matrix of PEs; i.e., A = P, = 4. Thus
Extent, = Extent; = 5 and each PE would allocate Y’(5,5) as the local subgrid. In this

case the distribution function for Y is:
uy(i,j) = (([i/51,13/51),(( = 1) mod 5 +1,(j — 1) mod 5 +1)).
2.3.2 Computation Partitioning

After the compiler maps distributed arrays onto the memory of the PE array, it must map
parallel computations to the processors. Our philosophy is to use the “owner computes”
rule, where every processor only performs computations that update data it owns [8, 26].
This rule could be replaced by a data optimization phase which may determine an alternate
distribution for the computation and associated intermediate results in an attempt to reduce
the amount of communication [9, 16].

2.3.3 Communication Generation

Once data and computation distributions are finalized, the compiler must insert any nec-
essary communication operations to move data so that all operands of an expression reside
on the PE which will perform the computation. These communication operations can of-
ten be optimized by exploiting efficient collective communication routines; e.g., EOSHIFT or
TRANSPOSE. The exact details of how the required communication operations are determined
and generated are beyond the scope of this paper and are not necessary for understanding
the optimizations discussed in later sections. Interested readers are referred to the work by
Li and Chen [18].

After the communication operations have been inserted, all computational expressions
reference data that are strictly local to the associated PEs. For example, the statement:

X(2:255) = X(1:254) + X(2:255) + X(3:256)
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Figure 3 A one-dimensional array with 256 elements mapped in a CYCLIC manner
onto a 16 PE machine.
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Figure 4 A 20 x 20 two-dimensional array mapped in a BLOCK fashion onto a 16
PE machine configured as a 4 x 4 matrix.

would be changed into the following three statements, where TMP1 and TMP2 are arrays that
match the size and distribution of X:

TMP1 = EOSHIFT(X,-1)

TMP2 = EOSHIFT(X,1)

X(2:255) = TMP1(2:255) + X(2:255) + TMP2(2:255)
Notice that in the third statement all the operands are perfectly aligned with one another
and that there is no further communication required to compute the expression or store the
result.

2.3.4 Subgrid Looping

Finally, the compiler translates the parallelism that is explicit in the Fortran 90 array syntax
into code that manipulates the arrays that have been distributed across the PEs. Since each
PE is in fact a serial processor, the array expressions must be scalarized, i.e., translated
into serial code [4,25]. The serial code operates on the data local to a PE. If an array is



distributed such that several elements are allocated per PE, then the serial code is placed in
a loop (or loop nest as required) that iterates over the subgrid. This is known as the subgrid
loop. For a detailed description of the issues involved in generating correct subgrid loops for
SIMD architectures, see the paper by Weiss [24].

As an example, if the array assignment statement:

X(1:256) = X(1:256) + 1.0

is performed on array X in Figure 3, the following subgrid loop will be generated:

DO I = 1, Extent, ! Extent; = 16
X(I) = X'(I) + 1.0
ENDDO ,

Recall that X’ is the local subgrid instantiation of the distributed array X. Extent, is the size
of the subgrid and is calculated as described-in Section 2.3.1.

The execution of the subgrid loop is a cooperative effort between the FE and the PE
array. The FE handles the control flow by executing the looping construct. For each iteration
of the loop, the FE then broadcasts instructions to the PE array. The broadcast instructions
will result in each PE adding 1.0 to X'(I), where the value of I is also broadcast from the
FE.

Subgrid looping is very closely related to sectioning used for allocating vector registers [6].
In this case, the PE array can be thought of as a multidimensional vector register. Just as in
vector register allocation, loop fusion [3] can be a powerful optimization. Loop fusion merges
multiple loops covering the same iteration space into a single loop. Loop fusion not only
decreases the total amount of loop overhead, but more importantly it creates opportunities
for data to be kept in registers and reused, thus avoiding expensive loads from memory.

Unfortunately, loop fusion is not always safe. A data dependence between two adjacent
loops is called fusion-preventing if after fusion the direction of the dependence is reversed 1,
23]. The existence of such a dependence means that fusion is not safe. In our case however,
no such fusion-preventing dependences can exist between adjacent subgrid loops. This is
due to the fact that the generation of communication, as described in the preceding sec-
tion, causes all subgrid loops to operate on “perfectly aligned” data. For example, any
fusion-preventing dependence that existed prior to communication generation is now carried
through a communication operation and its compiler temporary. This communication op-
eration prevents the Fortran 90 array expressions (and their corresponding subgrid loops)
from becoming adjacent.

Due to this perfect alignment of data within array operations, our SIMD compiler can
directly generate a single subgrid loop nest for adjacent Fortran 90 array statements if they
have the same distribution and cover the same iteration space. We call such array statements
congruent. Such subgrid loop generation precludes the need for loop fusion.

2.3.5 Context Switching

Up to this point all our examples used arrays that, when distributed, gave an equal number
of elements per PE, and all expressions involving the arrays accessed the entire array. When
either of these conditions is not met, the compiler may have to insert code into the subgrid
loop to change the context of the PE array.



Given the Fortran D declarations in Figure 2, assume we now encounter the array assign-
ment statement X(2:242) = X(2:242) + 1.0, which increments 241 elements of X starting
with the second element. As illustrated in Figure 3, PE 1 holds 15 of these elements in
X'(2:16), PE 2’s full subgrid is involved, and PEs 3 through 16 each have affected elements
in X'(1:15). The subgrid loop for this statement must enable and disable different sets of
PEs depending upon which subgrid element is being processed. The inverse distribution
functions described in Section 2.3.1 determine which sets of PEs to enable. The subgrid loop
generated for this statement is:

DO I = 1, Extent, ! Extent; = 16
Set_Context (((I-1)*P + iproc > 2) .AND. ((I-1)#*P + iproc < 242))

X(I) = X'(I) + 1.0
ENDDO

P is the number of processors, while iproc is a unique number assigned to each PE and
corresponds to its position in the PE array. The function Set_Context will cause each PE
to evaluate the logical expression and enable its execution flag if the result is true, otherwise
the execution flag is disabled.

In a similar manner, operations on arrays which do not “evenly” fill the machine require
context switching code to be inserted into the subgrid loop. Compare the Fortran D decla-
rations in Figure 5 to those in Figure 2. On the same 16 processor machine, array Y2 would
be distributed as seen in Figure 6. Looking at Figure 6, it can be seen that array Y2 is
distributed such that PEs (1:3,1:3) each contain a full subgrid of data, PEs (1:3,4) contain
data only in the left portion of their subgrids, PEs (4,1:3) contain data only in the upper
portion of their subgrids, PE (4,4) contains data only in the upper-left corner of its subgrid.

Since different PEs contain data in different subgrid locations, the subgrid loop must
contain code to change the context depending upon which subgrid element is being processed.
Again, the inverse distribution functions determine the active set of PEs. For example, the
Fortran 90 statement Y2 = ABS( Y2 ) would generate the following subgrid loop nest:

DO J = 1, Extent, ! Extenty; = 5
DO I = 1, Extent, ! Extent; = 5
Set_Context (((iproc;-1) * Extent; + I < 17) .AND.
((iprocs-1) * Extent; + J < 19))

Y2'(I,J) = ABS ( Y2'(1,J) )
ENDDO
ENDDO

Extent; and iproc; are the subgrid extent and PE index, respectively, along the i-th dimen-
sion.

It should be obvious by now that the code required for changing the context can be
quite complex. If the previous example had only operated on a subrange of the array Y2,
for example, then the call to Set_Context would also have required a lower bound check for
each dimension. This would double the number of logical operations.

We do have one mitigating factor. When a single subgrid loop nest is generated for a
set of adjacent congruent array statements, we do not need to change the context for each
individual statement in the subgrid loop; i.e., they all operate under the same context. This
is true by our definition of congruent array statements: they have the same iteration space
and operate on arrays that have identical distributions.



REAL Y2(17,19)
DECOMPOSITION B2(17,19)
ALIGN Y2(I,J) WITH B2(I,J)
DISTRIBUTE B2(BLOCK,BLOCK)

Figure 5 Fortran D code declaring an odd-shaped array.

Y211345 Y267t910 1n12 13 14 15 16 17 18 19
1
2
3
4
s

PE 4,1 PE 4,2 PE 4,3 PE 44

Figure 6 A 17 x 19 two-dimensional array mapped in a BLOCK fashion onto a 16
PE machine configured as a 4 x 4 matrix.

3 Context Optimization

As can be seen in the two simple examples given in Section 2.3.5, the code required to set
the context of the PE array can include multiple logical and arithmetic operations. This
code can be a significant portion of the work performed within a subgrid loop. It is our goal
to reduce the impact of this overhead for programs compiled for SIMD machines.

Our Fortran 90D SIMD compiler strategy has a two-pronged approach to minimize the
expense of context switching. First, we rearrange the program statements so that as subgrid
loops are generated, as many statements as possible that execute under the same context
are placed within the same subgrid loop. Second, we alter the order in which subgrid
elements are processed by performing loop transformations on the subgrid loops. These loop
transformations will allow us to hoist the calls to Set_Context out of the loops and thus
reduce the number of context changes. These optimizations are described in detail in the
following subsections.

3.1 Context Partitioning

As explained in Sections 2.3.4 and 2.3.5, a single subgrid loop nest is generated for ad-
jacent Fortran 90 array statements that are congruent and these statements all execute



within the same context. However, unless an effort is made to make congruent array state-
ments adjacent, many small subgrid loops may still be generated. Sabot has recognized
this problem, and recommends that users of the CM Fortran compiler rearrange program
statements, when possible, to avoid the inefficiencies of such subgrid loops [21]. In order to
alleviate this problem automatically, our compiler has an optimization phase that reorders
the statements within a basic block. The reordering attempts to create separate partitions
of scalar statements, communication statements, and congruent array statements. We call
this optimization contezt partitioning. The partitioning could group scalar statements and
communication statements together; however, we prefer to separate them so that the com-
munication operations can be further optimized by subsequent phases.

To accomplish context partitioning, we use an algorithm proposed by Kennedy and
McKinley [15]. Whereas they were concerned with partitioning parallel and serial loops,
we are partitioning Fortran 90 statements. The algorithm works on the data dependence
graph (DDG) [17] which must be acyclic. Since we are working with a basic block of state-
ments, our dependence graph will contain only loop-independent dependences [5] and thus
meets that criteria. Besides the DDG, the algorithm takes two other arguments: the set of
congruence classes contained in the DDG, and a priority ordering of the congruence classes.
We create congruence classes for scalar statements, communication statements and each set
of congruent array statements.

The priority ordering is required to handle class conflicts. A class conflict occurs when
there exist dependences such that a pair of statements from one class may be merged during
partitioning or a pair from another class, but not both since that would introduce a cycle
in the DDG and thus make it unschedulable. The following contrived code segment, whose
DDG is shown in Figure 7, gives an example of a class conflict:

sl: A(1:100) = A(1:100) + 1.0

s2: B(2:99) = B(2:99) * C(2:99)

s3: C€(1:100) = B(1:100)

s4: D(2:99) = A(2:99)
It is possible to merge nodes s! and s3 or nodes s2 and s4, but we cannot merge both pairs.
The priority ordering is used to determine which pair should be merged. The algorithm
will merge pairs with a higher priority before those with a lower priority. Kennedy and
McKinley have shown that choosing an optimal ordering of classes is NP-hard in the number

.. o
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class O classl

Figure 7 A context partitioning class conflict.




of classes. However, since class conflicts are considered rare, a good heuristic for choosing an
order should be effective. The heuristic that we have chosen is to order the array statement
congruence classes by their size, largest to smallest for the given basic block, and to give the
scalar and communication classes the lowest priority.

We will now give a brief overview of the algorithm; we refer interested readers to their
paper for the details. For each congruence class in priority order, the algorithm makes a
single pass over the DDG. During the pass it greedily merges nodes for the given class. Two
nodes from the same class may be merged if there does not exist a path between them that
contains a node from another class. When two nodes are merged, the DDG is updated to
reflect it.

Figure 8 displays how context partitioning would handle a block of eight statements. The
statements are numbered to represent their textual order. The subscripts represent their
congruence class. In this example, there are two congruence classes: A and B. Statement
6 is a scalar statement. Figure 8(a) shows the original source code, and Figure 8(b) shows
the data dependence graph. Naive code generation would create six subgrid loops for these
statements (only statements 4 and 5 would occur in the same subgrid loop). Figure 8(c)
shows the data dependence graph after partitioning congruence class B, the larger of the
two classes. Figure 8(d) displays the final result after partitioning class A. The final code is
displayed in Figure 8(e). The modified code requires only three subgrid loops to be generated.
(Note: Figures 8(b-d) show only true (flow) dependences; anti- and output-dependences have
not been shown since they clutter the diagrams and add little benefit.)

Given the chosen priority ordering, the algorithm is incrementally optimal; i.e., for each
class c, given a partitioning of classes with higher priority, the partitioning of ¢ results in a
minimal number of partitions. The algorithm will partition the DDG in O((N + E)C) time,
where N is the number of statements, E is the number of dependence edges and C is the
number of congruence classes.

During subgrid loop generation, all statements in a partition will be placed in the same
subgrid loop. The number of subgrid loops which operate over statements with the same
context is thus minimal, given the chosen priority ordering.

It should be noted that context partitioning is not a SIMD-only optimization. It is useful
for Fortran 90 compilers that target MIMD and scalar architectures as well. Even though
such architectures do not require setting a machine context, context partitioning can reduce
the overhead of loops generated during scalarization and can increase the possibilities for
data reuse.

3.2 Context Splitting

In the first example in Section 2.3.5, which incremented X(2:242), the PE array has the
same context for iterations 2 through 15 of the subgrid loop; during these iterations all the
PEs are active. To take advantage of this invariance, we will modify the subgrid loop by
performing loop splitting, also called indez set splitting [7, 25]. By splitting the iteration space
into disjoint sets, each requiring a single context, we can safely hoist the context setting code
out of the resulting loops. We call this optimization contezt splitting.

For the reference X(2:242), the iteration space of the subgrid loop is split into 3 sets:
{1}, {2:15}, and {16}. Applying context splitting to the subgrid loop produces the following
code:

10



' 254, 234,
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(b) dependence graph (c) dependence graph after ~ (d) dependence graph after
merging class B merging class A

14: X(1:256) = X(1:256) + 1.0 14 : X(1:256) = X(1:256) + 1.0
2p : Z(1:100) = Z(1:100) + W(1:100) 34 : V(1:256) = X(1:256) ** 2
34 V(1:256) = X(1:256) ** 2 25 : Z(1:100) = Z(1:100) + W(1:100)
45 : W(1:100) = X(1:100) + Z(1:100) 45 : W(1:100) = X(1:100) + Z(1:100)
5p : U(1:100) = Z(1:100) + SCALAR1 5p : U(1:100) = Z(1:100) + SCALARI
6s: SCALARI1 = SCALAR1 * V(I) 8p : Z(1:100) = SQRT(W(1:100))

Ta: X(1:256) = W(1:256) * SCALARI 6s: SCALAR1 = SCALAR1 * V(I)
85 : Z(1:100) = SQRT(W(1:100)) Ta: X(1:256) = W(1:256) * SCALARI

(a) source code (e) modified code

Figure 8 Partitioning congruent statements.

Set_Context (iproc > 2)
X'(1) = X(1) + 1.0
Set_Context (.TRUE.)

DOI =2, 15
X'(I) = X'(I) + 1.0
ENDDO

Set_Context (iproc < 2)
X'(16) = X'(16) + 1.0

Compared to the original subgrid loop, this code has hoisted the call to Set_Context out
of the loop, eliminated several arithmetic and logical operations, and the PE array context
is now set only three times compared to the original 16 times. As we can see from this

11



simple example, context splitting significantly reduces the number of times that the PE
array context must be set for a subgrid loop. Whereas the original subgrid loop set the
context once per iteration, it is now set only three times, no matter how large the subgrid
is.

Unlike context partitioning, context splitting is a SIMD-only optimization. Compilers for
MIMD machines can often side-step the issue that is addressed by context splitting. Since
each PE in a MIMD machine also has control logic, a compiler can generate a program such
that each PE determines the loop bounds for its own subgrid loop. By reducing the loop
bounds, the compiler can often avoid iterations for which the PE has no work and thus does
not need to introduce any guard statements into the subgrid loop body in those cases [13,
22].

We will now discuss the details of context splitting. To simplify the discussion, we will
first discuss one-dimensional CYCLIC, BLOCK, and BLOCK_CYCLIC distributions, and then show
how to combine one-dimensional splitting to handle multidimensional cases.

Our canonical example in the following presentation will be the statement X(N:M) =
X(N:M) + 1.0. Context splitting of subgrid loops for full arrays that do not evenly fill the
machine is treated simply as a special case, where N = 1.

3.2.1 Context Splitting a CYCLIC Distribution

With a standard CYCLIC distribution, element X(N) may reside on any processor relative
to the processor holding element X(M). However, the offset of X(N) within the subgrid
X’ must be less than or equal to the offset of X(M). Le., given ux(N) = (iprocn,jn),
px(M) = (iprocm,jm), and N < M, then jy < ju must hold. We cannot make any
statement regarding the relationship of iprocy and iprocas, except that jy = ju implies
iprocy < iprocys.

Using this information and our knowledge of CYCLIC distributions, we know that all PEs
should be enabled for the subgrid iterations jy + 1 to jp — 1. This naturally divides the
iteration space into three sets: {jn}, {jv + 1:jm — 1}, and {jm}. Figure 9 depicts this
situation. When jn = ju, the second iteration set is empty and the first and third set are
merged into a single set. The subgrid loop after context splitting now looks like this:

iprocy = (N-1) mod P + 1
iprocy = (M-1) mod P + 1
JN = [N/P]

= [M/P]

IF (j~ = jm) THEN
Set Context(lproc > 1procN .AND. iproc < iprocpy)
X(in) = X'(GN) + 1. 4

ELSE :
Set.Context(lpro > 1procN)
X'(jn) = X'(jn) + 1.
Set_Context (.TRUE.)

DO I = ja+1, jm-1
X'(I) = X(I) + 1.0

ENDDO

Set_Context (iproc <

X'(jm) = X'(Gm) + 1.

ENDIF

iprocy)
0

12



The code can be simplified if N and/or M are known constants. When N and M are both
constants, the IF-test can be evaluated at compile-time and only the code for the appropriate
branch needs to be generated. In the case where the operation is over the full array but the
array does not evenly fill the machine, we know that N = 1. In this situation the IF-test is
unnecessary and the pre-loop statements can be merged into the DO-loop. This is equivalent
to peeling off the last iteration of the subgrid loop and hoisting the context setting code
accordingly. The result is:

im = [M/P]
Set_Context (.TRUE.)
DOI =1, ju-1
X'(I) = X(I) +1.0
ENDDO
Set_Context (iproc < iprocys)

X'(Gm) = X(jm) + 1.0

3.2.2 Context Splitting a BLOCK Distribution

Given a BLOCK distribution, element X (N) will always reside on a processor that has a number
less than or equal to the processor holding element X(M); i.e., iprocy < iprocy. Figure 10
shows the affected elements of array X for the assignment X(N:M) = X(N:M) + 1.0 when
X has a BLOCK distribution. As can be seen, all processors between iprocy and iprocy are
enabled for all subgrid elements, whereas all processors outside that range are disabled for
all subgrid elements. Processor iprocy is enabled at iteration jy and subsequent iterations.
Processor iprocys is enabled only for iterations up to and including ju.

The difficulty in context splitting for a BLOCK distribution comes from distinguishing the
case where jy < jy from the case where jy > ju. If we let LO = min(jn,jm + 1) and

iprocy iprocy

Figure 9 X(N:M) when X has a CYCLIC distribution.

iprocy iproc,,

Figure 10 X(N:M) when X has a BLOCK distribution.
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HI = max(jy — 1,jum), then the iteration space is naturally split into the following three
sets: {1:L0—1}, {LO:HI}, and {HI+1:Extent}. The context for the first iteration set will
be the processor set {iprocy + 1 : iprocy}. The processor set for the second iteration set
will include both iprocy and iprocys if jy < jum holds, otherwise it will exclude both. The
context for the third iteration set will be processors {iprocy : iprocyr —1}. The subgrid loop
after context splitting is now:

iprocy = [N/Extent]
iprocy = [M/Extent]
jN = (N-1) mod Extent + 1
jm = (M-1) mod Extent + 1
IF égpfjs jm) THEN

HI = jm
ELSE

L0 = jp + 1

HI = jy - 1
ENDIF

Set_Context(iproc > iprocy .AND. iproc < iprocy)
DO I =1, LO-1

X'(I) = X'(I) + 1.0
ENDDO
IF (jy < jm) THEN

Set_Context(iproc > iprocy .AND. iproc < iprocpy)
ELSE

Set_Context (iproc > iprocy .AND. iproc < iprocy)
ENDIF
DO I = LO, HI

X'(I) = X'(I) + 1.0
ENDDO
Set_Context(iproc > iprocy .AND. iproc < iprocpy)
DOI = HI+1/, Extent

X(I) = X(I) + 1.0
ENDDO

This code can be greatly simplified if both N and M are compile-time constants, in which
case both IF expressions can be eliminated. In addition, if LO = 1 or HI = Extent then the
body of the first or last DO-loop, respectively, will not be executed. That DO-loop and its
associated call to Set_Context can then be safely eliminated.
In the case where the operation is over the entire array but the array does not evenly fill
the machine, the above code can be simplified to:
iprocy = [M/Extent]

jm = (M-1) mod Extent + 1
Set_Context (iproc < iprocps)

DOI=1, ju
X'(I) = X'(1I) + 1.0
ENDDO

Set_Context (iproc < iprocps)
DO I = jum+l, Extent

X'(I) = X'(I) + 1.0
ENDDO
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3.2.3 Context Splitting a BLOCK_CYCLIC Distribution

Up to this point we have not discussed using a BLOCK_.CYCLIC distribution. This is mostly
due to its complexity. We will introduce it now and so how context splitting can be used to
optimize a subgrid loop operating over such a distribution.

BLOCK_CYCLIC is similar to CYCLIC but it takes a parameter b. It first divides the dimen-
sion into contiguous chunks of size b, then distributes these chunks in the same manner as
CYCLIC. Figure 11 shows the distribution function used to map an array index to the PE
index/subgrid index pair for a BLOCK_CYCLIC distribution. Also shown is the inverse func-
tion. It is interesting to compare these to the functions for the standard BLOCK and CYCLIC
distributions, given in Figure 1. Recall that it is the inverse function that is used in the calls
to Set_Context that occur in the naive subgrid loops. In this case, the inverse function is
so complex that it adds a significant amount to the overhead of the subgrid loop.

Let’s consider once again our example X(N:M) = X(N:M) + 1.0. Figure 12 shows the
affected elements given a block size b = 3 (dark lines indicate logical block boundaries). It
can be easily seen that at any given subgrid index different sets of PEs contain elements
from the range N : M. On closer inspection, it can be found that the sets of PEs that must
be enabled form a logical progression. It is this progression that establishes the iteration
sets for context splitting.

To ease the specification of the iteration sets we will not only need to know the values of
jn and jp, the subgrid indices of X(N) and X (M) respectively, we will need to know the
logical blocks in which they occur. We will label these blocks By and Bys. We use one-based
indexing for the blocks just as we do for indexing subgrids and PEs.They can be calculated
using the following formula:

Be = |E%|+1 = [iw/b], for k=N,M

Once we have determined the values of jy, ju, iprocy, iprocy, By, and By, we split the
iteration space into the following five sections and determine the set of active PEs as shown:

{(By =1)*b+1 : jy—1} Turn on PEs where iproc > iprocy.
{jn : Bn#*b} Turn on PEs where iproc > iprocn.

{By*b+1 : (Bu—1)*b} Turn on all PEs.
{(By—1)*b+1 : ju} Turn on PEs where iproc < iprocy.
{im+1 : By*b} Turn on PEs where sproc < iprocy.

Depending upon the values of N and M, one or more of the five iteration sets may be
empty. In particular, when N = 1 the first set will be empty and the second and third

I‘b!ock_pycuc(b)(i) = ([("'l)mﬁ(b"‘ﬂ)“] , l;:;lJ b+:2mod b+ 1)
/“La:ck_cyclic(b)(iproc’j) = |.J;_l_| (Pl * b) + (ip'I'OC - 1) * b+ (] - 1) mod b+ 1

Figure 11 BLOCK_CYCLIC distribution function and its inverse.
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iproc 5 iprocy

Figure 12 X(N:M) when X has a BLOCK_CYCLIC distribution.

set enable the same PEs and can thus be merged together. It is important to notice how
context splitting has reduced the computations required for the calls to Set_Context to
simple logical comparisons; the expensive operations of the inverse mapping function are no
longer required.

With a BLOCK_CYCLIC distribution, there is one special case which we must handle when
performing context splitting. It occurs when By = Bjs. In this situation, all the affected
elements of X(N : M) are at the same logical block level. Furthermore, the elements are
distributed across this block level in a normal BLOCK distribution. To properly handle this
case we could apply the techniques presented in Section 3.2.2, with the modification that
the subgrid loop ranges from (By — 1) * b+ 1 to By * b rather than from 1 to Eztent.
Alternatively, if the block size b is small, we could simply generate the naive subgrid loop,
since we know that the loop will perform at most b iterations.

The subgrid loop for the statement X(N:M) = X(N:M) + 1.0 is shown below. For sim-
plicity, we have used the naive subgrid loop for the case where By = Bj. The variable
GlobalIndex holds the value of the inverse distribution function, #~!, computed on each PE
for each subgrid location.

iprocy = [((N-1) mod (b*P) + 1)/b]
iprocy = [((M-1) mod (b*P) + 1)/b]

jN = [(N-1)/(b*P)| b + i mod b + 1

jm = [(M-1)/(b*P)| b + i mod b + 1

By = [in/b]

By = [jm/b]

IF (By = Bp) THEN ' perform naive subgrid looping

DOi=(By -1) *b + 1, By
GlobalIndex = |(i- 1)/b_|*(P*b) + (iproc-1)* b + (i-1) mod b + 1
Set Context(GlobalIndex > N .AND. GlobalIndex < M)
X'(i) = X'(1) + 1.0

ENDDO

ELSE
Set_Context(iproc > iprocy)
DO I = (By-1)*b+1, jy-1
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X'(I) = X'(I) + 1.0
ENDDQO
Set_Context(iproc > iprocy)
DO I = jn, By*b
X'(I) = X'(I) + 1.0
ENDDO
Set_Context (.TRUE.)
DO I = By*b+1i, (By—-1)*b
X'(I) = X'(I) + 1.0
ENDDO
Set_Context (iproc < iprocy)
DO I = (By-1)*b+1, jum
X'(I) = X'(I) + 1.0
ENDDO
Set_Context (iproc < iprocy)
DO I = jy+l, Bp*b
X'(I) = X'(I) + 1.0
ENDDO
ENDIF

3.2.4 Context Splitting a Multidimensional Distribution

To perform context splitting on a multidimensional distribution, we use loop splitting on
each dimension separately. This produces a set of imperfectly nested DO-loops. We then use
loop distribution [17, 19] to produce a set of perfectly nested DO-loops, each of which operates
under a single context. The context for each loop nest is the intersection of the contexts
produced for each dimension.

Let’s consider again the array Y2 as declared and distributed in Figures 5 and 6. Per-
forming context splitting on the statement Y2 = ABS( Y2 ), we first perform loop splitting
on each dimension. For the first dimension, the iteration space is divided into the sets {1:2}
and {3:5}, while the second dimension produces the sets {1:4} and {5}. After splitting
the loops we use loop distribution, which produces these sets of two-dimensional iteration
spaces: {1:2,1:4}, {3:5,1:4}, {1:2,5}, and {3:5,5}. The result is the following code, which
sets the context four times compared to the 25 times of the naive subgrid loop presented in
Section 2.3.5:

Set_Context (.TRUE.)

poJ=1, 4
POI =1, 2 '
Y2/(1,J) = ABS ( Y2/(1,J) )
ENDDO
ENDDO
Set_Context (iproc; < 4)
DoJ=1, 4
DOI =3, 5
Y2/(1,J) = ABS ( Y2/(I,J) )
ENDDO
ENDDO
Set_Context (iproc; < 4)
DOI=1, 2
Y2'(1,5) = ABS ( Y2'(1,5) )
ENDDO
Set_Context (iproc; < 4 .AND. iproc; < 4)
DO I = 3,

5
Y2'(1,5) = ABS ( Y2/(I,5) )

17



ENDDO

3.2.5 Discussion

A close evaluation of the context splitting optimization reveals two possible concerns: loop
overhead and code growth. Both of these occur because context splitting takes a single
subgrid loop nest and generates multiple loop nests (with reduced loop bounds) each with a
copy of the loop body (minus context setting code). We will address each of these concerns
separately.

The additional loop overhead generated by context splitting is really not a concern at
all. Recall that all the control flow operations related to the looping constructs are executed
on the FE processor. Since the FE processor is usually much faster than the PE processors,
and is executing asynchronously from them, it is able handle the extra loop overhead while
still keeping the PE array busy. In essence, we have increased the workload executed on the
FE, but this has allowed us to decrease the workload sent to the PE array.

Since context splitting produces several copies of the loop body for each loop level which
is split, code growth is exponential in the number of nested subgrid loops which are split.
If this growth is a concern, we have two alternatives that can be used to address it. First,
the loop body could be encapsulated as an internal subroutine, which is branched to and
returned from. Since the subroutine is internal, the interface simply requires that the return
address be saved. Alternatively, by limiting context splitting to only the innermost one
or two subgrid loop levels, one can keep code growth bounded by a linear amount. Our
experiments have shown that this small limitation still retains most of the performance
gains achieve when splitting all subgrid loop levels.

Throughout this presentation we have ignored the context setting required for masked
assignment instructions, such as that generated by the WHERE statement. The semantics of
masked instructions imply that each element has its own execution mask. This means that
the iteration space cannot be divided into convenient sets each with a constant execution
mask. For this reason context splitting cannot be used to hoist the calls to Set_Context out
of such subgrid loops. Context partitioning is still applicable and can be used to generate a
single subgrid loop for groups of congruent statements.

We have also not addressed strided references, such as X(N:M:S). For strides known at
compile-time we may be able to determine sets of PEs that have common strides through
their subgrids. We would then be able to isolate these iterations into separate subgrid loops,
allowing us to again hoist the context setting code from the loop. For example, for S = 2 it
may turn out that we can set the context to the even numbered PEs and process the even
(odd) subgrid elements then switch to the odd numbered PEs and process the odd (even)
elements. Additional splitting could be performed as required at the boundary iterations jn
and jp. This is an item of current research.

4 Results

To verify the effectiveness of these optimizations, we performed them by hand on a section
of code taken from a Fortran 90 version of the ARPS weather prediction code [11]. The
section of code initializes 16 two-dimensional arrays. We chose this section of code since
context partitioning would not benefit additionally from data reuse nor would it be penalized
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for generating excessive register pressure. Thus all performance improvements are directly
attributable to the elimination of redundant context changes and the reduction of loop
overhead.

We generated five versions of this code segment and timed each on a dedicated DECmpp
12000. The first version was simply the Fortran 90 segment as taken from the ARPS program.
This was compiled with MP Fortran Version 2.1. The second version was a translation of the
Fortran code into MPL. We optimized this version by performing the following optimizations
by hand: common subexpression elimination, strength reduction, and loop-invariant code
motion. We also used register declarations on array pointers. We then took this MPL
version and generated three new versions by applying our context optimizations; one version
for each of the optimizations, and one version which combined both optimizations. All the
MPL routines were compiled by Version 3.0 of the MPL compiler. All five versions used
a (CYCLIC,CYCLIC) distribution, the standard distribution of the MP Fortran compiler (the
current version of the MP Fortran compiler does not support either BLOCK or BLOCK.CYCLIC
distributions). ' )

The version combining context partitioning and splitting reduced the execution time by
45% when compared to the original MPL code (which itself reduced the execution time
by approximately 10% compared to the Fortran code). See Figure 13 for a comparison of
execution time versus subgrid size for these three versions of the code. Individually, context
partitioning and context splitting reduced the execution time by 35% and 45%, respectively.
The reason that the combination of the two optimizations did not out-perform context
splitting is that, once splitting eliminated the costly context setting code from the subgrid
loops, the loops became memory bound. For subgrid loops that are more computationally
intensive, we expect these two optimizations to have an additive effect, although the total
effect may be less than the improvement experienced with this code.

T

——— MasPar Fortran

cmamemee Hand-optimized MPL
_____ Context-optimized MPL <

[4]
[=]

Execution time (ms)
[\
(4]

250
Subgrid size

Figure 13 Time for ARPS weather code to initialize sixteen 2-D arrays.
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To consider something more computationally interesting, we looked at a five-point dif-
ference computation:

RESULT = (A + CSHIFT(A,1,1) + CSHIFT(A,-1,1)
+ CSHIFT(A,1,2) + CSHIFT(A,-1,2))/5

RESULT and A were both two-dimensional arrays distributed in a (CYCLIC,CYCLIC) manner.
We generated three versions of the code: a Fortran 90 version, a hand-optimized MPL
version, and an MPL version which had context splitting applied (since there was only
a single statement, context partitioning was not applicable). We then timed the subgrid
loops. In all cases, the communication time to set up the computation was excluded from
the measurements. The results are shown in Figure 14.

Since the time to compute and set the context is a smaller portion of the total work
performed in this subgrid loop, the performance gain is not as impressive as that obtained
on the array initialization code. But the 13% reduction in the execution time from the
hand-optimized MPL version is still significant.

As a final point of interest, we took the above five-point difference computation and per-
formed context splitting only on the innermost subgrid loop as discussed in Section 3.2.5.
Code growth was minimal, adding only two statements to the MPL code: a call to Set_Context
and a replication of the loop body (a single assignment statement). In comparison, the origi-
nal split version, in which context splitting was applied to both loops in the subgrid loop nest,
slightly more than doubled the amount of code. Additionally, the performance difference be-
tween the two split versions was minimal. The new split version reduced the execution time
of the hand-optimized MPL version by 12%, compared to the 13% reduction of the original
split version.

60 T T T T T T T

MasPar Fortran

------- Hand-optimized MPL
- = = - Context-split MPL

Execution time (ms)

Figure 14 Time for 5-point difference computation.
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5 Related Work

Work at Compass by Albert et al. describes the generation and optimization of context set-
ting code [2]. They avoid redundant context computations when adjacent statements operate
under the same context. They also perform classical optimizations on the context expres-
sions, such as common subexpression elimination. They mention the possibility of reordering
computations to minimize context changes, but they do not discuss such transformations.

While giving some optimization hints for the slicewise CM Fortran compiler, Sabot de-
scribes the need for code motion to increase the size of elemental code blocks (blocks of code
for which a single subgrid loop can be generated) [21]. He goes on to state that the compiler
does not perform this code motion on user code, and thus it is up to the programmer to
make them as large as possible. In a later paper describing the internals of the compiler,
he describes how it attempts to perform code motion so that subgrid loops may become
adjacent and thus fused [20]. However, the code motion performed is limited to only moving
scalar code from between subgrid loops, not in moving the loops themselves. Furthermore,
due to the limited dependence analysis performed by the compiler, only compiler-generated
scalar code will be moved. It was this work that motivated us to investigate the context
partitioning problem.

Chen and Cowie also recognize the need to fuse parallel loops in their Fortran 90 com-
piler [10]. However, they only fuse adjacent loops and perform no code motion to increase
the chances of fusion.

6 Summary

We have developed a double-edged sword to combat the cost of context switching in codes
for SIMD machines. The first edge of the sword reduces the number of subgrid loops which
operate over the same context to a minimum. The second edge reduces the number of context
changes per subgrid loop from O(N) to O(1) for unmasked array assignment statements.
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