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SUMMARY

Most conventional compilers fail to allocate array elements to registers because standard data-flow
analysis treats arrays like scalars, making it impossible to analyze the definitions and uses of individual
array elements. This deficiency is particularly troublesome for floating-point registers, which are most
often used as temporary repositories for subscripted variables.

In this paper, we present a source-to-source transformation, called scalar replacement, that finds
opportunities for reuse of subscripted variables and replaces the references involved by references to tem-
porary scalar variables. The objective is to increase the likelihood that these elements will be assigned
to registers by the coloring-based register allocators found in most compilers. We extend our previous
technique for scalar replacement to allow the presence of forward conditional control flow within loop
bodies by mapping partial redundancy elimination to scalar replacement. Finally, we present experi-
mental results showing that these techniques are extremely effective—capable of achieving integer factor
speedups over code generated by good optimizing compilers of conventional design.
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INTRODUCTION

Although conventional compilation systems do a good job of allocating scalar variables to registers, their
handling of subscripted variables leaves much to be desired. Most compilers fail to recognize even the simplest
opportunities for reuse of subscripted variables. For example, in the code shown below,

DO10I =1, N
DO 10 J =1, M
10 ACI) = A(I) + BQJ)

most compilers will not keep A(I) in a register in the inner loop. This happens in spite of the fact that stan-
dard optimization techniques are able to determine that the address of the subscripted variable is invariant
in the inner loop. On the other hand, if the loop is rewritten as

DO 20I =1, N

T = A(I)

DO 10 J =1, M
10 T =T + B(J)
20 A(I) =T

even the most naive compilers allocate T to a register in the inner loop.

The principal reason for the problem is that the data-flow analysis used by standard compilers is not
powerful enough to recognize most opportunities for reuse of subscripted variables. Subscripted variables are
treated in a particularly naive fashion, if at all, making it impossible to determine when a specific element
might be reused. This is particularly problematic for floating-point register allocation because most of the
computational quantities held in such registers originate in subscripted arrays.
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For the past decade, the PFC and ParaScope Projects at Rice University have been using the theory
of data dependence to recognize parallelism in Fortran programs.!:® Since data dependences arise from the
reuse of memory cells, it is natural to speculate that dependence might be used for register allocation. This
speculation led to methods for the allocation of vector registers, which led to scalar register allocation via
the observation that scalar registers are vector registers of length 1.2:%3 In this paper, we extend the theory
developed in our earlier works and report on experiments with a transformation system, based on ParaScope,
that improves register allocation by rewriting subscripted variables as scalars, as illustrated by the example
above.’

BACKGROUND

In this section, we will describe a transformation, called scalar replacement that can be applied to program
source to improve the performance of compiled code. We assume that the target machine has a typical
optimizing program compiler, one that performs scalar optimizations only. In particular, we assume that
it performs strength reduction, allocates registers globally (via some coloring scheme) and schedules the
instruction pipelines. This makes it possible for our preprocessor to restructure the loop nests, while leaving
the details of optimizing the loop code to the compiler. These assumptions proved to be valid for the our
experiments on the IBM RS/6000.

We begin the description of our method in the first section with a discussion of the special form of
dependence graph that we use in subsequent transformations, paying special attention to the differences
between this form and the standard dependence graph. Next, we show why previous algorithms for scalar
replacement are inadequate when conditional control flow is present in inner loops. Finally, we show that
partial redundancy elimination has properties that address the deficiencies in scalar replacement.

Dependence Graph

We say that a dependence exists between two references if there exists a control-flow path from the first
reference to the second and both references access the same memory location.® The dependence is

e a true dependence or flow dependence if the first reference writes to the location and the second reads
from it,

e an antidependence if the first reference reads from the location and the second writes to it,
e an output dependence if both references write to the location, and

e an input dependence if both references read from the location.

For the purposes of improving register allocation, we concentrate on the true and input dependences,
each of which represents an opportunity to eliminate a load. In addition, output dependences can be helpful
in determining when it is possible to eliminate a store.

A dependence is said to be carried by a particular loop if the references at the source and sink of the
dependence are on different iterations of the loop. If both the source and sink occur in the same iteration,
the dependence is loop independent. The threshold of a loop-carried dependence, ., is the number of loop
iterations between the source and sink. In determining which dependences represent reuse, we consider only
those that have a consistent threshold — that is, those dependences for which the threshold is constant
throughout the execution of the loop.”* For a dependence to have a consistent threshold, it must be the
case that the location accessed by the dependence source on iteration i is accessed by the sink on iteration

i + ¢, where ¢ does not vary with i.



Motivation

Although previous algorithms for scalar replacement have been shown to be effective, they have only handled
loops without conditional-control flow.3 The principle reason for past deficiencies is the reliance solely upon
dependence information. A dependence contains little information concerning control flow between its source
and sink. It only reveals that both statements may be executed. In the loop,

DO 10 I = 1,N
5 IF (M(I) .LT. 0) A(I) = B(I) + C(D)
10 D(I) = A(I) + E(D)

the true dependence from A(I) in statement & to A(I) in statement 10 does not reveal that the definition
of A(I) is conditional. Using only dependence information, previous scalar replacement algorithms would
produce the following incorrect code.

D0 10 I = 1,N
IF (M(I) .LT. 0) THEN
s A0 = B(I) + C(I)
A(I) = AO
ENDIF
10 D(I) = A0 + E(I)

If the result of the predicate were false, no definition of A0 would occur, resulting in an incorrect value for
AO at statement 10. To ensure AO has the proper value, we can insert a load of A0 from A(I) on the false
branch, as shown below.

DO 10 I = 1,N
IF (M(I) .LT. 0) THEN
5 A0 = B(I) + (D)
A(I) = A0
ELSE
A0 = A(D)
ENDIF
10 D(I) = A0 + E(I)

The hazard with inserting instructions is the potential to increase run-time costs. In the previous example,
we have avoided the hazard. If the true branch is taken, one load of A(I) is removed. If the false branch is
taken, one load of A(I) is inserted and one load is removed. It is a requirement of our scalar replacement
algorithm to prevent an increase in run-time accesses to memory.

Partial Redundancy Elimination

In the elimination of partial redundancies, the goal is to remove the latter of two identical computations
that are performed on a given execution path. A computation is partially redundant when there may be paths
on which both computations are performed and paths on which only the latter computation is performed.
In Figure 1, the expression A+B is redundant along one branch of the IF and not redundant along the other.
Partial redundancy elimination will remove the computation C=A+B, replacing it with an assignment, and
insert a computation of A+B on the path where the expression does not appear (see Figure 2). Because there
may be no basic block in which new computations can be inserted on a particular path, insertion can be
done on flow-graph edges and new basic blocks are created when necessary.®

The essential property of this transformation is that it is guaranteed not to increase the number of
computations performed along any path.!® In mapping partial redundancy elimination to scalar replacement,
references to array expression can be seen as the computations. A load or a store followed by another load



Figure 1 Partially Redundant Computation

|D-A+B,T-D]

Figure 2 After Partial Redundancy Elimination




from the same location represents a redundant load that can be removed. Thus, using this mapping will
guarantee that the number of memory accesses in a loop will not increase. However, we do not guarantee
that a minimal number of loads will be inserted.

ALGORITHM

In this section, we present an algorithm for scalar replacement in the presence of forward conditional-control
flow. We begin by determining which array accesses provide values for a particular array reference. Next, we
link together references that share values by having them share temporary names. Finally, we generate scalar
replaced code. For partially redundant array accesses, partial redundancy elimination is used to ensure that
loads are inserted on the proper paths to make the array accesses fully redundant.

Control-Flow Analysis

Our optimization strategy focuses on loops; therefore, we can restrict control-flow analysis to loop nests only.
Furthermore, it usually makes no sense to hold values across iterations of outer loops for two reasons.

1. There may be no way to determine the number of registers needed to hold all the values accessed in
the innermost loop because of symbolic loop bounds.

2. Even if we know the register requirement, it is doubtful that the target machine will have enough
registers.

Hence, we need only perform control-flow analysis on each innermost loop body.

To simplify our analysis, we impose a few restrictions on the control-flow graph. First, the flow graph of
the innermost loop must be reducible. Second, backward jumps are not allowed within the innermost DO-loop
because they potentially create loops. Finally, multiple loop exits are prohibited. This final restriction is for
simplicity and can be removed with slight modification to the algorithm.

Availability Analysis

The first step in performing scalar replacement is to calculate available array ezpressions. Here, we will
determine if the value provided by the source of a .dependence is generated on every path to the sink of
the dependence. Because values that cross iterations of the innermost loop between reuse points will not
be available upon entry to the loop body, we assume that enough iterations of the loop have been peeled
to make loop-carried values available upon entry to the loop. Since each lexically identical array reference
accesses the same memory location on a given loop iteration, we do not treat each lexically identical array
reference as a separate array expression. Rather, we consider them in concert.

Array expressions most often contain references to induction variables. Therefore, their naive treatment
in availability analysis is inadequate. To illustrate this, in the loop,

DO 30 I =1,N
IF (B(I) .LT. 0.0) THEN

10 C(I) = A(I) + D(D)
ELSE

20 C(I) = A(I-1) + D(I)
ENDIF

30 E(I) = C(I) + A(D)

the value accessed by the array expression A(I) is fully available at the reference to A(I-1) in statement 20,
but it is not available at statement 10 and is only partially available at statement 30. Using a completely
syntactic notion of array expressions, essentially treating each lexically identical expression as a scalar, A(I)



will be incorrectly reported as available at statements 10 and 30. Thus, more information is required. We
must account for the fact that the value of an induction variable contained in an array expression changes
on each iteration of the loop.

A convenient solution is to split the problem into loop-independent availability, denoted L1Av, where the
back edge of the loop is ignored, and loop-carried availability, LcAv, where the back edge is included. Thus,
an array expression is only available if it is in LIAV and there is a consistent incoming loop-independent
dependence, or if it is in LCAV and there is a matching consistent incoming loop-carried dependence. The
data-flow equations for availability analysis are shown below.

LIAVIN(B) = ﬂpepreds () L1IAVOUT(p)
LIAVOUT(B) = (LIAVIN(B) — LIKILL(B)) | JLIGEN(B)

LCAVIN(B) = ﬂpepreds B) LCAVOUT(p)
LCAVOUT(B) = LCAVIN(B)|JLCGEN(B)

For LIAV, an array expression is added to GEN when it is encountered whether it is a load or a store. At
each store, the sources of all incoming inconsistent dependences are added to KILL and removed from GEN.
At loads, nothing is done for KILL because a previously generated value cannot be killed. We call these sets
LIGEN and LIKILL.

For LCAV, we must consider the fact that the flow of control from the source to the sink of a dependence
will include at least the next iteration of the loop. Subsequent loop iterations can effect whether a value has
truly been generated and not killed by the time the sink of the dependence is reached. In the loop,

DO 10 I = 1,N
IF (A(I) .GT. 0.0) THEN
Cc(I) = B(I-2) + D(I)
ELSE
B(K) = c(I) + D(D)
ENDIF
10 B(I) = E(I) + ¢(D) -

the value generated by B(I) on iteration I=1 will be available at the reference to B(I-2) on iteration I=3
only if the false branch of the IF statement is not taken on iteration I=2. Since determining the direction
of a branch at compile time is undecidable in general, we must assume that the value generated by B(I)
will be killed by the definition of B(K). In general, any definition that is the source of an inconsistent output
dependence can never be in LCGEN(B), V B. It will always be killed on the current or next iteration of the
loop. Therefore, we need only compute the LCGEN and not LCKILL.

There is one special case where this definition of LCGEN will unnecessarily limit the effectiveness of scalar
replacement. When a dependence threshold is 1, it may happen that the sink of the generating dependence

edge occurs before the killing definition. Consider the following loop.

DO 10 I = 1,N
B(K) = B(I-1) + D(I)
10 B(I) = E(I) + ¢(D)

the value used by B(I-1) that is generated by B(I) will never be killed by B(K). The solution to this
limitation is to create a new set called LCAVIF1 that contains availability information only for loop-carried
dependences with a threshold of 1. Control flow through the current and next iterations of the loop is
included when computing this set. The data-flow equations for LCAVIF1 are identical to those of LIAV. This
is because we consider control flow on the next iteration of the loop, unlike LcAvV. Below are the data-flow
equations for LCAVIF1.

LCAVIF1IN(B) = ﬂpepmk (8) LCAVIF10UT(p)
LCAVIF10UT(B) = (LCAVIF1IN(B) — LIKILL(B)) | JLIGEN(B)



Because we consider both fully and partially redundant array accesses, we need to compute partial avail-
ability in order to scalar replace references whose load is only partially redundant. As in full-availability
analysis, we partition the problem into loop-independent, loop-carried and loop-carried-if-1 sets. Compu-
tation of KILL and GEN corresponds to that of availability analysis. Below are the data-flow equations for
partially available array expression analysis.

LIPAVIN(B) = Upeprcds B) LIPAVOUT(p)
LIPAVOUT(B) = (LIPAVIN(B) — LIKiLL(B)) | J LIGEN(B)

LCPAVIN(B) = Upepreds B)LCPAVOUT(}))
LCPAVOUT(B) = chAvm(Bg UrcGEN(B)

LCPAVIF1IN(B) = Upepreds (8 LCPAVIF10UT(p)
LCPAVIF10UT(B) = (LCPAVIF1IN(B) — LikiLL(B)) | JLIGEN(B)

Reachability Analysis

Since there may be multiple lexically identical array references within a loop, we want to determine which
references actually supply values that reach a sink of a dependence and which supply values that are killed
before reaching such a sink. In other words, which values reach their potential reuses. In computing reacha-
bility, we do not treat each lexically identical array expression in concert. Rather, each reference is considered
independently. Reachability information along with availability is used to select which array references pro-
vide values for scalar replacement. While reachability information is not required for correctness, it can
prevent the marking of references as providing a value for scalar replacement when that value is redefined
by a later identical reference. This improves the readability of the transformed code.

We partition the reachability information into three sets: one for loop-independent dependences (LIRG),
one for loop-carried dependences with a threshold of 1 (LCRGIF1) and one for other loop-carried dependences
(LcrG). Calculation of LIGEN and LIKILL is the same as that for availability analysis except in one respect.
The source of any incoming loop-independent dependence whose sink is a definition is killed whether the
threshold is consistent or inconsistent. Additionally, LIKILL is subtracted from LCRGOUT to account for
consistent references that redefine a value on the current iteration of a loop. For example, in the following
loop, the definition of B(I) kills the load from B(I), therefore, only the definition reaches the reference to
B(I-1).

DO 10 I = 1,N
A(I) = B(I-1) + B(I)
10 B(I) = E(I) + ¢(D)

Using reachability information, the most recent access to a value can be determined. Even using LIKILL when
computing LCRG will not eliminate all unreachable references. References with only outgoing consistent loop-
carried output or antidependences will not be killed. This does not effect correctness, rather only readability,
and can only happen when partially available references provide the value to be scalar replaced. Below are
the data-flow equations used in computing array-reference reachability.
LIRGIN(B) = Upepmk (8) LIRGOUT(p)

LIRGOUT(B) = (LIRGIN(B) — LIKILL(B)) JLIGEN(B)

LCRGOUT(B) = U, epreds (B) LCRGOUT(P)

LCRGOUT(B) = (LCRGIN(B) — LIKILL(B)) JrcGeN(B)

LCRGIF1IN(B) = Uper-:Ds (B)LCRGIFIOUT(P)
LCRGIF10UT(B) = (LCRGIF1IN(B) — LIKILL(B)) | JLIGEN(B)



Potential-Generator Selection

At this point, we have enough information to determine which array references potentially provide values
to the sinks of their outgoing dependence edges. We call these references potential generators because they
can be seen as generating the value used at the sink of some outgoing dependence. The dependences leaving
a generator are called generating dependences. Generators are only potential at this point because we need
more information to determine if scalar replacement will even be profitable.

We have two goals in choosing potential generators. The first is to insert the fewest number of loads,
correlating to the maximum number of memory accesses removed. The second is to minimize register
pressure, or the number of registers required to eliminate the loads. To meet the first objective, fully available
expressions are given the highest priority in generator selection. To meet the second, loop-independent fully
available generators are preferred because they require the fewest number of registers. If no loop-independent
generator exists, loop-carried fully available generators are considered next. If there are multiple such
generators, the ones that require the fewest registers (having the smallest threshold) are chosen.

If there are no fully available generators, partially available array expressions are next considered as
generators. Partially available generators do not gnarantee a reduction in the number of memory accesses
because memory loads need to be inserted on paths along which a value is needed but not generated. However,
we can guarantee that there will not be an increase in the number of memory loads by only inserting load
instructions if they are guaranteed to have a corresponding load removal on any execution path.!® Without
this guarantee, we may increase the number of memory accesses at execution time, resulting in a performance
degradation.

The best choice for a partially available generator would be one that is loop-independent. Although
there may be a “more available” loop-carried generator, register pressure is kept to a minimum and scalar
replacement will be applied if we chose a loop-independent generator. If there are no loop-independent
partially available array expressions, then the next choice would be a loop-carried partially available array
expression with a generating dependence having the largest threshold of any incoming potential generating
dependence. Although choosing the largest threshold contradicts the goal of keeping the register pressure
to a minimum, we increase the probability that there will be a use of the value on every path by increasing
the window size for potential uses of the generated value. We have chosen to sacrifice register pressure for
potential savings in memory accesses.

Finally, when propagating data-flow sets through a basic block to determine availability or reachability
at a particular point, information is not always incrementally updated. For loop-independent information,
we update a data-flow set with GEN and KILL information as we encounter statements. However, the same
is not true for loop-carried and loop-carried-if-1 information. GEN information is not used to update any
loop-carried data-flow set. Loop-carried information must propagate around the loop to be valid and a
loop-carried data-flow set at the entry to a basic block already contains this information. KILL information
is only incrementally updated for loop-carried-if-1 sets since flow through the second iteration of a loop after
a value is generated is considered.

In the next portion of the scalar replacement algorithm, we will ensure that the value needed at a reference
to remove its load is fully available. This will involve insertion of memory loads for references whose generator
is partially available. We guarantee through our partial redundancy elimination mapping that we will not
increase the number of memory accesses at run time. However, we do not guarantee a minimal insertion of

memory accesses.



Anticipability Analysis

After determining potential generators, we need to locate the paths along which loads need to be inserted to
make partially available generators fully available. Loads need to be inserted on paths along which a value is
needed but not generated. We have already encapsulated value generation in availability information. Now,
we encapsulate value need with anticipability. The value generated by an array expression, v, is anticipated
by an array expression w if there is a true or input edge v — w and v is w’s potential generator.

DOo61I=1,N
IF (A(I) .GT. 0.0)
5 B(I) = C(I) + D(D)
ELSE
F(I) = C(I) + D(I)
ENDIF
6 c(I) = E(I) + B(D

In the above example, the value generated by the definition of B(I) in statement 5 is anticipated at the use
of B(I) in statement 6.

As in availability analysis, we consider each lexically identical array expression in concert. We split the
problem, but this time into only two partitions: one for loop-independent generators, LIAN, and one for loop-
carried generators, LCAN. We do not consider the back edge of the loop during analysis for either partition.
For LIAN, the reason is obvious. For LCAN, we only want to know that a value is anticipated on all paths
through the loop. This is to ensure that we do not increase the number of memory accesses in the loop.
In each partition, an array expression is added to GEN at an array reference if it is a potential generator
for that reference. For members of LIAN, array expressions are killed at the point where they are defined
by a consistent or inconsistent reference. For LCAN, only inconsistent definitions kill anticipation because
consistent definitions do not define the value being anticipated on the current iteration. For example, in the
loop

D01I=1,N
AC(I) = B(I) + D(I)
1 B(I) = A(I-1) + (D)

the definition of A(I) does not redefine a particular value anticipated by A(I-1). The value is generated by
A(I) and then never redefined because of the iteration change.
LIANOUT(B) = [, csuces (8) LIANIN(s)
LIANN(B) = (LIANOUT(B) — LIKILL(B)) | JLIGEN(B)

LCANOUT(B) = ﬂ’emccs (8) LCANIN(S)
LCANIN(B) = LCANOUT(B) - LCKILL(B) (JLcGEN(B)

Dependence-Graph Marking

Once anticipability information has been computed, the dependence graph can be marked so that only
dependences to be scalar replaced are left unmarked. The other edges no longer matter because their
participation in value flow has already been considered. Figure 3 shows the algorithm M arkDependenceGraph.

At a given array reference, we mark any incoming true or input edge that is inconsistent and any incoming
true or input edge that has a symbolic threshold or has a threshold greater than that of the dependence
edge from the potential generator. Inconsistent and symbolic edges are not amenable to scalar replacement
because it is impossible to determine the number of registers needed to expose potential reuse at compile time.
When a reference has a consistent generator, all edges with threshold less than or equal to the generating

9



Procedure MarkDependenceGraph(G)
Input: G = (V, E), the dependence graph

foreach ve V
if v has no generator then
mark v’s incoming true and input edges
else if v’s generator is inconsistent or symbolic dn then
mark v’s incoming true and input edges
v no longer has a generator
else if v’s generator is LCPAV and v ¢ LCANTIN(ENTRY)
mark v’s incoming true and input edges
v no longer has a generator
else
r» = threshold of edge from v’s generator
mark v’s incoming true and input edges with dn > 7o
mark v’s incoming edges whose source does not reach v or
whose source is not partially available at v
mark v’s incoming inconsistent and symbolic edges

Figure 3 MarkDependenceGraph

threshold are left unmarked in the graph. This is to facilitate the consistent register naming discussed in
subsequent sections. It ensures that any reference occurring between the source and sink of an unmarked
dependence that can provide the value at the sink will be connected to the dependence sink. Finally, any
edge from a loop-carried partially available generator that is not anticipated at the entry to the loop is
removed because there will not be a dependence sink on every path.

Name Partitioning

At this point, the unmarked dependence graph represents the flow of values for references to be scalar
replaced. We have determined which references provide values that can be scalar replaced. Now, we move
on to linking together the references that share values. Consider the following loop.

DO 6 I =1,N
5 B(I) = B(I-1) + D(I)
6 C(I) = B(I-1) + E(X)

After performing the analysis discussed so far, the generator for the reference to B(I-1) in statement 6
would be the load of B(I-1) in statement 5. However, the generator for this reference is the definition of
B(I) in statement 5 making B(I-1) in statement 5 an intermediate point in the flow of the value rather
than the actual generator for B(I-1) in statement 6. These references need to be considered together when
generating temporary names because they address the same memory locations.

The nodes of the dependence graph can be partitioned into groups by dependence edges (see Figure 4) to
make sure that temporary names for all references that participate in the flow of values through a memory
location are consistent. Any two nodes connected by an unmarked dependence edge after graph marking
belong in the same partition. Partitioning is accomplished by performing a traversal of the dependence

10



graph, following unmarked true and input dependences only since these dependences represent value flow.
Partitioning will tie together all references that access a particular memory location and represent reuse of
a value in that location.

After name partitioning is completed, we can determine the number of temporary variables (or registers)
that are necessary to perform scalar replacement on each of the partitions. To calculate register requirements,
we split the references (or partitions) into two groups: variant and invariant. Variant references contain the
innermost-loop induction variable within their subscript expression. Invariant references do not contain the
innermost-loop induction variable. In the previous example, the reference to E(K) is invariant with respect
to the I-loop while all other array references are variant.

For variant references, we begin by finding all references within each partition that are first to access a
value on a given path from the loop entry. We call these references partition generators. A variant partition
generator will already have been selected as a potential generator and will not have incoming unmarked
dependences from another reference within its partition. The set of partition generators within one partition
is called the generator set, v,. Next, the maximum over all dependence distances from a potential generator
to a reference within this partition is calculated. Even if dependence edges between the generator and a
reference have been removed from the graph, we can compute the distance by finding the length of a chain,
excluding cycles, to that reference from the generator. Letting 7, be the maximum distance, each partition
requires r, = 7, + 1 registers or temporary variables: one register for the value generated on the current
iteration and one register for each of the 7, values that were generated previously and need to flow to the
last sink. In the previous example, B(I) is the oldest reference and is the generator of the value used at
both references to B(I-1). The threshold of the partition is 1. This requires 2 registers because there are
two values generated by B(I) that are live after executing statement 5 and before executing statement 6.

For invariant references, we can use one register for scalar replacement because each reference accesses
the same value on every iteration. In order for an invariant potential generator to be a partition generator,
it must be a definition or the first load of a value along a path through the loop.

Register-Pressure Moderation

Unfortunately, experiments have shown that exposing all of the reuse possible with scalar replacement may
result in a performance degradation.® Register spilling can completely counteract any savings from scalar
replacement. The problem is that specialized information is necessary to recover the original code to prevent
excessive spilling. As a result, we need to generate scalar temporaries in such a way as to minimize register
pressure, in effect doing part of the register allocator’s job.

Our goal is to allocate temporary variables so that we can eliminate the most memory accesses given
the available number of machine registers. This can be approximated using a greedy algorithm. In this
approximation scheme, the partitions are ordered in decreasing order based upon the ratio of benefit to cost,
or in this case, the ratio of memory accesses saved to registers required. At each step, the algorithm chooses
the first partition that fits into the remaining registers. This method requires O(nlog n) time to sort the
ratios and O(n) time to select the partitions. Hence, the total running time is O(n logn).

To compute the benefit of scalar replacing a partition, we begin by computing the probability that each
basic block will be executed. The first basic block in the loop is assigned a probability of execution of 1.
Each outgoing edge from the basic block is given a proportional probability of execution. In the case of two
outgoing edges, each edge is given a 50% probability of execution. For the remaining blocks, this procedure
is repeated, except that the probability of execution of a remaining block is the sum of the probabilities of
its incoming edges. Next, we compute the probability that the generator for a partition is available at the
entrance to and exit from a basic block. The probability upon entry is the sum of the probabilities at the exit

11



Procedure GenerateNamePartitions(G, P)

Input: G = (V, E), the dependence graph
P = the set of name partitions

Vv € V mark v as unvisited
1i=0
foreachv eV
if v is unvisited then
put vin P
Partition(v, P;)
t=141
for each p € P do
FindGenerator(p, vp)
if p is invariant then

rp=1
else
T = uéax(CalcNumberOfRegisters(g) +1)
9€Yp
enddo

end

Procedure Partition(v, p)
mark v as visited
add v top
for each (e = (v,w) V (w,v)) € E
if e is true or input and unmarked and w not visited then
Partition(w, p)
end

Procedure FindGenerator(p, v)
for each v € p that is a potential generator
if (v is invariant A (v is a store V
v has no incoming unmarked loop-independent edge)) V
(v is variant A v has no unmarked incoming true or
input dependences from another w € p) then
y=7yUv
end

Procedure CalcNumberOfRegisters(v)

dist =0

for each e = (v,w) € E

if e is true or input and unmarked A w not visited A
P(w) = P(v) then
dist = max(dist,dn (¢)+ CalcNumberOfRegisters(w))

return(dist)

end

Figure 4 GenerateNamePartitons




of a block’s predecessors weighted by the number of incoming edges. Upon exit from a block, the probability
is 1 if the generator is available, 0 if it is not available and the entry probability otherwise. After computing
each of these probabilities, the benefit for each reference within a partition can be computed by multiplying
the execution probability for the basic block that contains the reference by the availability probability of
the references generator. Figure 5 gives the complete algorithm for computing benefit. As an example of
benefit, in the loop,

DO1I=1,N
IF (M(I) .LT. 0) THEN
A(I) = B(I) + (D)
ENDIF
1 D(I) = A(I) + E(D)

the load of A(I) in statement 1 has a benefit of 0.5.

Unfortunately, the greedy approximation can produce suboptimal results. To see this, consider the
following example, in which each partition is represented by a pair (n, m), where n is the number of registers
needed and m is the number of memory accesses eliminated. Assume that we have a machine with 6 registers
and that we are generating temporaries for a loop that has the following generators: (4,8),(3,5), (3,5),(2,1).
The greedy algorithm would first choose (4,8) and then (2, 1), resulting in the elimination of nine accesses
instead of the optimal ten.

To get a possibly better allocation, we can model register-pressure moderation as a knapsack problem,
where the number of scalar temporaries required for a partition is the size of the object to be put in the
knapsack, and the size of the register file is the knapsack size. Using dynamic programming, an optimal
solution to the knapsack problem can be found in O(kn) time, where k is the number of registers available
for allocation and n is the number of generators. Hence, for a specific machine, we get a linear time bound.
However, with the greedy method, we have a running time that is independent of machine architecture,
making it more practical for use in a general tool. The greedy approximation of the knapsack problem is also
provably no more than two times worse than the optimal solution.® Additionally, our experiments suggest
that in practice the greedy algorithm performs as well as the knapsack algorithm.

After determining which generators will be fully scalar replaced, there may still be a few registers available.
Those partitions that were eliminated from consideration can be examined to see if partial allocation is
possible. In each eliminated partition whose generator is not LCPAV, we allocate references whose distance
from 7, is less than the number of remaining registers. All references within p that do not fit this criterium
are removed from p. This step is performed on each partition, if possible, while registers remain unused.
Finally, since we have possibly removed references from a partition, anticipability analysis for potential
generators must be redone.

To illustrate partial allocation, assume that in the following loop there is one register available.

DO 10 I = 1,N
ACI) = ...
IF (B(I) .GT. 0.0) THEN
.= A(D)
ENDIF
10 ..o = A(I-1)

Here, full allocation is not possible, but there is a loop-independent dependence between the A(I)’s. In
partial allocation, A(I-1) is removed from the partition allowing scalar replacement to be performed. The
algorithm in Figure 6 gives the complete register-pressure moderation algorithm, including partial allocation.
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Procedure CalculateBenefit(P, FG)

Input: P = set of reference partitions
FG = flow graph

Defs: AP(B) = probability v, is available on entry to B
AZ(B) = probability v is available on exit from B
by = benefit for partition p
Erg = edges in flow graph
P(B) = probability block B will be executed

P(ENTRY) =1
n =# outgoing forward edges of ENTRY
weight each outgoing forward edge of ENTRY at
for the remaining basic blocks BE F'G in reverse
depth-first order
let P(B)= sum of all incoming edge weights
n =4# outgoing forward edges of B
weight each outgoing forward edge at 2(-:—3-1
for each p € P
for each basic block BE FG in reverse depth-first order
n =# incoming forward edges of B
for each incoming forward edge of B, e = (C,B)
42(8) = AZ(B)+ 252
if 4p € L1IAvoUT(B) |J LcAVOUT(B) then
Af(s)=1
else if vp € LIPAVOUT(B) | LCPAVOUT(B) then
A% (B)= AZ(8)

P(ENTRY)
n

else
AE(B)=0
foreachv e€p

if vp is LCPAV or LCPAVIF1 then
b, = by, + AR(EXIT) X P(By)
else if 7p is LIPAV
bp = by + AZ(B) x P(B.)
else
bp = bp + P(By)
end

Figure 5 CalculateBenefit
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Procedure ModerateRegisterPressure(P, G)

Input: P = set of reference partitions
G = (V, E), the dependence graph

Defs: by = benefit for a partition p
rp = register required by a partition p

CalculateBenefit(P, G)
R = registers available
‘H = sort of P on ratio of g"'- in decreasing order
for i =1 to |H| do
if r1; < R then
allocate(H:)
R=R-rn
else
S=SUH:
P=P-H;
endif
enddo
if R > 0 then
i=1
while i < |S] and R > 0 do
while |Si] > 0 and R > 0 do
Si = {v|v € Si,dn(é) < R,é = (7s;,v)}
allocate(S:)
R=R-rs;
P=PUS;
enddo
enddo
redo anticipability analysis
endif
end

Figure 6 ModerateRegisterPressure
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Although this method of partial allocation may still leave possible reuses not scalar replaced, experience
suggests this rarely, if ever, happens. One possible solution is to consider dependences from intermediate
points within a partition when looking for potential reuse.

Reference Replacement

At this point, we have determined which references will be scalar replaced. We now move into the code
generation phase of the algorithm. Here, we will replace array references with temporary variables and
ensure that the temporaries contain the proper value at a given point in the loop.

After we have determined which partitions will be scalar replaced, we replace the array references within
each partition. First, for each variant partition p, we create the temporary variables T,‘,’, T;,l, N 4 -1, where
T, represents the value generated by g € 7, i iterations earlier, where g is the first generator to access the
value used throughout the partition. Each reference within the partition is replaced with the temporary that
coincides with its distance from g. For invariant partitions, each reference is replaced with T,?. If a replaced
reference v € 7, is a memory load, then a statement of the form T; = v is inserted before the generating
statement. Requiring that the load must be in 7, for load insertion ensures that a load that is a potential
generator but also has a potential generator itself will not have a load inserted. The value for the potential
generator not in v, will already be provided by its potential generator. If the v is a store, then a statement of
the form v = T; is inserted after the generating statement. The latter assignment is unnecessary if it has an
outgoing loop-independent edge to definition that is always executed and it has no outgoing inconsistent true
dependences. We could get better results by performing availability and anticipability analysis exclusively
for definitions to determine if a value is always redefined.

The effect of reference replacement will be illustrated on the following loop nest.

po3I1=1, 100
1 IF (M(I) .LT. 0) E(I) = C(I)
A(D = ¢(I) + (D)
3 B(K) = B(K) + A(I-1)

The reuse-generating dependences are:

1. A loop-independent input dependence from C(I) in statement 1 to C(I) in statement 2 (threshold 0),
and

2. A true dependence from A(I) to A(I-1) (threshold 1).
3. A true dependence from B(K) to B(K) in statement 2 (threshold 1).

By our method, the generator C(I) in statement 1 needs only one temporary, T10. Here, we are using
the first numeric digit to indicate the number of the partition and the second to represent the distance from
the generator. The generator B(K) in statement 1 needs one temporary, T20, since it is invariant, and the
generator A(I) needs two temporaries, T30 and T31. When we apply the reference replacement procedure
to the example loop, we generate the following code.

D03 I=1, 100
1 IF (M(I) .LT. 0) THEN
T10 = C(I)
E(I) = T10
ENDIF
T30 = T10 + D(I)
2 A(I) = T30
T20 = T20 + T31
3 B(K) = T20

The value for T31 is not generated in this example. We will discuss its generation in later sections.

16



Statement-Insertion Analysis

After we replace the array reference with scalar temporaries, we need to insert loads for partially available
generators. Given a reference that has a partially available potential generator, we need to insert a statement
at the highest point on a path from the loop entrance to the reference that anticipates the generator where
the generator is not partially available and is anticipated. By performing statement-insertion analysis on
potential generators, we guarantee that every reference’s anticipated value will be fully available. Here,
we handle each individual reference, whereas name partitioning linked together those references that share
values. This philosophy will not necessarily introduce a minimum number of newly inserted loads, but there
will not be an increase in the number of run-time loads. The place for insertion of loads for partially available
generators can be determined using Drechsler and Stadel’s formulation for partial redundancy elimination,

as shown below.®
PPIN(B) = ANTIN(B) (\PAVIN(B) [ (ANTLOC(B) | J(TRANSP(B) (\pPouT(B))

FALSE if B is the loop exit
PPOUT(B) = n,esucc(a) PPIN(s)

INSERT(B)
INSERT(A,B)

pPoUT(B) (] ~AvouT(B) [ )(~PPIN(B) | J ~TRANSP(B))
PPIN(B) () ~AVOUT(A) | ~PPOUT(A)

Here, PPIN(B) denotes placement of a statement is possible at the entry to a block and PPOUT(B) denotes
placement of a statement is possible at the exit from a block. INSERT(B) determines which loads need to
be inserted at the bottom of block B. INSERT(a B) is defined for each edge in the control-flow graph and
determines which loads are inserted on the edge from A to B. TRANSP(B) is true for some array expression if
it is not defined by a consistent or inconsistent definition in the block B. ANTLOC(B) is the same as GEN(B)
for anticipability information. Three problems of the above form are solved: one for LIPAV generators, one
for LCPAV generator and one for LCPAVIF1 generators. Additionally, any reference to loop-carried ANTIN
information refers to the entry block.

If INSERT(a B) is true for some potential generator g, then we insert a load on the edge (A,B) of the
form T; = g, where T;‘ is the temporary name associated with g. If INSERT(B) is true for some potential
generator g, then a statement of identical form is inserted at the end of block B. Finally, if INSERT , g) is
true VA € PRED(B), then loads can be collapsed into the beginning of block B.

If we perform statement insertion on our example loop, we get the following results.

D03 I=1, 100
1 IF (M(I) .LT. 0) THEN
T10 = C(I)
E(I) = T10
ELSE
T10 = C(I)
ENDIF
T30 = T10 + D(I)
2 A(I) = T30

T20 = T20 + T31
3 B(K) = T20

Again, the generation of T31 is left for later sections.

Register Copying

Next, we need to ensure that the values held in the temporary variables are correct across loop iterations.
The value held in T; needs to move one iteration further away from its generator, T;,‘, on each subsequent
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loop iteration. Since i is the number of loop iterations the value is from the generator, the variable T;‘“
needs to take on the value of T; at the end of the loop body in preparation for the iteration change. For
each p, the following sequence of transfers is inserted at the end of the loop body.

T"r‘l _ T"r‘2
z 2 5 3
rp=< _ mTp~

T2 =1

Tg = 1;?

After inserting register copies, our example code becomes:

D03 I=1, 100
1 IF (M(I) .LT. 0) THEN
Ti0 = C(I)
E(I) = T10
ELSE
T10 = C(I)
ENDIF
T30
2 ACD
T20
B(K)
3 T31

T10 + D(I)
T30
T20 + T31
T20
T30

Code Motion

It may be the case that the assignment to or a load from a generator may be moved entirely out of the
innermost loop. This is possible when the reference to the generator is invariant with respect to the innermost
loop. In the example above, B(K) does not change with each iteration of the I-loop; therefore, its value can
be kept in a register during the entire execution of the loop and stored back into B(K) after the loop exit.

D03 1I=1, 100
1 IF (M(I) .LT. 0) THEN
Ti0 = C(I)
E(I) = T10
ELSE
T10 = C(I)
ENDIF
T30 = T10 + D(I)
2 A(I) = T30
T20 = T20 + T31
3 T31 = T30
B(K) = T20

When inconsistent dependences leave an invariant array reference that is a store, the generating store for
that variable cannot be moved outside of the innermost loop. Consider the following example.

DO 10 J =1, N
10 AC(D) = ACD) + AQD)

The true dependence from A(I) to A(J) is not consistent. If the value of A(I) were stored into A(I) outside
of the loop, then the value of A(J) would be wrong whenever I=J and I > 1.
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Initialization

To ensure that the temporary variables contain the correct values upon entry to the loop, it is peeled using
the algorithm in Figure 7. We peel max(ry,,...,7p,) — 1 iterations from the beginning of the loop, replacing
the members of a variant partition p for peeled iteration k with their original array reference, substituting
the iteration value for the induction variable, only if j > k for a temporary Tg . For invariant partitions, we
only replace non-partition generators’ temporaries on the first peeled iteration. Additionally, we let r, =2
for each invariant partition when calculating the number of peeled iterations. This ensures that invariant
partitions will be initialized correctly. Finally, at the end of each peeled iteration, the appropriate number
of register transfers is inserted. ‘
When this transformation is applied to our example, we get the following code.
IF (M(1) .LT. 0) THEN
T10 = C(1)
E(1) = T10
ELSE
T10 = C(1)
ENDIF
T30
A(D

T20
T31

T10 + D(1)
T30
B(K) + A(0)
T30

LOOP BODY
Register Subsumption

In our example loop, we have eliminated three loads and one store from each iteration of the loop, at
the cost of three register-to-register transfers in each iteration. Fortunately, inserted transfer instructions

Procedure Initialize(P,G)

Input: P = set of reference partitions
G = (V, E), the dependence graph

£ = max(rp,,...,Tpy) — 1
fork=1toz
G' =peel of the kth iteration of G
for each v € V'
if v=T}) A(vis variant Aj > k)V
(v is invariant Av € vpu) AT +12 kA
v’s generator is loop carried) then
replace v with its original array reference
replace the inner loop induction variable with
its kth iteration
endif
InsertRegisterCopies(G’, P, k)
end

Figure 7 Initialize
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can be eliminated if we unroll the scalar replaced loop in the following manner. If we have the partitions

Po,P1, - - -, Pn, We can remove the transfers by unrolling lem(rpg, Tpy s - - -1 Tpo) — 1 times. In the kth unrolled
body, the temporary variable Tg is replaced with the variable Tpmod("_k’r’) where mod(y,z) =y — | L]z

Essentially we capture the permutation of values by circulating the register names within the unrolled
iterations.

The final result of scalar replacement on our example is shown in Figure 8 (the pre-loop to capture the
extra iterations and the initialization code are not shown).

EXPERIMENT

We have implemented a source-to-source translator in the ParaScope programming environment, a program-
ming system for Fortran, that uses the dependence analyzer from PFC. The translator replaces subscripted
variables with scalars using the described algorithm. The experimental design is illustrated in Figure 9. In
this scheme, ParaScope serves as a preprocessor, rewriting Fortran programs to improve register allocation.
Both the original and transformed versions of the program are then compiled and run using the standard
product compiler for the target machine.

For our test machine, we chose the IBM RS/6000 model 540 because it had a good compiler and a large
number of floating-point registers (32). In fact, the IBM XLF compiler performs scalar replacement for those
references that do not require dependence analysis. Many fully available loop-independent and invariant
cases are handled. Therefore, the results described here only reflect the cases that required dependence
analysis. Essentially, we show the results of performing scalar replacement on loop-carried dependences and
in the presence of inconsistent dependences.

Do 3 I =2, 100,2
1 IF (M(I) .LT. 0) THEN

T10 = C(D)

E(I) = T10
ELSE

T1I0 = C(D
ENDIF

T30 = T10 + D(I)
2 A(I) = T30
T20 = T20 + T31
IF (M(I+1) .LT. 0) THEN
T10 = C(I+1)
E(I+1) = T10
ELSE
T20 = C(I+1)
ENDIF
T31 = T10 + D(I+1)
A(I+1) = T31
3 T20 = T20 + T30

Figure 8 Example After Scalar Replacement
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transformer
|_—| (ParaScope) | ——l ————>  improved
Fortran Fortran
program compiler

—> original

Figure 9 Experimental design.

Livermore Loops. We tested scalar replacement on a number of the Livermore Loops. Some of the kernels
did not contain reuse detectable with dependence analysis; therefore, we do not show their results. In the
table below, we show the performance gain attained by our transformation system.

Loop | Iterations | Original | Transformed | Speedup
1 10000 3.40s 2.54s 1.34
5 10000 3.05s 1.36s 2.24
6 10000 3.82s 2.82s 1.35
7 5000 3.94s 2.02s 1.95
8 10000 3.38s 3.07s 1.10
11 10000 4.52s 1.69s 2.67
12 10000 1.70s 1.42s 1.20
13 5000 3.25s 3.01s 1.08
18 1000 2.62s 2.54s 1.03
20 500 2.99s 2.90s 1.03
23 5000 2.68s 2.35s 1.14

Some of the interesting results include the performances of loops 5 and 11, which compute first order
linear recurrences. Livermore Loop 5 is shown below.

DOSI=2,N
5 X(I) = 2(I) = (Y(I) - X(I-1))

Here, scalar replacement not only removes one memory access, but also improves pipeline performance. The
store to X(I) will no longer cause the load of X(I-1) on the next iteration to block. Loop 11 presents a
similar situation.

Loop 6, shown below, is also an interesting case because it involves an invariant array reference that

requires dependence analysis to detect.

DO 6 I= 2,N
DO 6 K= 1,I-1
6 W(I)= W(I)+B(I,K)*W(I-K)

A compiler that recognizes loop invariant addresses to get this case, such as the IBM compiler, fails because
of the load of W(I-K). Through the use of dependence analysis, we are able to prove that there is no
dependence between W(I) and W(I-K) that is carried by the innermost loop, allowing code motion. Because
of this additional information, we are able to get a speedup of 1.35.
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Linear Algebra Kernels. We also tested scalar replacement on both the point and block versions of LU
decomposition with and without partial pivoting. In the table below, we show the results.

Kernel Original | Transformed | Speedup
LU Decomp 6.76s 6.09s 1.11
Block LU 6.39s 4.40s 1.45
LU w/ Pivot 7.01s 6.35s 1.10
Block LU w/ Pivot 6.84s 4.81s 1.42

Each of these kernels contains invariant array references that require dependence analysis to detect. The
speedup achieved on the block algorithms is higher because an invariant load and store are removed rather
than just a load as in the point algorithms.

Applications. To complete our study we ran a number of Fortran applications through our translator. We
chose programs from Perfect, RICEPS and local sources. Of those programs that belong to the benchmark
suites, but are not included in the experiment, 5 failed to be successfully analyzed by PFC, 1 failed to compile
on the RS6000 and 10 contained no reuse opportunities for our algorithms. Most of those that contained no
reuse opportunities for our algorithm had some loop-independent or loop-invariant reuse that was captured
by the IBM XLF compiler. The table below contains a short description of each application.

Suite Application Description
Perfect Adm Pseudospectral Air Pollution
Arc2d 2d Fluid-Flow Solver
Flo52 Transonic Inviscid Flow
RiCEPS Shal Weather Prediction
Simple 2d Hydrodynamics
Sphot Particle Transport
Wave Electromagnetic Particle Simulation
Local CoOpt Oil Exploration
Seval B-Spline Evaluation
Sor Successive Over-Relaxation

The results of performing scalar replacement on these applications is reported in the following table. Any
application not listed observed a speedup of 1.00.

Suite Program | Original | Transformed | Speedup
Perfect Adm 236.84s 228.84s 1.03
Arc2d 410.13s 407.57s 1.01
Flo52 66.32s 63.83s 1.04
RiCEPS Shal 302.03s 290.42s 1.04
Simple 963.20s 934.13s 1.03
Sphot 3.85s 3.78s 1.02
Wave 445.94s 431.11s 1.03
Local CoOpt 122.88s 120.44s 1.02
Seval 0.62s 0.56s 1.11
Sor 1.83s 1.26s 1.46

The applications Sor and Seval performed the best because we were able to optimize their respective
computationally intensive loop. Each had one loop which comprised almost the entire running time of the
program. For the program Simple, one loop comprised approximately 50% of the program execution time,
but the carried dependence could not be exposed due to a lack of registers. In fact, without register-pressure
minimization, program performance deteriorated. Sphot’s improvement was gained by performing scalar
replacement on one partition in one loop. This particular partition contained a loop-independent partially
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available generator that required our extension to handle control flow. Although the codes in this study
did not often contain inner-loop conditional control flow, other applications may be found that require the
mapping of partial redundancy elimination.

The IBM RS/6000 has a load penalty of only 1 cycle. On processors with larger load penalties, such as the
DEC Alpha, we would expect to see a larger performance gain through scalar replacement. Additionally, the
problem sizes for benchmark are typically small. On larger problem sizes, we expect to see larger performance
gains due to a higher percentage of time being spent inside of loops.

CONCLUSIONS

In this paper, we have presented a method to expose the reuse available in array expressions in innermost
loops so that typical scalar optimizing compilers can allocate array values to registers. We have extended
previous work by handling forward conditional-control flow within innermost loops. To handle values that
are only partially available at their point of reuse, we have mapped partial redundancy elimination to scalar
replacement to ensure that values are fully available.

We have implemented our algorithm for scalar replacement within the ParaScope programming environ-
ment. Experimentation with this implementation has shown that integer-factor speedups over code gener-
ated by quality optimizing compilers are possible. We believe that the effectiveness of scalar replacement, as
demonstrated in our experiments, indicates that they should be included in every highly optimizing scalar
compiler .

Given that future machine designs are certain to have increasingly complex memory hierarchies, compilers
will need to adopt increasingly sophisticated strategies for managing the memory hierarchy so that program-
mers can remain free to concentrate on program logic. The transformations and experiments reported in
this paper represent an encouraging first step in that direction. It is pleasing to note that the theory of
dependence, originally developed for vectorizing and parallelizing compilers can be used to substantially
improve the performance of modern scalar machines as well.
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