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Abstract

In this paper we introduce a perspective on mul-
tidisciplinary design optimization (MDO) problem for-
mulation that provides a basis for choosing among ex-
isting formulations and suggests provocative, new ones.
MDO problems offer a richer spectrum of possibilities for
problem formulation than do single discipline design op-
timization problems, or multidisciplinary analysis prob-
lems. This is because the variables and the equations
that characterize the MDO problem can be “partitioned”
in some interesting ways between what we traditionally
think of as the “analysis code(s)” and the “optimization
code.” An MDO approach can be characterized by what
part of the overall computation is done in each code,
how that computation is done, and what information is
communicated between the codes.

The key issue in the three fundamental approaches
to MDO formulation that we discuss is the kind of feasi-
bility that is maintained at each optimization iteration. In
the most familiar “multidisciplinary feasible” approach,
the multidisciplinary analysis problem is solved at each
optimization iteration. At the other end of the spectrum
is the “all-at-once” approach where feasibility happens
only at optimization convergence. Between these ex-
tremes lie other, new, possibilities that amount to main-
taining feasibility of the individual analysis disciplines
at each optimization iteration, while allowing the opti-
mizer to drive the computation toward multidisciplinary
feasibility as convergence is approached.

There are further considerations completing the clas-
sification such as how the optimization is actually done,
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how sensitivity information is computed from each dis-
cipline, and how, if necessary, individual gradients are
combined to obtain overall problem gradients. This view
of MDO problem formulation highlights the trade-offs
between reuse of existing software, computing resources
required, and probability of success.

1. Introduction

In this paper we examine alternative ways to formu-
late multidisciplinary design optimization (MDO) prob-
lems. By MDO we mean coupling together two or more
analysis disciplines with numerical optimization. Due to
the extreme complexity of most MDO problems, creating
an MDO capability is ordinarily a difficult task requiring
substantial resources. It is therefore important to un-
derstand the alternatives one has for formulating MDO
problems, and the consequences of each choice.

1.1 Example problem

In thinking about MDO it is useful to have a specific
problem in mind: for us it is aeroelastic optimization. We
use this example to define some terms, and throughout
the text to illustrate the various problem formulations.
However, the formulations discussed in this paper apply
to general MDO problems.

In (static) aeroelasticity we consider a flexible wing
of an aircraft in steady flight. The air rushing over the
wing causes pressures to be imposed on the wing, which
causes the wing to deflect and change shape. This change
in wing shape in turn causes the aerodynamic pressures
to change. It is assumed that this process reaches an equi-
librium. The two analysis disciplines involved are aero-
dynamics and structures. The computational problems






for these disciplines are generally solved by individual
analysis codes, say a finite difference computational fluid
dynamics code for aerodynamics, and a finite element
code for structures. The aerodynamics code takes as in-
put the wing shape, and produces as output the pressures
(and velocities, etc.) on the wing surface. The struc-
tures code takes as input the forces on the wing and a
description of its structure, and produces as output the
deflections (and stresses, etc.) of the wing. We say that
we have individual discipline feasibility for aecrodynamics
when the CFD code has successfully solved for the pres-
sures, given the input shape. Thus, the term “feasibility”
denotes satisfaction of the equations the analysis code is
intended to solve. Similarly, we have individual disci-
pline feasibility for structures when the structures code
has successfully solved the structural analysis equations
to produce deflections, given some input forces.

Continuing with the aeroelastic example, we note
that the two analysis codes solve their problems on dilfer-
ent grids and interact only at a specific interface. Clearly,
provision must be made for converting values of pres-
sures from aerodynamics to forces for structures, and
converting deflections from structures into changes in
aerodynamic shape. We call these methods for translat-
ing between disciplines interdisciplinary mappings; they
represent the coupling between disciplines, and play a
very important role in MDO. A multidisciplinary analy-
sis is achieved when we have individual discipline fca-
sibility in aerodynamics and in structures, and the input
to each corresponds to the output of the other via the
interdisciplinary mappings. We call this situation multi-
disciplinary feasibility. It is possible to have individual
discipline feasibility in both aecrodynamics and structures,
and not have multidisciplinary feasibility; this occurs if
the equations in each code are satisfied, but the input to
one discipline does not correspond to the output of the
other. This key observation plays an important role in
the “individual discipline feasible” formulation to MDO,
presented later.

We next add optimization to the aeroelastic example.
If we had only a single analysis discipline, aerodynamics,
and we combined it with optimization, we could do aero-
dynamic optimization. The design variables would typi-
cally be some parameters, say spline coefficients, defin-
ing the wing’s shape. The objective function would be
to minimize drag, or to come as close as possible o
some specified pressure distribution. There may be de-
sign constraints to prohibit undesirable wing shapes or
bad aerodynamic flows. Similarly, with structures and
optimization we could do structural optimization to min-
imize the structural weight by changing the size of struc-
tural components, subject to stress constraints. In acroe-
lastic optimization, we will generally have both aero-
dynamic design variables (shapes) and structural design
variables (sizes, and perhaps shapes). The objective
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function would ideally be some measure of aeroelastic
performance, but there seems to be no generally accepted
single measure available in the literature. Some logical
choices for the aeroelastic optimization problem are to
minimize weight, subject to the constraint that drag be
acceptably small, or to minimize drag, subject to weight
being acceptably small. Ultimately, however, the aeroe-
lastic behavior of the aircraft needs to be tied to some
overall aircraft performance measure, like direct operat-
ing cost.

1.2 Key issues

The key issue in the alternative formulations that we
present is what kind of feasibility is maintained at each
optimization iteration. In the “multidisciplinary feasi-
ble” (MDF) approach, complete multidisciplinary analy-
sis problem feasibility is maintained. In the “individual
discipline feasible” (IDF) approach, individual discipline
feasibility is maintained. In the “all-at-once” (AAO) ap-
proach, all of the analysis variables are optimization vari-
ables and all of the analysis discipline equations are op-
timization constraints. Thus, feasibility in AAO happens
only at optimization convergence. (We could refer to
“all-at-once” as “no discipline feasible,” but we feel that
“all-at-once” better describes the formulation.) In all for-
mulations, the set of optimization variables includes the
design variables. Some of the formulations induce addi-
tional optimization variables as part of their definitions.

The formulations presented here could equally well
be explained from a purely mathematical point of view
as specific partitions of variables and equations in the
solution of the “all-at-once” optimization problem. We
prefer to explain these formulations from the “discipline”
point of view, because in MDO it is the disciplines
that provide a natural partition of the equations and
variables. However, given this link between disciplines
and partitions, it is clear that all of the formulations
presented here apply equally well to other notions of
“discipline.” For example, two disciplines could both
come from aerodynamics, but one could be inviscid
flow governed by the Euler equations, and the other
viscous flow governed by the boundary layer equations.
Alternatively, the “disciplines” could be smaller pieces
of a single discipline obtained, for example, by domain
decomposition [20]. Clearly, this notion can be iterated
to get partitions within partitions.

We now outline the remainder of the paper. In
Section 2, we present the three basic formulations for
MDO problems. In Section 3, we summarize some
important, but lower level, considerations that go into
choosing a formulation. In Section 4, we present our
conclusions.



2. Basic Approaches to
MDO Problem Formulation.

We begin this section with a summary of notation
and conventions. The reader may want to skip this
material, and refer back to it as required. We then
look at interdisciplinary mappings, and introduce the
three main MDO formulation approaches: all-at-once
(AAOQ), multidisciplinary feasible (MDF), and individual
discipline feasible (IDF).

2.1 Notation, definitions, and conventions

Conventions

The notational convention used here is that X de-
notes variables controlled by the optimizer, C represents
optimization constraints, and U denotes the analysis dis-
cipline variables computed by solving the set of analysis
discipline equations W. We think-of each of these as a
column vector. A generic single discipline will be de-
noted as discipline i. For example, U; are the analysis
variables for discipline i. We use the notation aC/8x
to represent the Jacobian matrix of C with respect to X.
Thus, [0C/8X],, = 8C,/0X, and row r is the trans-
pose of the gradient vector of constraint r. Subscripts are
used to provide more specific information about various
quantities. We have ignored fixed parameters that are
inputs to the analysis disciplines.

Analysis parameters

Ui £ Quantities internally solved for when computing
an analysis for discipline i. These could include
pressures, velocities, stresses, etc.

Y; & Inputs to analysis discipline i. A generic term that
could include Xp, X;; (see below). In particular,
Y;; are inputs to analysis discipline i from analysis
discipline j . i

na, £ Total number of unknown analysis quantities,
such as pressure, stresses, etc., associated with dis-
cipline i. For example, an analysis code A; solves
n 4, equations for n 4, analysis unknowns.

Analysis equations and mappings

W & Equations solved in discipline i to compute the
unknown analysis variables U;. These equations can
take the form W;(Xp, Xi;; Us) 0. Here and
throughout the report, the variables to the left of the
semicolon represent inputs to the solution, while those
to the right are the outputs (the variables solved for).
There are usually ny, = n,4, of these equations.
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Gi; £ Mapping to the inputs required for discipline
i from the analysis variables for discipline j . For
example, G;; could be the mapping of the pressures
on the aerodynamic grid to the.loads on the structures
grid. (If all the pressures from aerodynamics were
directly input to structures then G;; would be the
identity mapping.) The functional description of this
mapping is G;;(U;) and there are n;; of them. Most
likely G;; is really the composition of two functions
E;j(F;(U;)) that are described next.

& Mapping from the analysis variables for discipline j
to some outputs of discipline j. For example, F; could
map the pressures computed by aerodynamic analysis
to the coefficients of a spline surface approximation
to the pressures. (The. F is mnemonic for “fit.”)
(If all the pressures from aerodynamics were directly
input to structures then F; would be the identity
mapping.) This approximating surface would most
likely have to be evaluated before it could be input to
a structural analysis code. The functional description
of this mapping is F;(U;) and there are n; of them.

E;; £ Mapping to the inputs required for discipline i

from the fit of the analysis variables for discipline j .
For example, E;; could be the evaluator of a spline
surface approximation to the pressures computed by
aerodynamic analysis. (The E is mnemonic for “eval-
uate.”) The evaluation of the approximating surface
could then be input to a structural analysis code. (If
all the pressures from aerodynamics were directly in-
put to structures then E;; would be the identity map-
ping.) The functional description of this mapping is
E.J(F}(UJ)) and there are nij; of them.

o

Optimization variables

Xp & Original problem design variables. These could
include wing shape parameters, beam thicknesses, etc.
There are np original problem design variables.

Xij £ The optimizer’s estimate of parameters, required
as inputs by discipline i, whose “true” values depends
on the analysis solution parameters for discipline j.
They look just like design variables to discipline i.
(The importance of this definition is discussed in the
IDF method section.) There are n;; of these optimiza-
tion variables arising from coupling estimates.

Optimization objective and constraints

a

Design objective function to be minimized. This
could be deviation from desired pressure distribution,
drag, weight, etc. In general, f depends on the design
variables .X'p and the outputs U; of all the analysis
disciplines.

Cp 2 Original problem design constraints. These could
include required lift, maximum allowable stresses,
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maximum wing length, etc. In general, the original
problem constraints depend on the design variables
Xp and the outputs U; of all the analysis disciplines.
There are mp original problem constraints.

Cij £ Coupling constraints among the disciplines. These
constraints ensure that the optimizer’s estimates Xj;,
for the parameters mapped to discipline i from disci-
pline j will eventually be equal to the values computed
for these parameters, using the actual analysis results
for discipline j. These constraints can take the form
C;'j(X.'j,Uj) = X — G,‘j(Uj) = 0. There are n;;
of these constraints. They only apply to the IDF ap-
proach.

2.2 Multidisciplinary analysis and
interdisciplinary mappings

In single discipline analysis, given the inputs Y7, the
following system of equations is solved for the analysis
unknowns U; :

Wi(Y1;U1) =0 1
Again, the semicolon notation indicates that those vari-
ables before the semicolon are inputs, those after are out-
puts (variables solved for). If W, is aerodynamics, then
7, can be shape parameters and U; can be pressures.

For multidisciplinary analysis the analysis equations

are
Wi(Xp.Y12;U1) =0
Wa(Xp,Ya1;02) =0
where 2)

Y12 = G12(U>)
Ya; = Ga1(Uh).

IV, is still aerodynamics, and ¥, could represent struc-
tures with U, being displacements. The input Y; to
each discipline has been decomposed into design vari-
ables \'p and the inputs Y;; to discipline i from disci-
plines j. The design variables are fixed for a multidis-
ciplinary analysis, but vary for a multidisciplinary opti-
mization. In the aeroelastic example, the design variables
may be some parameters describing allowable aerody-
namic shape changes, and some structural size or shape
parameters. Note that the outputs from one discipline
are related to the inputs of another discipline through an
interdisciplinary mapping G.

In single discipline optimization, given Y., we
minimize f(Xp,U;) subject to ¥y (Xp,¥12;U1) = 0.
We are not concerned with the form of Y7, because it
does not really enter into the solution method. Y72 is
treated as a fixed input vector.

On the other hand, for MDO the interdisciplinary
mappings are important. First, the mappings really do
exist. It is unusual for the outputs of one analysis code to
be exactly the required inputs for another analysis code.

Second, the mappings can be used to provide flexibil-
ity to change the dimension of the optimization problem
by decreasing the amount of information communicated
between disciplines. This could be called “reducing the
interdisciplinary bandwidth.” For example, the pressures
computed by aerodynamics may be fit by a spline, and
only the spline coefficients communicated. Note that
there is an approximation process inherent in such com-
pression. Finally, these mappings can be used to provide
a common interface between codes. Suppose G=EF,
where F denotes fit and E denotes evaluate. (More com-
pletely, G;;(U;) = Ei;(F;(Uj))). For each structures
code S; we can build one fitter F4 s, that fits the output
from the structures code to create the inputs for aerody-
namic analysis. Then each aerodynamic code A; needs
one evaluator E 4 ; s that evaluates structures inputs. The
main point is that the aerodynamics code needs only one
evaluator for all structures codes, not a different evalua-
tor for every structures code, and similarly for the fitters.

2.3 General optimization formulation

When we combine optimization with multidisci-
plinary analysis, we need to solve problems of the generic
constrained optimization form:

minimize f(X)
with respect to X
subject to Cp(X) >0

W(X) =0,

(©))

where the constraint equations W(X) = 0 ensure mul-
tidisciplinary feasibility.

As discussed later, we anticipate that most MDO
efforts will involve “calculus-based” optimization tech-
niques to solve this problem. Such techniques require

. gradients of the objective function f and the constraints
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Cp and 1V with respect to .X. In the presentation of the
AAO, MDF, and IDF formulations, we display the lin-
earized constraint system. The entries of the linear sys-
tem matrix (Jacobian matrix) represent those sensitivities
that necd to be calculated in order to get the gradients of
the constraints for optimization. The same computations
are required for the gradient of the objective function,
with Cp replaced by f. The computation of these sen-
sitivities is a critical issue for MDO, and is discussed
in Section 3. In particular, it is important to note that
some of the sensitivities are partial derivatives of equa-
tion residuals with respect to optimization variables, and
others are partials of analysis solutions with respect to
optimization variables. As described in Section 3, these
different types of sensitivities are connected to each other
through solutions of linear systems.



2.4 All-at-once (AAQO) formulation

The “all-at-once” (AAQ) formulation of design op-
timization problems has been mentioned in the litera-
ture both for aerodynamic optimization (e.g., [6], [7],
[16], [21]) and for structural optimization (e.g., [10]).
In [21] this approach is called the *“‘one-shot” method,
and in (10] it’s called “simultaneous analysis and de-
sign.” Here, the optimizer “controls” both the analysis
and design variables, and -the equations from the anal-
ysis disciplines appear as explicit constraints in the op-
timization. Mathematically speaking, this is really the
problem we want to solve; in fact, it is useful to view
all other problem formulations as iterative methods for
solving the AAO problem. In AAO, we do not seek
to obtain analysis problem feasibility in any sense (indi-
vidual discipline or multidisciplinary) until optimization
convergence is reached. In a way, the optimizer does not
“waste” time trying to achieve feasibility when far from
an optimum. It was found in [7] that, for aerodynamic
optimization, if some computational difficulties can be
overcome, AAO can be remarkably efficient. In AAO
the analysis *“code” performs a particularly simple func-
tion; it evaluates the residuals of the analysis equations,
rather than solving some set of equations. Ultimately, of
course, the optimization method for AAO must solve the
analysis discipline equations to attain feasibility. Gen-
erally, this means that the solution method must contain
all of the special techniques (especially for the difficult
discipline aerodynamics) that a single discipline analysis
solver contains. It is unlikely that “equality constraint
satisfaction schemes” (e.g., Newton’s method) present in
existing, general purpose optimization codes would be
equal to this task. Figure 1 shows the flow of infor-
mation for the AAO formulation. Note that in this and
subsequent figures, the codes that implement the inter-
disciplinary mappings are not explicitly shown as boxes
in the information flow.

Using the notation defined in the previous sections,
the AAO problem can be formulated as

f(Xp, X1, Xa)

with respect to Xp, Xi, X>
Cp(Xp, X1, X2) >0
Wi(Xp, X1,G12(X2)) =0
Wg(]\’p, 4\’2, Ggl(z\’l)) = 0

minimize

C))

subject to

The optimization variables are Xp, .X;, X2. In partic-
ular, X,, .\, are optimization estimates of the analysis
variables Uy, U;. The number of optimization variables
isnp+3_ nj4,. For our example aeroelastic problem the

opt.imizat'ion variables are the shape and strength parame-
ters we want to vary, the pressures and other aerodynamic
variables on the aerodynamic grid, and the displacements
and other structural variables on the structures grid. Note
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Optimizer ‘ .
e
f (Xps X1, X2)
CD (Xp, x1 ’ x2)
Xp, X1, X2
Function
> and
Constraint
Evaluator
—
wi1 w2
Residual Residual
Evaluator Evaluator
W2 (Xp, X2, G21 ( X4))

Wy (Xp, X4, G12 (X2))

Figure 1: All-at-once method

that there is no concept of analysis codes, inputs, or out-
puts here; we think of a system of equations for both
the analysis and the optimization that is somehow to be
solved. As mentioned previously, the W; equations are
not necessarily satisfied until the optimum is found.

The linearized constraint system is

aCp 9Cp 9Cp
C(C) 3XD 90X, X2 A X
"()c) Ll awm aw A‘\’D
Wl( ) dXp 0X:1 X, A.‘{l
¢ oW, W, AW <2
W2 Xs 9X- oxr -

, T
where (Cg),Wl"’),Wé‘) is the value of the con-
straints at the current point. The chain rule gives

oW, _ oW, 8Gi2
80X~ 0G,2 80X,

and a similar relation for 8W,/8X,. The terms
9G12/8X2 and 8G2,/8X, are derivatives of the com-
posite processes of data-fitting and evaluation of the re-
sulting model. It is assumed that the fitting and evalu-
ation processes are differentiable, and that these deriva-
tives are either analytic or inexpensive to compute.

The difficulty in computing the derivatives of the
objective function f and the constraints Cp with respect
to the design and analysis variables depends on the na-
ture of the functions selected. For the AAO formulation,

©)
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Cp (Xp)
Optimizer B AEmmEm—
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Xp > and
Constraint
Evaluator
Y
Multidisciplinary
Analysis
Solver U1, U,
W1=0
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Figure 2: Multidisciplinary feasible method

it is tacitly assumed that these derivatives are easy to
compute because they are derivatives of residuals or ex-
plicit functions; in other words, all variables are treated
as independent quantities. The blocks W, /86X, and
OW,/8.X4 in (5) are the Jacobians that would appear in
Newton solvers for disciplines one and two, respectively.
The derivatives W, /aXD , 6W1 /aGm, BWQ/BXD y
and 9. /8G4; represent the sensitivities of the analysis
discipline equation residuals to their inputs. The compu-
tation of all of these sensitivities is discussed in Section
3.

2.5 Multidisciplinary feasible
(MDF) formulation

As mentioned above, AAO has the disadvantage that
the optimization code must assume the difficult task of
simultaneously satisfying all the analysis discipline equa-
tions. The MDF formulation has the advantage that it
uses the specialized software that has been developed
for solving the individual discipline equations. MDF is
at the opposite end of the spectrum of problem formula-
tions from AAO. In the MDF formulation the optimizer
controls only the design variables Xp, and full multi-
disciplinary analysis problem feasibility is maintained at
every optimization iteration. In some sense, MDF is a
“black-box™ approach, but the black-box solves all of the
analysis disciplines. Figure 2 shows the flow of infor-
mation for the multidisciplinary feasible formulation.

The optimization problem is to

f(Xp,Ui(Xp),U2XD))
with respect to Xp
subject to  Cp(Xp, U1(Xp), U2(Xp)) 2 0.

minimize

)
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To evaluate f and Cp for a given Xp, the MDF method
requires solving simultaneously for Uy and U, from the
system of equations

W1(Xp,G12(U2); Uy) =0
W2(Xp,G21(U1);U2) = 0.

The optimizer only controls the variables Xp. The
number of optimization variables is np, which is much
less than in the AAO method. The optimizer no longer
explicitly solves the equations for the individual dis-
ciplines. The design variables Xp may enter directly
into the objective function or may indirectly affect it by
changing the values of the U’s.

For MDF optimization, the linearized constraint sys-
tem is :

@®

5Cp . 8Cp 8Uy | 9Cp 3V
[Cg)]*‘[axp + 50, 3x5 T 902 9X0 ] [aXp].
9

where Cg) is the value of the constraints at the current
point. The coefficient matrix represents the gradient of
Cp with respect to the design variables Xp; the gradient
of the objective function has the same form, with Cp
replaced by f.

Computing the partial derivatives Cp/0Xp, and
dCp/dU; is generally easy; computing the solution sen-
sitivities 9U; /0Xp is generally hard. Usually, these so-
lution sensitivities need to be evaluated at a multidisci-
plinary feasible point during the course of optimization
with the MDF formulation. Sobieski {20] has introduced
two ways to combine individual discipline derivatives to
obtain the required multidisciplinary sensitivities; these
methods are reviewed in Section 3. Both methods ex-
ploit the analysis-discipline-based block structure of the
multidisciplinary Jacobian. We observe that the MDF ap-
proach in combination with Sobieski’s method for com-
puting sensitivities can be viewed as a version of the
Generalized Reduced Gradient method for optimization
[14].

2.6 Individual Discipline Feasible
(IDF) formulation

The MDF method has the disadvantage that a full
multidisciplinary analysis is required each time the opti-
mization code requires an objective or constraint function
evaluation. By adopting the individual discipline feasible
(IDF) formulation, several methods can be constructed
that climinate the need for multidisciplinary feasibility
while taking full advantage of existing analysis codes
for individual disciplines.

IDF occupies an “in-between” position on a spec-
trum where the AAO and MDF formulations represent
extremes: for AAO, no feasibility is enforced at each
optimization iteration, whereas for MDF, complete mul-
tidisciplinary feasibility is required. In between these




f(Xp, Uy, U2)
Cp (Xps Uy, Ug)
C21(Xp, X21 ,U4)
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X Evaluator
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Analysis
Solver
U,
4
w1 U,
Analysis
Solver

Figure 3: Individual discipline feasible method

extremes lie other possibilities that amount to specific
decompositions of the work between analysis code(s)
and the optimizer. The IDF approach maintains individ-
ual discipline feasibility, while allowing the optimizer to
drive the individual disciplines toward multidisciplinary
feasibility and optimality by controlling the interdisci-
plinary mappings. Since the optimizer is estimating the
interdisciplinary coupling parameters, the analysis dis-
ciplines can be solved independently. The rest of this
section describes one IDF method.

In an IDF aeroelastic optimization, at each optimiza-
tion iteration we have a “correct” aerodynamic analysis
and a “correct” structural analysis. However it is only at
optimization convergence that the pressures predicted by
the aerodynamic analysis will correspond to the loads in-
put to the structures and that the displacements predicted
by the structural analysis will correspond to the geometry
input to the aerodynamics. Note that, in this approach,
analysis variables have been “promoted” to become op-
timization variables; in fact, they are indistinguishable
from design variables from the point of view of an in-
dividual analysis discipline solver. In IDF, the specific
analysis variables that have been promoted are those that
represent communication, or coupling, between analy-
sis disciplines via interdisciplinary mappings. Figure 3
shows the flow of information for the IDF formulation.
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The problem formulation for the IDF approach is

minimize f(Xp, U1(Xp, X12), Us(Xp, X21))

with respect to Xp, X2, Xa;
subject to

Cp(Xp, Ui(Xp, X12), U2(Xp, X21)) >0

Ci2 = X12 — G12(U2(Xp, X21)) =0

C21 = X21 = Gu(U1(Xp, X12)) =0.

: (10)

In the above equations the composite functions G,, and
621 can be expanded as G12(U2) = Elg(Fg(Ug)) and
G21(U1) = Ey(F1(Uy)).

The optimization variables are now Xp, X;2, X»;.
In the aeroelastic example, X2, X7; are the inputs to
aerodynamics (from structures) and to structures (from
aerodynamics) on their respective grids. The optimizer
is explicitly controlling some of the variables communi-
cated between the individual disciplines. The constraints
Ci2 and Cy; have been added to assure that, at optimiza-
tion convergence, the input to discipline 1 corresponds
to the output of discipline 2, and vice versa. In order to
evaluate the constraints and objective function in 10, we
first solve for U,, U individually from the equations

Wi(Xp, X12;U1) =0

Wa(Xp, X21;U2) = 0. n

Note that this formulation allows us to use existing
individual discipline solvers for W; because Xp and X;;
are the normal inputs and U; is the normal output of
such codes. The number of optimization variables is
np + Y. nij, which would be the same number as the

t, )
AAO méthod if every variable from a given discipline
were communicated to every other discipline. Of course,
ordinarily many fewer variables are communicated.
We can take advantage of the concept of interdis-
ciplinary mappings to define a potentially much smaller
problem

minimize
f(Xp,Uy\(Xp, E12(X12)), U2(XD, E21(X21)))
with respect to Xp,X}a, Xa;
subject to
Cp(Xp. Ui(Xp, E12(X13)), Ua(Xp, Ea1(X21))) >0
Cr2 = X2 = Fa(Us(Xp, E2(X21))) =0

Ca = Xoy — Fi(Ui(Xp, E12(X12))) = 0.
(12)

Formulation (12) differs from (10) in the following
way: the optimization variables are still Xp, X2, Xo
but there are different interpretations of .\'y2, .X>;. The
optimizer is not controlling all of the analysis variables



communicated between disciplines, but is instead con-
trolling a compressed approximation, such as the coeffi-
cients of a spline fit of the normal outputs. The number
of optimization variables should be considerably smaller
than for (10) that worked directy with the outputs from
the codes. In order to evaluate the constraints and objec-
tive function one must solve Wy (Xp, E12(X12)iUy) =
0 for U; and solve Wa(Xp, E21(X21);U2) = 0 for U,.
For this version of IDF, existing codes can still be used
to solve the analysis problems. Of course, the biggest
impact of reducing the number of optimization variables
is the reduction in the number of sensitivities that need
to be calculated.

The linearized constraint system for the IDF formu-
lation (10) is

(©) .
CD AXp
cl| +4|AXp (13)
p AX
Cay. ”
where
dcn 8Cp 8V, 8Cp 8Ux
dXp U, 0X12 U, X2
G2 OUA 2 Ma
A= |-Fp&s I -5 o |
_9Ga 8Us  _8Ga 98U
oU, 8Xp U, 0X12
(14)
dCp _ 8Cp , 8Cp Uy  OCp dUs
iN, = 9xp T 90, 6Xp T 9Us Xp as)
) T

and (CB’)‘ ct?, Cf_,‘izh is the value of the constraints
at the current point. The system for formulation (12) is
the same as above except that G2 and G2, are replaced
by F, and F), respectively.

The expensive derivatives for the IDF method are
those of the form dU;/0Xp, 0U;/8X;;, which are both
sensitivities of the individual discipline analysis solutions
with respect to analysis inputs. Note that the derivatives
required for the IDF formulation are the same as those
required by Sobieski [20] (in his GSE2 approach) for
computing MDF problem derivatives. However, in con-
trast to the MDF method, here they only need to be
evaluated at an individual discipline feasible point.

2.7 Alternative IDF formulations

In the IDF formulation presented above the inter-
disciplinary mapping (coupling) variables input into each
discipline from the other disciplines were made optimiza-
tion variables and the associated constraints, such as Ci2
and C,, in (10), were imposed. It is possible to create
IDF formulations where only some of the coupling vari-
ables are optimization variables and the remainder are the
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actual computed analysis values. For example, the com-
putations in the above IDF method could be sequenced
such that the analysis for discipline one is completed
prior to starting the analysis for discipline two. Since
the inputs for discipline two from discipline one would
then be available, there would be no need for the opti-
mization variables X; and the constraints Cz;. The use-
fulness of such a “sequenced IDF” formulation depends
on factors such as the difficulty in satisfying the cou-
pling constraints, the cost of computing derivatives for
the coupling comstraints, the relative behavior of the op-
timization objective and constraint functions for the two
formulations, and the lost opportunity for parallelism by
imposing a specified sequence on the analyses.

Many different IDF formulations can be developed
by using the option to sequence the individual codes.
These methods are described in more detail in [3).

3. Additional Considerations
in Choosing a Formulation

In Section 2, we did not discuss many important
considerations that go into choosing a specific MDO for-
mulation. Among these are choice of an optimization
(or, more generally, search) technique, how to compute
the required sensitivities if calculus-based optimization
is used, and how simplified analyses may be substituted
for more complex analyses to reduce computational ex-
pense. These issues are discussed in turn in this Section.
Also there are many opportunities to exploit parallel com-
puting in solving MDO problems; these depend on the
specific formulation chosen, and are discussed in [3].

3.1 Optimization procedure

Thus far we have discussed basic approaches to
MDO formulation without specifying any particular op-
timization algorithm to solve the problems. All of the
problem formulations are constrained optimization prob-
lems and general purpose methods are available; the
question is, are they applicable to solving MDO prob-
lems using these formulations of Section 2? Generally,
we will choose between different optimization techniques
based on problem size, smoothness, derivative availabil-
ity, and sparsity.

As discussed in [5] there is no one best method for
all MDO problems. Frank et al. (5] investigated the
applicability of calculus-based methods (usual nonlinear
programming techniques), response surfaces, expert sys-
tems, genetic algorithms, simulated annealing, and neu-
ral networks to MDO problems. They concluded that,
for problems where calculus-based methods can be ap-
plied, these methods are much more effective than the
other techniques. Thus, they recommended that, when-
ever possible, MDO problems be posed as smooth dif-



ferentiable problems so that calculus-based methods can
be applied. However, they recognized that this cannot
always be done. In cases where integer or discrete vari-
ables or nonsmooth functions are unavoidable, one of
the search methods they discuss is appropriate. Global
optimization is another case requiring use of search meth-
ods. However, even in this case, use of a calculus-based
method to solve local optimization subproblems was rec-
ommended. In many situations, a combination of meth-
ods will be required.

Given a decision to use calculus-based optimization,
the crucial issue becomes the efficiént computation of
gradients or sensitivities. This is discussed next.

3.2 Obtaining sensitivity information

There are two (related) cases that arise in sensitivity
calculations: we either need the partial derivatives of the
equation residuals with respect to the optimization vari-
ables, or we need the partial derivatives of the analysis
solutions with respect to the optimization variables. As
can be seen from the Jacobians in (5), (9), (14), the resid-
ual question pertains directly to the AAO method, while
the derivatives of the analysis solution are required for
the MDF and IDF methods. The derivatives of the resid-
uals are also needed for MDF and IDF methods if the
solution derivatives are computed via the implicit func-
tion theorem by a method described later in this Section.

Derivatives of equation residuals.

We consider the simpler case of the derivatives of
equation residuals first; these are the only ones required
for AAO. We then build on the residual derivatives to
discuss the derivatives of the analysis solution.

Consider obtaining the Jacobian (matrix of partial
derivatives) of the residuals ¥, with respect to the design
variables .Xp for the single discipline defined by

Wi(Xp;Uy)=0. (16)
There are three methods that we know of for obtain-
ing the required derivatives: analytic derivation, finite
difference approximation, and automatic differentiation.
We briefly consider each of these possibilities in tumn.

Given the equations W; we could certainly obtain
the required partial derivatives by differentiating the ex-
pressions by hand or by symbolic manipulation, and then
coding the resulting formulas. With symbolic manipula-
tion, the code could even be generated automatically.
This is a reasonable way to go when developing new
code, but might be tedious and error prone when retro-
fitting existing code to compute derivatives. :

The finite difference method is by far the most
commonly used approach. Suppose that we are using one
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sided differences. Then, we evaluate W, at the nominal
value of Xp and at a perturbed value of Xp, and then
compute a difference approximation to 9W, /X p. For
more accuracy but double the cost, we could use centered
differences. In either case, we may perturb only one
component of Xp at a time, or if certain components
of Xp only affect certain components of W,, we define
index sets and use sparse differencing [4], [12] to reduce
the number of residual evaluations required. In addition
to the large cost, choosing the perturbation step size is a
significant problem in the finite difference approach.

The third method for obtaining the partial deriva-
tives, automatic differentiation, is relatively new. Auto-
matic differentiation (see (8] for a survey of this subject)
is basically a technique whereby computer code for cal-
culating function values can be automatically augmented
with code for evaluating any specified derivatives of the
functions. To our knowledge, the most promising tool
for making automatic differentiation a practical reality
for use in MDO is ADIFOR [1].

Derivatives of analysis solutions.

We now turn to the more difficult case of obtaining
partial derivatives of the analysis solution with respect
to optimization variables. Consider the single analysis
discipline

Wi (Xp;Ui(Xp)) =0 an

where we want to compute 9U,/8Xp. For the IDF
formulation, these individual discipline sensitivities are
all we need (in addition to some easily derived partials,
that could be obtained by any of the residual derivative
methods). The method of analytic derivation no longer
applies, since we don’t have explicit functional forms for
Ui(Xp). The finite difference method still applies, and
is the most popular method in current use. Unfortunately,
with this method we need to re-solve (17) for each
perturbation of .X'p to get a perturbed value of U;, which
is generally a very expensive proposition. The method
of automatic differentiation also still applies, at least in
principle. Here the idea is, given a code that takes
as input Xp and produces as output U/;, we “simply”
automatically differentiate the entire code to produce
code for evaluating 9U,/8Xp. The authors of [15]
refer to this being done on some moderately complex
two dimensional aerodynamics codes, but whether it
will prove practically feasible in general remains to be
determined.

A very efficient way to compute 38U, /8 X p for (17)
is obtained by invoking the implicit function theorem. In
previous papers, we have called the gradients so obtained
“implicit gradients” or “cheap gradients,” the latter term
indicating that they are usually far less expensive to com-
pute than finite difference approximations. The mathe-
matical details of getting the implicit gradient formula



are given in [7], but we can obtain the same result by
formally differentiating (17), at a solution of (17), with
respect to Xp to obtain

8w, 8U, _ W,
U, 8Xp =~ 8Xp

Equation (18) is a linear system to be solved for the sen-
sitivities 8U; /8Xp. The coefficient matrix W, /U,
may already be available in the analysis code that solves
W, = 0, or it could be obtained by one of the three meth-
ods mentioned above for computation of derivatives of
residuals. Similarly, the right hand side W, /0Xp can
be obtained by one of the three techniques. However,
as discussed in [18] for the discipline of aerodynamics,
the computation of these Jacobians can be complicated
by the need to create new computational grids when de-
sign variables are changed that affect the shape of the
computational domain.

As an aside, we note that there exist methods
of a significantly different flavor from those discussed
above for computing single discipline sensitivities. These
methods appeal to the continuous (differential equations)
model from which the discrete analysis solvers are de-
rived, and apply variational calculus to the continuous
problem prior to discretization. For aerodynamics, such
methods have been pursued in [13], [2]. For structures,
they are described in Chapter 8 of [10]. There is a strong
relationship between these variational methods and the
implicit gradient method discussed above; this relation-
ship is explored in [19] for the case of aerodynamics.

At this point, we have everything we need for the
IDF method.

We next examine how the methods described above
may be applied to a multidisciplinary analysis to obtain
sensitivities for MDF. In the same sense that they apply
to individual disciplines, the finite difference and auto-
matic differentiation methods apply to multidisciplinary
analysis as well. The interesting case is the implicit gra-
dient method. Consider the two disciplines

(18)

Wi (Xp, U2(Xp); U1(Xp)) =0

Wa(Xp. Us(Xp): Ua(Xp)) =0. &9

Here, for simplicity, we have taken the interdisciplinary
mappings G2 and G2; to be equal to the identity. In-
voking the implicit function theorem, we formally dif-
ferentiate (19) to obtain

aw, aw, ;194 oW,

aU, 9U, 3Xp ~3Xp

= . (20)
AW, W2 U _ 3w,
30U, U, 3xp 9AD

This is Sobieski’s [20] method GSE1 for obtaining the
“global sensitivities” OU, /8Xp and 0U2/dXp.

In Sobieski’s GSE2 equations the individual disci-
pline solutions are explicit functions of the inputs. The
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following describes the computation of the “global sen-
sitivities” 8U, /8 X p and 8U,/8Xp for the GSE2 case.
Suppose that for any Xp and any U, a feasible solution
for discipline one is given by

U1E.7"1(XD,02), (21

and similarly

Uz = fz(XD, ﬁl) (22)

for any U,. Using (21) and (22), a multidisciplinary
feasible solution has the property that the relations

/A (23)

U
and -
Uz =U2

are simultaneously satisfied.

The above notion of multidisciplinary feasibility can
be captured by the constraint equations

Wy =U, - F1(Xp,U2)=0
I’V‘_) = U2 —fQ(XD,Ul) = 0

24

(25)

We can differentiate (25) to obtain

PTG 178 R 5%
au, aXp aXp

= (26)
_8Fa I U 8F2
au, 9Xp 8Xp

which is Sobieski’s GSE2 equation. As for (20), the so-
lution of this linear system gives the solution sensitivities
at multidisciplinary feasibility. The elements of the co-
efficient matrix are the partial derivatives of individual
analysis solutions with respect to their inputs from the
other disciplines, while the right hand side components
are partials of individual analysis solutions with respect
to the design variables. As pointed out before, the deriva-
tives required for the coefficient matrix and right hand
side in GSE2 are the same derivatives (but in a different
notation) as those required for the IDF method. A very
important difference is that the derivatives in GSE2 must
be evaluated at a multidisciplinary feasible point.

Calculation of implicit gradients

The implicit sensitivity calculations just discussed
can be used in two different ways to obtain gradients
of the objective function and constraints in optimization
using the MDF and IDF approaches.

Consider first single discipline optimization. The
gradient of the objective function f(Xp,U1(Xp)) with
respect to the design variables Xp is given by

_ (20N, (%Y if_)T
we= (%) (%) (@) @



(The gradients of constraints are obtained by replacing f
with C. The transposes appear in (27) because by con-
vention the gradient is a column vector and the partial
derivatives are row vectors or Jacobian matrices.) Here,
the first term on the right indicates the explicit depen-
dence of f on .Xp, and the second term indicates the
implicit dependence on Xp via U;. In the case of im-
plicit gradients, the term 9U, /X p is calculated from

(18), giving
)—1< ) (_‘.f_)
6U1

. af \T
Vol = <5XD) _[(
(28)
The evaluation of the term in brackets requires one linear
solve with the Jacobian W, /9U; for each of the np
design variables. However, if gradients of constraints
are required, the term in brackets in (28) can be reused.

An alternative formula for the gradient can be obtained
by rearranging the linear algebra in (28) to obtain

oW,
oUuy

owh
0Xp

= () - (3%) () GE) )

(29)
Evaluation of (29) requires one solve with the transpose
of the Jacobian §W, /dU,, independent of the number of
design variables. Whether or not it is convenient to carry
out such transpose solves depends on the analysis code
[18]. Unfortunately, with formulation (29) the transpose
solve must be carried out again for each constraint. Thus,
in general, if the number of design variables exceeds
the number of nonlinear constraints, (29) is preferable,
otherwise (28) is preferable [11].

The above remarks apply directly to the individual
discipline feasible (IDF) approach to MDO, provided
that we take into account that we need the gradients
with respect to both the np design variables and the
additional }_ n;; optimization variables that result from
the optimizer’s estimates of the interdisciplinary mapping
variables. Of course, there are also ) n,; additional
constraint gradients that we need to compute.

The two gradient formulas (28) and (29) for sin-
gle discipline optimization can be readily extended to
the MDF approach for multidisciplinary optimization by
using (20) instead of (18) in the derivation.

3.3 Iterative refinement

Because it is often unrealistic to use high fidelity,
complex models inside the optimization loop, an alter-
native approach is to use simplified models inside the
optimization loop and then verify the results with de-
tailed analysis. If necessary, we can update the simpli-
fied analysis model and repeat the entire process. This
process of successive refinement is shown schematically
in Figure 4.
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The following two observations relate the MDO for-
mulations presented in this paper to the iterative refine-
ment process portrayed in Figure 4. First, either AAO,
IDF or MDF could be used inside the optimization loop.
Second, the box containing the optimization loop could
be considered as one “discipline” and the detailed anal-
ysis could be considered to be a second discipline. If
an optimizer or “controller” box were added to the outer
loop of Figure 4 then the resulting system is a two dis-
cipline MDO problem and is particularly amenable to an
IDF approach [9].

Initial Estimate

Optimization
Optimization Code
Loop ]

Better Analysis
Information

Simplified
Analysis

r

Optimal
Resuit

Information to Refine
Simplified Model

Detalled
Analysis

Figure 4: Successive refinement

4. Conclusions

In Table 1 we compare the features of our three
main approaches to MDO formulation. In Table 2 we
speculate on the performance that might be achieved by
the approaches.

The multidisciplinary feasible (MDF) and individual
discipline feasible (IDF) approaches have the advantage
of using, with moderate or no modification, existing sin-
gle discipline analysis codes. An additional advantage of
IDF is that it avoids the cost of achieving full multidis-
ciplinary feasibility at each optimization iteration, a pro-
cedure that is probably wasteful in MDF when far from
optimization convergence. Furthermore, the IDF method
makes it easy to replace one analysis code with another
(as when additional modeling fidelity is required), or to
add new disciplines.

On the other hand, the IDF approach requires the
explicit imposition in the optimization of the nonlinear
constraints involving the interdisciplinary maps, and the



Individual Multidis
All-at-once Discipline ciplinary’
(AAO) Feasibile Feasible
(IDF) (MDF)
Use of Full, no direa | Full, but
existing N coupling of must couple
codes None analysis codes | the analysis
codes
Discipline None until Individual Multidis
feasibility optimal, then discipline ciplinary
all disciplines | feasibility at feasbility at
feasible each each
optimization optimization
iteration iteration
Variables the || Design Design Design
optimizer variables and variables, and variables
controls. all analysis interdiscipli-
(Thus, these discipline nary mapping
are unknowns (coupling)
independent parameters
variables in
sensitivities.)
Number of
optimization
variables.
(Thus, the np+Lna, |np+ T nij np
number of [ wTT
sensitivites
required.)
Optimization || Very large and Moderate, size | Small and
problem size |i sparse and sparsity dense
and sparsity dependent on
coupling
"bandwidth”

Table 1 Comparison of formulation features

Individual Multidis
All-at-once Discipline ciplinary
(AAO) Feasibile Feasible
(IDF) (MDF)
Probable Low, evaluate Moderate, Very high,
compute time || residuals for separately full multidis-
for objective || all disciplines analyze each ciplinary
and discipline analysis
constraints
Expected
overall speed
of Fast Medium Slow
optimization
process
Probability of
unanalyzable . .
intermediate Low Medium High
designs
Probable . .
Robustness m High Medium

Table 2 Comparison of predicted performance

calculation of additional sensitivities corresponding to
the variables communicated between disciplines. If the
number of such variables and constraints can be kept
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small, we project that the overall cost of IDF optimization
will be significantly less than MDF optimization.

No matter what approach is chosen, the efficient
calculation of sensitivities will be critical for success.
In our opinion, with the increasing complexity of analy-
sis codes and the increasing number of design variables
that will probably be used in future MDO applications,
it is unlikely that finite difference sensitivities will be
affordable. In this area, the role of automatic differen-
tiation remains to be determined. Our guess is that, for
very large problems, only some kind of analytic or im-
plicit sensitivities will be used. The other alternative, of
course, is to use simplified analyses in the optimization,
and correct via iterative refinement.

We feel that the all-at-once (AAQ) approach re-
mains theoretically attractive because of the probability
that it will be the least expensive computationally. Un-
fortunately, it requires a higher degree of software inte-
gration than is likely to be achieved in the near future
for realistic applications.

We reiterate that the data in Table 2 are only pre-
dictions. In a forthcoming paper, we will apply many
of the methods presented here to a new model problem
[17] for aeroelastic optimization.
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