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Loop level Parallelization of a seismic inversion code *

M. Kern'! W. W. Symes'

Abstract

/

We present a parallel implementation of a seismic inversion code. Parallelism is
exploited at the loop level within the finite difference modeling, as this is the most
time consumning part of the code. We give details of our implementation, and present
numerical results. We have reached a performance of 250 Mflops on one processor, and
'speedups of 6 on 8 processors, on a Cray Y-MP.

1 Introduction

This paper presents experience with trying to exploit loop-level parallelism in DSO, a
seismic inversion under development in the Rice Inversion Project.

Seismic problems are characterized by the huge amount of data they generate. A
typical seismic survey would generate several hundreds of Mbytes of data! Then, as will be
explained below, the inversion procedure requires repeated solution of the wave equation
(if we can be satisfied with acoustics !). It is thus of paramount importance that each of
these solutions be done as fast as possible. Obviously, it is also desirable to solve as few of
them as possible, an issue we are currently addressing.

This paper focuses on one aspect: trying to get the code to run efficiently on vector-
.parallel machines, a prime example of which is the Cray Y-MP.

‘ An outline of the rest of the paper is as follows: in the next section we give some

background on the algorithmn, and the way the code is written. We detail the guidelines in
obtaining good performance on a Cray Y-MP in section 3, and show a few representative
examples in section 4. We conclude with an assessment of these results, and discuss
directions for further work. ’

2 DSO, a framework for inverse problems

2.1 Motivation

It is not the purpose of this paper to describe the algorithm in detail. The reader is referred
to [16], [18] for a detailed explanation of the algorithm, and to [17] for examples.

*This work was partially supported by the Office of Naval Research (N00014-89-J-111), the Texas
Geophysical Parallel Computation Project and the Rice Inversion Project. TRIP sponsors for 1992 were
Amoco Research, Conoco Iuc., Cray Research, Earth Modeling Systems, Exxon Production Research Co.,
and Mobil Research and Development Corp.
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Inverse problems have traditionally been formulated as least-squares. This has several
advantages: it makes fitting inexact or noisy data possible, and it makes the function to be
minimized differentiable, thus amenable to classical optimization methods. Attempts along
these lines have met with limited success (see [19] for an extensive study of least-squares
methods in the geophysical context, and [10] for a successful application of the method,
and what is needed to make it successful). It is now realized that pure least-squares is
flawed, and cannot work (see [14] for an explanation). Still, the desirable properties quoted
above (and the experience accumulated with least-squares) makes it desirable to look for
modifications instead of a radical change of method (this is also being pursued, see [15] for
example).

The main difficulty in using least squares to fit reflection data is that a good knowledge
of the low frequency trend of the velocity is needed in order to find the high frequency
component. Geophysicists all know that “once you know the velocity, it is comparatively
simpler to determine the reflectivity”. As will be explained helow, “the reflectivity” is the
rapidly oscillating part of the velocity field, and is responsible for reflected waves, whereas
“the velocity” is the slowly varying component, mainly responsible for the kinematics.

Seismic campaigns are based on a large number of different experiments (corresponding
to different source positions, or shot points), so each shot point generates its own “view
of the earth”, and unless the velocity is already quite accurate, it is difficult to reconcile
these views, that is to fit the reflectivity to different shots. On the other hand, for any
given velocity, it is possible to fit the reflectivity for one shot, but different shots will give
different reflectivities.

Accordingly, DSO is based on two modifications to simple least squares:
e first, one separates the different scales in reflectivity and velocity;
o the model is then enlarged to allow the reflectivity to depend on the position of the

shot point. This this does not make sense (“there is only one earth”), a penalty term
is applied to impose that neighboring shots look alike.

The actual objective function is thus the sum of two terms:

e a least-squares misfit term, to still try and fit the data,

e a differential-semblance termn, to force the reflectivity to be independent on the
location of the source.

Analysis shows that if this function is minimized first over the reflectivity (which is
feasible, according to the above discussion), the resulting cost function, which only depends
on the velocity, is smooth and convex and thus can be minimized effectively by gradient-
based methods.

2.2 An actual example

As introduced, DSO is applicable to almost any physical model of propagation. Indeed,
the code is built in such a way as to be independent of any particular model (we return to
that point in section 2.3). Nevertheless, the results described in this paper pertain to the
simplest such model: 2D, constant density, linearized acoustics.

We assume that the earth can be described by just one parameter: its velocity
distribution (density is constant). The seismic experiment cousists in setting off a source
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at different points (z,,2z,) in the subsurface, and recording the excess pressure at several
receivers (z,,z,). The time dependence of the source, denoted by f(t), is assumed known.
We distinguish between the smooth and rough component of the velocity by linearizing the
wave equation around a reference, smooth velocity ¢(r,z), and we denote by r(z,z) the
relative perturbation. First order perturbation theory easily shows that p, the scattered
field is solution of the following coupled wave equations, where pg is the direct field:

2 — Apy = f(t)d(r — £4,2 = 24) forz>0
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with zero initial conditions:

po(x, 2,0) = %%(:n,z,ﬂ) =0

(2) ),
p(r,z,0) = %%(a:, 2,0)=0

and zero pressure on the surface = =

po(+,0,t) =0 on z=

3)

o O

p(x,0,t)=0 on z =

The measured quantity is p(«r, 2y, £y, t), and this defines the forward map Flc, ), since
this quantity depends functionally on ¢ and r.

We can now state the DSO optimization problem. The usual misfit function is (Pdata
being the observed data):

1 , L T .
Jusle,r] = §||F[c, r] = paaall* = 3 z /u |p(£r, £50t) = Daatal >t

For DSO, we first let 7 be a function of shot position 7 = r(:r, z; ), then penalize for
this dependence:

1 . oy OT .
Jpsle, ] = §{||F[<‘-, ] = faaall® + ﬂzllm—"‘},

This function is of course no more convex convex than Js. According to the discussion in
section 2.1, we minimize it with respect to r to obtain our cost function:

J(¢] = min Jps[e, ).

Notice that the definition of .J already requires the solution of a qnadratic minimization
problem in infinite dimension. Hence, in practice we will only be able to produce an
approximation to its solution: i

J(c] = Jpsle, #{c]]
where 7[c] is the result of applying a finite number of iterations of some quadratic
optimization algorithm to Jps.

Thus we have a two step algorith:
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e An outer iteration to minimize J over velocities;

e An inner iteration to minimize Jpg over reflectivities.

Details on how the two steps are implemented can be found in [18]. Let us just say here
that the inner iterations involve computing the normal operator associated with Jps, and
that the outer iteration will require the gradient of J. .

The evaluation of the normal operator uses the now classical adjoint-state technique
[11]. To compute D, Fle,r]*p, where ¢ is a “seismogram-like” quantity, we first compute
Po as in equation 1 above. Then we compute the adjoint field w by solving the following
problem:

2
) '12'%?12‘1 -Aw=Y,_ o(t)d(s—z,) forz>0
4 ¢ .
w(z,2,T)= %;—’(m,z,T) = 0.

Notice that this is solved backwards in timne. Then,
. 2
D, Flc,r]"p = —-;/’ll)A[I()dt

In practice, this is very similar to solving the wave equation, and just means solving
more of them (backwards in tiine).

It turns out that the computation of the gradient uses an extension of this method.
The upshot of these consideration is that the basic computational block of the method is
the repeated solution there are several shot points) of the wave equation.

2.3 Structure of the code

The DSO principle is independent of any particular model of the earth. This is also
true of our implementation. Procedures for linear and nou-linear optimization, Fourier
transform or linear algebra, are implemented in a model-independent fashion. Obviously,
some description of the particular model used should eventually appear. Since we solve
the inner optimization problem iteratively, we need procedure to compute, in addition
to F itself, its derivatives, and their adjoints. In principle, these can be obtained in a
systematic manner once F is known. In our current implementation they are still hand-
coded, which gives us a (hopefully) optimal implementation. We should, however, mention
efforts to automate this step: Lin [13] generates Fortran code for the adjoint state given
specifications for the forward wap. In a more general direction, ADIFOR [2] directly
differentiates a Fortran code.

The basic principle guiding the design of DSO can be restated as: Generic tasks should
be coded in a generic way. An immediate payoff of this approach is that the code is being
used with several different models: 2D acoustic is reported here, but we also work on a
plane wave, layered model [17], and a visco-elastic model is in progress (3]

The application-dependent part of the code is where all the “action” is, as far ad
performance is concerned. Fortunately, in most cases this part will be small and relatively
easy to tune, as is certainly the case with our present application. We now present present
the implementation for 2D acoustics in the next section section.
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3 Implementation of the finite difference code on a multi-vector com-
puter

In this section, we detail our implementation of the finite difference discretization of
equations( 1) and( 4), with a view of obtaining optimal single processor performance on
one processor of a Cray Y-MP, and good parallel speedup on several processors.

3.1 The finite difference code

We concentrate on equations (1), as computing adjoints just means solving more wave
equations. The first step is to restrict computations to a bounded domain, which we take
to be the rectangle R = {Tiin < T < Fmax, 0 < 2 < Zmax}- As shown in equation (3), the
fields are 0 on the surface of the earth z = 0.

It is commonplace to employ so-called absorbing boundary conditions on the other sides
of the rectangle to simulate wave propagation in an infinite domain (see eg. [7]). However
such conditions implicitly assume that no reflections occur outside R; if this assumption
is incorrect, some part of the data may not be explicable by the model. Instead we prefer
to bear the extra computational expense of putting the boundaries of R far enough away
from the source that no reflection can arrive in the receiver array from the boundary in the
recording interval {0 < t < T'}. That is, we assume that py and p are required to vanish on
all sides of R for all ¢;

In practice it is easy to check that R is sufficiently large, using an average value of the
slowness 1/c.

We solve the wave equations (1) numerically using a finite difference method of fourth
order in space and second order in time ([5], [12]). Since the boundary conditions specify
the vanishing of the fields py and p on the houndary of R, the method of images gives
numerical boundary conditions (i.e. one-sided difference stencils near the houndary) of the
same accuracy as the interior scheme.

3.2 The parallel implementation

Vectorization is the simplest form of parallelism. Conceptually, the same operation is
applied simultaneously to several data. This is similar to data-parallelisin, used on the
Connection Machine [9]. Compilers now are very successful at automatically recognizing
vectorizable code.

We only look at the simplest form of multiprocessing possible on Cray computers,
namely Autotasking. It enables loop level parallelism with a minimum of code modifica-
tions, and little overhead. Contrary to mnltitasking, wlhich requires calls to special library
functions, autotasking will need, at most, the insertion of directives. Thus the code stays

portable.

An explicit finite difference code is inherently parallel. Actually, an early implemen-
tation of DSO ran on the CM-2, by exploiting this data parallelism. On a vector-parallel
architecture, parallelism can be found on two level: vectorization, and multiprocessing.

The first thing usually taught in Cray parallelization classes is: “Never sacrifice
vectorization to parallelism”. Indeed, the gains coming from vectorization are much larger
than those coming from parallelismm. Good vectorization can give speedups of up to 20,
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parallelization is limited to the number of processors (4 to 8 in most shared memory vector
computers). Accordingly, our first step in optimizing the code is vectorizing, then exploit
any remaining parallelism.

As mentioned in the previous section, the part of our code that needs to be tuned is fairly
. small. As a first approximation, the most important module is the one that implements
one step in time for the homogeneous wave equation:

y 4 1 T
(5) pift = =i+ 2 4+ tszt2(.';'(Ath)i.j - g(AﬁhP )ij)

with

(6)

(Anp)i; = Pitld 21';,;' tpi-1g | Pigdl = 27);.;' + Pij-1
h h

This is most naturally implemented via nested loops. Than, we could expect to vectorize
the inner loop, and parallelize the outer loop. But by doing this, the inner loop will quite
short, only the size of one grid dimension, typically a few hundreds. Even though Cray
computers perform well on short vectors, this is not the best approach. The key to obtaining
good vector performance is to rewrite these two loops with one single loop over the whole
grid, correcting for the wrong houndary values in a separate step. This had already heen
observed by Clement [4], and indeed leads to a decrease in CCPU time by more than a factor
of 2.

This is not a transforination that can be expected from a compiler, as an additional
corrective step is needed to obtain correct boundary values, and anti-symmetrize the field.

With this transformation, the code perforins well on one processor. Because of the rule
quoted above, autotasking works by default only on outer-loops, the rationale heing that
inner loops will be vectorized. But we lLad to get rid of outer loops to be able to get good
vectorization. However, we can still use parallelism, because now the loop is very long: In
a typical example, the grid will be 512 x 128, and this is the length of the loop. we can
split this in 8 (if we Lave 8 processors), and still retain a sufficiently large vector length.

As we show in the next section, simall inefficiencies that are innocuous on one processor
are noticeable were running in parallel. For example, the adjoint map requires computing
the adjoint to the interpolated seismogramn. Doing this one time step at a time is inefficient,
because only two grid lines take part in the computation. It is hetter to do it for all time
steps at once, as a preprocessing step, than to simply fetch the right values at each time
step.

4 Numerical results

4.1 Description of the experiments

We have ran experiments using two different sets of data. The first case, “small grid”,
corresponds to the typical size of grid we use in inversion e\cpmmlents The space grid is
512 by 128. The experiment simulates 20 shot points, and we “record” during 2 s, using
500 time steps.

To discuss scalability issues, we also used a “large grid”: 1024 by 256 space nodes. To
actually use all of the grid, we had to let the recording last 4 s, (because the code internally
selects the smallest computational domain that produces no reflections), that is 1000 time
steps, and we extended the line to 40 shot points, as would be done on this larger domain.
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In both cases, the velocity was constaut, equal to 1500 m/s. The results reported below
are for the computation of an adjoint map, for a given seismogram. This was a good
compromise between a short execution time, and still exercising a significant part of the
program. We have run a full step of non-linear conjugate gradient iteration to check that
the huge majority of the time is spent in the finite difference code. Thus, even though our
results are not strictly speaking for the whole application, they still pertain to a complete
code, with a significant amount of I/O.

4.2 Uniprocessor performance

On a single processor, DSO runs at speeds from 250 Mflops for the small example, to 285
Mflops for the large example. This corresponds to times form 1 minute to 13 minutes.

These numbers were obtained using Cray’s performance tools. It is worth mentioning,
at this point, how valuable such tools are. They allow the programmer access to such
information as the percentage of time spent in a routine (profiling), the performance of any
give routine, and the global performance of the program.

For example, it is by using perfview that we could check that, on one processor, the
solution of the wave equation accounts for more than 95 % of the total computation time.

The numbers above were obtained with the Hardware Performance Monitor. We did
not have to insert any flops connting code. A combination of HPM and perfview gives, for
each routine, the number of floating points operations performed. broken down by type of
operations. Looking at this information helps understand why the “single-step laplacian”
performs more efficiently than the routine that simply accumulates the gradient at each
time step. The first one has a balanced number of additions and multiplications, whereas
the second one does more multiplications than additions, leaving one of the pipes empty
most of the time. Hence, the first routine achieves 280 Mflops, and the second one only 186
Mflops.

This helps understand the code, and of course this is the key to hetter performance.

4.3 Multiprocessor performance

The story is more complicated here, because of the way autotasking works. Designed to
be used in a production environment, autotasking will only use a processor if it free. This
makes it difficult to obtain speedup information on a loaded machine. The atexpert tool
shows dedicated speedup curves, i.e. what would be obtained on a dedicated machine.

Figure 1 summarizes our results, by showing two curves for each problem size: the one
labeled “Amdahl” is what Amdahl’s law predicts is the inherent speedup in the program.
‘The one labeled “Dedicated” is what we should obtain by running on a dedicated machine.

Amdahl’s law [1], [6] helps us understand the performance we can expect form the
code. It states that if only a fraction f of the operations in a program can be carried out
in parallel, the speedup on p processors is:

. P
iy gy

This is bounded by 1/1 — f, regardless of the number of processors.
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FiG. 1. Parallel speedups predicted by atexpert

Using this relationship, atexpert tells us how much parallelism is in a code. In our case,
the small grid is 94.6 % parallel, and the large grid is 96.4 % parallel. This illustrates the
main difficulty in obtaining good parallel performance, as opposed to vector performance:
in vector mode, one could concentrate on the main modules, neglect small inefficiencies,
and still obtain very good performance. This is not true in parallel. Amdahl’s law tells us
that any serial part in the code will be felt. Actnally, Amdahl’s law applies to vectorization
as well, with the number of processors replaced by the ratio of vector to scalar speeds. This
is much larger, so the speedup is still good, even for moderately vectorized codes.

We have also ran the code on a dedicated 4 processor Y-MP. The results of running the
adjoint map on the small grid example are shown on table 1. The results are not as good

Nb CPUS 1 2 3 4|
CPU time | 45.4 | 49.3 | 53.0 | H7.8
Elapsed time | 55.5 | 33.9 | 25.6 | 22.5
Mflops 209 | 342 | 453 .';l(i
Speedup 1| 1.64 ] 2.18 | 2.48
TABLE 1

Performance for small problem on a dedicated computer

as predicted by atexpert.
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We also ran the “large grid” example, on 1 and 4 processors, and show the results on
table 2. We are now closer to what atexpert predicts (3.3 compared to 3.6).

Nb CPUS 1 4
CPU time | 682 | 772
Elapsed time | 700 | 214
Mflops 262 | 857

Speedup 1]3.27

TaBLE 2
Performance for large problem on a dedicated computer

4.4 Discussion

The last example is interesting, as it illustrates the widely debated issue of scalability. The
concept of scaled speed-up has been introduced in (8] to illustrate the fact that “with larger
computers we want to solve larger problems”. Thus, Amdahl’s law doesn’t apply, because
when going to larger problem, the sequential hottleneck grows more slowly than the parallel
(useful) part of the code.

Our two grids example shows the validity of this argunent: the parallel fraction of the
code did increase when going from the “small” to the “large” problem; but it also shows an
often overlooked consequence of this fact. Cowmputation time increases faster than problem
size. As we explained in section 4.1, it practice, the number of time steps, and the number
of sources and receivers will increase with the grid size. This results in an increase in
problem size by a factor of 16 if we double the grid size.

Our small problem took roughly a minute to solve. The “large” one took almost 4
minutes of wall-clock time on 4 processors. Rewember that we want to solve the inverse
problem, that is a series of wave e(uation solutions. So, if computing a function value took
10 minutes for the small problemn, this translates to 40 minutes for the larger one, for just
one function evaluation. :

Yes, problem size increases with computing power, but so does compntation time.

5 Conclusion

We have presented what we believe is an efficient implementation of an inverse problem
solver on a parallel vector machine. We have shown actnal performance measurements,
which lead us to believe that tle code would perform at 4 to 5 Gflops on a C90. But
the limits of this approach were also shown. This clearly does not scale to a much larger
number of processor, as there will he too little work for processor.

For the next generation of massively parallel processors, we pursue a different approach.
The problem has an obvious level of coarse grain parallelisin since the solution of the wave
equations for each shot point are independent of one another. For inversion computations
based on two-dimensional computations, this seems to he well suited to both distributed
memory machines with relatively fast nodes such as the Intel Hypercube, and to networks
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of workstations. For calculations based on 3D simulations, we also intend to exploit
an intermediate level of parallelism through domain decomposition. We are currently
implementing shot level parallelisin by using PVM, a parallel message library that runs
on heterogeneous networks. We hope to present preliminary results at the conference.
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