Embedding Data Mappers with
Distributed Memory Machine-Compilers

Ravi Ponnusamy Joel Saltz
Raja Das Charles Koelbel
Alok Choudhary

CRPC-TR92285
May 1992

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Embedding Data Mappers with Distributed Memory Machine
Compilers

Ravi Ponnusamy* Joel Saltzt Raja Dast Charles Koelbel* ~ Alok Choudhary®
May 14, 1992

1 Introduction

In scalable multiprocessor systems, high performance demands careful attention to load balancing and com-
munication optimization. Compilation techniques for achieving these goals have been explored extensively
in recent years [3, 8, 10, 12, 15, 16] producing a variety of useful techniques. All of the above systems,
however, require the user to specify the distribution of data among processor memories. A few projects have
attempted to automatically derive data distributions for regular problems [11, 9, 7, 1]. In this paper, we
study the more challenging problem of automatically choosing data distributions for irregular problems.

By irregular problems, we mean programs in which the pattern of data access is input-dependent, and
thus not analyzable by a compiler. For example, the loop

do i = 1, nedges
ni = nde(i,1)
n2 = nde(i,2)

y(n1) = y(n1) + x(n1) - x(n2)
y(n2) = y(n2) - x(n1) + x(n2)
enddo

sweeps over the edges of an irregular mesh, a common operation in computational fluid dynamics. Efficiently
executing this loop requires partitioning the data and computation to balance the work load and minimize
communication. As the information necessary to evaluate communication (i.e. the contents of nde) is not
available until runtime, this partitioning must be done on the fly. Thus, we focus on runtime mappings in
this paper.

Over the past few years a lot of study has been carried out in the area of mapping irregular problems onto
distributed memory multicomputers. As a result of this, many heuristics have been proposed for efficient
data mapping [2, 4, 5, 6, 14], but currently these partitioners must be coupled to user programs manually.
In this paper we describe an automatic method for linking these partitioners. The work described here is
being pursued in the context of the CRPC Fortran D project [8].

2 Compiler Embedded Run-time Mapping

2.1 Problem Statement

Our goal is to allow automatic linkage of partitioning heuristics which use as their main input the connectivity
of the major data structures. As we describe in the next section, the solution to this problem requires new
compiler directives, compiler transformations, and a run-time environment.

*NPAC and School of Computer Science, Syracuse University , Syracuse, NY 13244
tICASE, MS 132C, NASA Langley Research Center, Hampton, VA 23656

! Center for Research on Parallel Computation, Rice University, Houston. TX 77251
§Dept. of Electrical and Computer Engineering, Syracuse University , Syracuse, NY 13244

In many scientific codes, most of the work consists of computing data values of many elements connected
through a run-time data structure such as a tree, directed graph, or sparse matrix structure. We will always
consider the underlying structure to be a graph, since any other interconnected structure can be considered
a special type of graph. The partitioners that we consider are based on finding a division of this underlying
graph which “breaks” as few edges as possible. An edge is “broken” when the elements it connects are
allocated to different processors; in this case, communication is needed to perform the computation.

To make our implementation tractable, we assume that all distributed data arrays conform in size and
are to be identically distributed. We also restict ourselves to FORALL loops, that is, loops for which the
iterations can safely be executed in any order. Different loop iterations may access the same memory location
only if all accesses are reads, or if the accesses are an accumulation using a commutative and associative
operator. We also assume that all computations in a statement are executed on one processor.

2.2 General Strategy
Our approach to mapping irregular problems has three components:

1. The programmer inserts compiler directives to mark the important loops that will determine parti-
tioning. Generally, these will be loops over the main data structure in the program, where we assume
most of the computation occurs. These are the most important loops to optimize because of the time
and communications they are likely to require.

2. The compiler generates run-time code to perform several phases of analysis based on the marked loops.
The compiler cannot perform the required analysis directly, because it depends on data that is only
available during actual execution. Instead, modified versions of the marked loops are generated to
produce the required information at run time. This technique was previously used by the Kali [10] and
PARTI [13] projects to implement communications for irregular problems; here, we extend that work
to generating data and computation partitionings.

3. At run time, the generated code is executed, producing data structures that can be input to the
partitioners. Run-time environment support is needed for all of generating the data structures, feeding
them to the partitioner, and implementing the resulting partition. We have implemented the run-time
environment as a series of enhancements to PARTI, a system designed specifically for implementing
irregular computations on distributed-memory computers.

The structure of all three components is closely tied to the class of partitioning strategies used. We have
chosen a graph-based approach; other approaches based on problem geometry or domain-specific information
are also possible. We could incorporate these approaches by adding annotations and compiler transformations
which extract the input needed for these partitioners.

The partitioning scheme we use has two stages:

1. Given the array accesses made by a program, determine a good partitioning of the data.
2. Given a data partitioning and a loop, partition the iterations of a loop among processors.

Each of these stages uses a graph-based data structure.

To implement the first stage, we use a distributed data structure called the Runtime Data Graph or
RDG.! In brief, this is a directed graph telling, for each array element, which other elements are used to
compute it. The RDG thus represents the loop’s computational pattern. The first-stage partitioner will
divide this graph to minimize inter-processor links while while balancing the memory usage.

In the second stage, there are two possibilities for using this mapping. We could assign work to processors
using the “owner computes” rule; that is, the processor that owns the left-hand expression of an assignment
is responsible for computing the right-hand side. This requires no new graph to be generated. but may

1In previous papers we have referred to this structure as the Runtime Dependence Graph. Unfortunately, “dependence”
has a specific meaning in the compiler literature that is incompatible with the RDG’s meaning. Since we need the compiler
concept in other work, we have changed our notation slightly.

Table 1: Mapper Coupler Timings for Unstructured Euler Solver (iPSC/860)

Number Number of Processors

of Vertices 2 4 8 16 32 64
graph generation (secs.) | 0.58 | 0.40 | 0.32 | 0.27 - -

3.6K mapper (secs) 15.92 | 11.50 | 12.11 | 14.92 - -
iter partitioner (secs) 094 | 057 042] 0.34 - -
comp/iteration (secs) 24| 1.31 06| 0.34 - -

graph generation (secs.) -| 094 0.73] 0.55 0.40 -

94K mapper (secs) - 7096 | 62.3| 65.2 89.7 -
iter partitioner (secs) - 119 0.82] 0.60 0.43 -
comp/iteration (secs) -| 483] 235 1.1 0.67 -

graph generation (secs.) - - - - 1.92 1.28

54K mapper (secs) - - - - | 544.81 | 673.14
iter partitioner (secs) - - - - 3.30 3.03
comp/iteration(secs) - - - - 6.06 3.81

involve substantial computation to determine which processor is to execute each statement. Alternately, we
can assign computational work to processors by executing all computations in a given loop iteration on one
processor. To do this while taking advantage of the data partition computed above, we generate a distributed
data structure we call the Runtime Iteration Graph or RIG. The RIG describes which distributed array
elements are accessed during each loop iteration. The task of the second partitioner is to maximize the
number of local elements accessed by all iterations while balancing the computational load.

3 Performance of Mapper Coupler Primitives

A set of primitives implementing the ideas in Section 2 have been implemented and have been employed
in a 3-D unstructured mesh Euler solver. In that application, the cost of generating the RDG is small
compared to either the overall cost of computation or the cost of our parallelized partitioner, as shown
in Table 1. Graph generation (including both the RDG and RIG is approximately the same cost as a
single computatihonal iteration; approximately 100 iterations are needed to solve the full problem. We
used a parallelized version of Simon’s eigenvalue partitioner [14] for the data partitioning. The cost of the
partitioner was relatively high both because of the partitioner’s high operation count and because only a
modest effort was made to produce an efficient parallel implementation. We have also tested our methods
on a conjugate gradient code, obtaining similar results.

4 Conclusions

We have described how to design distributed memory compilers capable of carrying out dynamic workload
and data partitioning. The runtime support required for these methods has been implemented in the form
of PARTI primitives. We implemented a full unstructured mesh computational fluid dynamics code and a
conjugate gradient code by embedding our runtime support by hand and have presented our performance
results. Our performance results demonstrate that the costs incurred by the mapper coupling primitives are
roughly on the order of the cost of a single iteration of our unstructured mesh code and were small compared
to the cost of the partitioner.

Acknowledgements

The authors would like to thank Geoffrey Fox for many enlightening discussions about universally applicable
partitioners and Ken Kennedy for feedback on Fortran D support of compiler-linked runtime partitioning.

The authors would also like to thank Horst Simon for the use of his unstructured mesh partitioning software.
This work was supported by National Aeronautics and Space Administration under NASA contract NASI-
18605 while the authors were in residence at ICASE, NASA Langley Research Center. Additional support for
Ponnusamy, Koelbel, and Choudhary was provided by DARPA under DARPA contract DABT63-91-C0028.

References

(1]

(2]
(3]
(4]

(5]

(7]
(8]

(10]

(11]

(12]
[13]
[14]
[15]

(16]

V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. A static performance estimator to guide data partition-
ing decisions. In Proceedings of the Third ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, Williamsburg, VA, April 1991.

M.J. Berger and S. H. Bokhari. A partitioning strategy for nonuniform problems on multiprocessors. IEEE
Trans. on Computers, C-36(5):570-580, May 1987.

M. C. Chen. A parallel language and its compilation to mulitprocessor archietctures or vlsi. In 2nd ACM
Symposium on Principles Programring Languages, January 1986.

N.P. Chrisochoides, C. E. Houstis, E.N. Houstis, P.N. Papachiou, S.K. Kortesis, and J.R. Rice. Domain decom-
poser: A software tool for mapping pde computations to parallel architectures. Report CSD-TR-1025, Purdue
University, Computer Science Department, September 1990.

G. Fox. A graphical approach to load balancing and sparse matrix vector multiplication on the hypercube. In
The IMA Volumes in Mathematics and its Applications. Volume 13: Numerical Algorithms for Modern Parallel
Computer Architectures Martin Schultz Editor. Springer-Verlag, 1988.

G. Fox and W. Furmanski. Load balancing loosely synchronous problems with a neural network. In Third Conf.
on Hypercube Concurrent Computers and Applications, January 1988.

M. Gupta and P. Banerjee. Automatic data partitioning on distributed memory multiprocessors. In Proceedings
of the 6th Distributed Memory Computing Conference, Portland, OR, April 1991.

S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C. Tseng. An overview of the Fortran D programming
system. In Proceedings of the Fourth Workshop on Languages and Compilers for Parallel Computing, Santa
Clara, CA, August 1991.

K. Knobe, J. Lukas, and G. Steele, Jr. Data optimization: Allocation of arrays to reduce communication on
SIMD machines. Journal of Parallel and Distributed Computing, 8(2):102-118, February 1990.

C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data structures on distributed memory
architectures. In 2nd ACM SIGPLAN Symposium on Principles Practice of Parallel Programming, pages 177-
186. ACM SIGPLAN, March 1990.

J. Li and M. Chen. Index domain alignment: Minimizing cost of cross-referencing between distributed arrays.
In Frontiers90: The 3rd Symposium on the Frontiers of Massively Parallel Computation, College Park, MD,
October 1990.

M. Rosing and R. Schnabel. An overview of Dino - a new language for numerical computation on distributed
memory multiprocessors. Technical Report CU-CS-385-88, University of Colorado, Boulder, 1988.

J. Saltz, R. Das, R. Ponnusamy, D. Mavriplis, H Berryman, and J. Wu. Parti procedures for realistic loops. In
Proceedings of the 6th Distributed Memory Computing Conference, Portland, Oregon, April-May 1991.

H. Simon. Partitioning of unstructured mesh problems for parallel processing. In Proceedings of the Conference
on Parallel Methods on Large Scale Structural Analysis and Physics Applications. Permagon Press, 1991. '

J. Wu, J. Saltz, S. Hiranandani, and H. Berryman. Runtime compilation methods for multicomputers. In
Proceedings of the 1991 International Conference on Parallel Processing, volume 2, pages 26-30, 1991.

H. Zima, H. Bast, and M. Gerndt. Superb: A tool for semi-automatic MIMD/SIMD parallelization. Parallel
Computing, 6:1-18, 1988.

