Information Hiding in Parallel Programs
Ian Foster

CRPC-TR92276
May 1992

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

PREPRINT MCS-P290-0292

Information Hiding in Parallel Programs
by

Ian Foster

May 1992

Mathematics and Computer Science Division

Argonne National Laboratory {»«S \

Writers wishing to cite the work described in this
preprint are urged to contact the author to deter-
mine whether its publication has appeared in the
open literature. When possible, citation of the pub-
lished version of this work is preferred.

Information Hiding in Parallel Programs

Ian Foster
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439, USA

Abstract

A fundamental principle in program design is to isolate difficult or changeable
design decisions. Application of this principle to parallel programs requires identi-
fication of decisions that are difficult or subject to change, and the development of
techniques for hiding these decisions. We experiment with three complex applications,
and identify mapping, communication, and scheduling as areas in which decisions are
particularly problematic. We develop computational abstractions that hide such de-
cisions, and show that these abstractions can be used to develop elegant solutions to
programming problems. In particular, they allow us to encode common structures,
such as transforms, reductions, and meshes, as sofiware cells and templates that can
reused in different applications. An important characteristic of these structures is
that they do not incorporate mapping, communication, or scheduling decisions: these
aspects of the design are specified separately, when composing existing structures to
form applications. This separation of concerns allows the same cells and templates to
be reused in different contexts.

Keywords: information hiding; parallel programming; program composition; reuse; soft-
ware cell; template; virtual topology

1 Introduction

A fundamental principle in program design is to isolate difficult or changeable design
decisions, so that interfaces between program components are simple and unlikely to
change [24]. Application of this principle has been found to reduce design complexity,
facilitate reuse of components, and decrease the cost of modifications. In sequential pro-
gramming, good programmers routinely hide decisions concerned with data structures,
storage management, and hardware-dependent features. Multicomputer programs, which
coordinate the activities of hundreds or thousands of processors, necessarily involve addi-
tional design decisions. Hence we ask: Which of these decisions are particularly problem-
atic? Are there program-structuring techniques that can isolate these decisions?

We have conducted a series of programming experiments over the past several years
in an effort to answer these questions. These experiments have proceede: in conjunction
with an interdisciplinary investigation of the methods and algorithms required to execute
climate models on multicomputers. Numerical methods used in climate models are often
complex; parallel algorithms for these methods have correspondingly rich structures, with

unusual domain decompositions, irregular communication structures, and architecture-
dependent mapping strategies. Hence, such algorithms provide a demanding testbed for
design techniques.

In the first phase of these experiments, we designed and implemented numerous vari-
ants of three atmospheric modeling algorithms. This exercise revealed sources of com-
plexity, impediments to reuse, and costly design changes. Analysis showed that most
difficulties could be traced to design decisions concerned with the mapping to processors
of the subtasks and subdomains produced by an initial functional and/or domain decom-
position, the communication between these components, or the scheduling of tasks mapped
to the same processor.

In the second phase, we explored techniques for isolating such decisions. This led us
to develop an integrated set of four computational abstractions. Each of the first three
is responsible for hiding a different class of design decision: virtual topologies for map-
ping, virtual channels for communication, and lightweight processes for scheduling. The
fourth, the port array, is used when specifying communication decisions involving process
ensembles. Together, these abstractions allow us to develop program components with-
out committing to mapping, communication, or scheduling decisions, and to introduce
these decisions in a stepwise fashion when composing components to form more complex
programs. The components composed in this fashion can define the distributed compu-
tation structures that we call software cells, or may be templates that define a class of
possible cells, with the code to be executed in the cell provided as a parameter. In this
respect, the work complements and extends previous work [13], in which virtual channels
and lightweight processes were used to decouple mapping, communication, and scheduling
decisions, but cells and templates were not supported.

Run-time support required by the abstractions can be developed on an ad-hoc basis
for each application, integrated into message-passing tools, or encapsulated in program-
ming language constructs. We prefer the third approach, and have developed program-
ming language support for the abstractions for both Fortran and the concurrent language
PCN [6, 14]. Here, we work with PCN, which is supported by a public-domain compiler
developed at Argonne National Laboratory and Caltech [15].!

The rest of the paper is as follows. In Section 2, we present the three atmospheric
modeling algorithms used in programming experiments. In Sections 3 and 4, we analyze
design problems in these algorithms and introduce the computational abstractions that
we use to overcome these problems. In Section 5, we show how these abstractions are
encapsulated in PCN. In Section 6-9, we present a set of cells and templates and use these
to develop implementations for the algorithms. In Section 10, we compare our approach
with other work in parallel program design. We conclude in Section 11.

We have chosen to focus on a small set of atmospheric modeling algorithms in this
paper so as to provide the reader with a detailed understanding of our approach. However,
the techniques have also been applied in areas as diverse as computational chemistry,
computational biology, and optimization, each time with excellent results. Hence, we feel
justified in arguing that the approach is of general utility, and in recommending its use to
other developers of complex parallel programs.

1The software is accessible by anonymous FTP from info.mcs.anl.gov, directory pub/pen.

2 Parallel Algorithms for Climate Modeling

Computer climate models have at their core a numerical method used to simulate atmo-
spheric motion. This method must address the “pole problem”: the singularities that
arise at the poles in conventional coordinate systems. Accuracy and computational re-
quirements are also important. Recently, with the advent of parallel supercomputers,
suitability for parallel execution has become an important concern.

We present parallel algorithms for a spectral transform method on a latitude-longitude
mesh, a control volume method on an icosahedral mesh, and a finite difference method
on a composite mesh. Space does not permit more than a cursory description of the
methods themselves; the interested reader is referred to the excellent comparative article
by Browning, Hack, and Swarztrauber [5]. All three algorithms have been implemented
and extensively evaluated on parallel computers, including the 528-processor, 20-Gflops
Intel DELTA supercomputer [9, 12, 27].

2.1 Spectral Transform Algorithm

The spectral transform method is popular because of its spectral accuracy and its avoid-
ance of the pole problem. An arbitrary scalar field a(), p) on a latitude-longitude mesh
(physical space) is approximated by a truncated series of its spectral coefficients aj* (spec-

tral space) as follows:
m=M M

ahp)= Y Y anPR(me™, (1)
m=-M n=|m|
where P are the associated Legendre functions.

Computation is performed in both piiysical and spectral space. Data is transferred be-
tween the two spaces by forward and inverse spectral transforms. As Equation 1 suggests,
the forward transform can be implemented by a fast Fourier transform (FFT) followed
by a Legendre transform. The FFT operates on each latitude independently to produce
a set of intermediate quantities. The Legendre transform then operates on each column
of the intermediate array independently to produce the spectral coefficients. The inverse
spectral transform operates in the reverse sequence.

We obtain a parallel algorithm by decomposing the latitude/longitude mesh in two
dimensions to obtain equal-sized submeshes. Other data structures are also decomposed
appropriately. Parallel FFTs must be performed between submeshes containing the same
latitude, and parallel summations between submeshes containing the same longitude (12,
27]. In addition, parallel reductions over the entire mesh are required to produce diagnostic
quantities.

The subdomains produced by decomposition can be mapped to the nodes of a parallel
computer in several ways. Figure 1 shows three possible mappings of 2 latitude/longitude
mesh decomposed into 4 x4 submeshes to a 2x8 mesh computer. The first mapping results
in FFTs being performed along each row of the parallel computer, and global summations
along disjoint columns. The second mapping clusters nodes involved in the same FFT,
while the third mapping clusters nodes involved in the same summation. The optimal
mapping depends on machine architecture, problem size, and other factors [12].

<— FFT —> (1)01234567

T°123 8] 910] 11] 12| 13 14] 15

4151617 0T1[41581911213

S“'"’ 89 10| 11 @) 21376 70 11| 1a[15
1

Yy [12]13]14]15 3 [0] 4[1]5T2]6]3(7

8112| 9 [13]10]14[11[15

Figure 1: Alternative Mappings for the Spectral Transform

2.2 Control Volume/Icosahedral Mesh Algorithm

The icosahedral method is an explicit grid-point method and hence requires less commu-
nication than the spectral transform. In addition, the icosahedral grid is quasi-uniform
on the sphere. This grid is constructed from a spherical icosahedron with 12 nodes and
20 equilateral triangular surfaces. Each spherical triangle is further partitioned into N2
smaller triangles based on geodesic arguments. All points in this grid have six surrounding
triangles, except for the 12 principal nodes of the icosahedron, which have only five. At
each point, we connect by geodesic curves the centroids of the neighboring triangles to
produce the hexagons or pentagons that serve as the control area elements for numerical
integration [9].

For convenience in implementation, each triangle is joined with one of its neighbors to
form a rhombus; each of these 10 rhombi then contains an N X -\ mesh. The two polar
points are located in two separate “polar rhombi.”

Figure 2: Icosahedral Mesh Domain Decomposition

A second-order, conservative control volume method is implemented on this grid. The
use of hexagonal and pentagonal control elements means that computation at each point
requires data from either five or six neighboring points. For simplicity in exposition, v-o
shall assume a five-point stencil in subsequent discussion. However, the extension to the
mixed six/seven-point stencil is straightforward [9]. -)

We obtain a parallel algorithm by decomposing each nonpolar rhombus into a number

(say C?) of subrhombi. This gives a total of 10C? + 2 subdomains: 10C? meshes con-
taining (N/C)? points and two individual points (the polar rhombi). This organization is
illustrated in Figure 2, for C=4. Communication must be performed to obtain values from
neighboring subdomains during integration. In addition, a global reduction is required to
compute diagnostics. The design of an efficient mapping is complicated by the irregular
domain. On some parallel computers, it may be desirable to place two or more subdomains
on the same processor.

2.3 Finite Difference/Composite Mesh Algorithm

Our second explicit grid-point method avoids the pole problem by the use of two equal-
sized, overlapping square meshes, centered at the north and south poles. The surface
of the sphere is mapped onto these meshes as follows. The area on the sphere falling
above a specified L degrees of southern latitude (i.e., the northern hemisphere and an
overlap region) is mapped onto one mesh by using a stereographic projection; the southern
hemisphere is projected onto the other mesh in a similar fashion.

During computation, points within the projected region on each mesh are updated
by using a finite difference method. The finite difference computation within each mesh
requires the values of points within that mesh but outside the projected region. These
values are obtained by interpolation from the other mesh.

The parallel algorithm partitions each mesh into some number (e.g., C x C) of equal-
sized submeshes or charts, as illustrated in Figure 3. (The solid circles delimit the pro jected
regions in each mesh, and the dashed circles the interpolation regions.) Note that the
number of points falling within the projected region, and hence the amount of computation,
varies from chart to chart. Communication requirements also vary significantly. Charts
containing points within the projected or interpolation regions must exchange boundary
values with those neighboring charts that also satisfy this criterion. Some of these charts
must also exchange interpolation data with charts in the other mesh. Each chart hence
communicates with between 0 and 4 neighbors within its mesh and with 0 or more charts
in the other mesh. In addition, global reductions are required to compute diagnostics.

e o],

T T IN N

. N ". \\ \
'.\ ‘ // I~
~f-" ~~~~~ A +_...»lr

North South
Figure 3: Composite Mesh Domain Decomposition

(S]]

The mapping of subdomains to the nodes of a parallel computer is complicated by a
need for load balancing. As the amount of computation and communication performed
can vary significantly from chart to chart, we would like to map charts to processors in a
way that minimizes load imbalance while maintaining locality of communication between
neighbors. An optimal mapping is likely to require placement of several charts on a single
processor.

3 What Should be Hidden?

The three parallel algorithms share common characteristics. All are based on straightfor-
ward (if irregular) domain decompositions. All have complex communication requirements.
All require potentially complex and machine-dependent mappings which may place several
subdomains on some processors. All can be decomposed into simpler building blocks such
as mesh computations, FFTs, and reductions; however, each algorithm uses these building
blocks in different contexts and for different purposes.

As implementors of these algorithms, we wish to experiment with algorithmic and ar-
chitectural alternatives; hence, it should be easy to modify target architecture, mappings,
communication structures, grid point stencils, etc. It should be possible to reuse common
structures, so as to avoid duplication of effort involved in developing and optimizing code.
Finally, we wish to reduce the effect of communication latency by overlapping computation
and communication.

Analysis of these characteristics and requirements leads us to identify three classes
of design decision that are either difficult or likely to change: mapping, communication,
and scheduling. Mapping decisions are architecture-dependent and hence likely to change.
Communication decisions are difficult to change if, as is the case in many first-generation
message-passing systems, the location and identity of message receivers must be explicitly
specified in sender code. Scheduling is problematic if an algorithm overlaps computation
and communication: in most systems, this can be achieved only by intimate and complex
intermingling of the code for the various tasks mapped to a single processor.

We use a single example to illustrate the value of isolating mapping, communication,
and scheduling decisions. Recall that the spectral algorithm involves several parallel re-
ductions: one per longitude, and one over the whole mesh. It should be possible to reuse
the same code for each of these operations. However, as each reduction involves a differ-
ent set of processors, a different set of communication partners, and different scheduling
requirements, reuse is possible only if mapping, communication, and scheduling decisions
can be isolated and specified separately from the reduction algorithm. In the next section,
we shall see how this separation is achieved.

4 Information-Hiding Abstractions

We describe four abstractions that can be used to isolate mapping, communication, and
scheduling decisions: virtual topologies, virtual channels, lightweight prucesses, and port
arrays.

A virtual topology consists of a number of virtual processors, or nodes. Mapping inside

a program component is specified with respect to such a topology; the mapping of the
nodes of this topology to physical processors (or to the nodes of another virtual topology)
is specified by a separate mapping function, introduced when the component is incorpo-
rated in a larger program. Hence, mapping decisions (number and placement of virtual
processors) are isolated from algorithmic specifications. Hierarchies of such topologies
can be defined, allowing the programmer to compose layouts when composing program
components.

A virtual channel is a named, single-writer communication stream that supports read
and write operations; tasks can communicate if and only if they share a virtual channel.
A program component interacts with other components by reading and writing virtual
channels passed as arguments; the identity of these components is specified when the
component is incorporated in a larger program. Hence, communication decisions (identity
and location of communication partners) are isolated from algorithmic specifications. The
single-writer property of virtual channels means that a composition of two or more program
components that communicate via virtual channels is guaranteed to be deterministic if
the components are themselves deterministic. This property greatly simplifies program
development.

A program component can be decomposed into one or more lightweight processes. A
process is delayed if it is waiting for data on a virtual channel; otherwise, it is executable.
Executable processes are selected for execution according to some fair scheduling algo-
rithm. Hence, scheduling decisions are isolated in a scheduling algorithm: algorithmic
specifications need indicate only how tasks are to be distributed to virtual processors and
how tasks are to communicate.

The port array is a distributed array of virtual channels, with a specified number of el-
ements per node of the virtual topology in which it is created. An important characteristic
of a port array is that when passed as an argument to a program component executing in
a different virtual topology, its indices are remapped so that the new program component
is able to view it as a local port array declared in the new topology. This makes it possi-
ble to isolate communication decisions from algorithmic specifications, even when dealing
with ensembles of processes. A cell executing in a virtual topology can select input and
output channels from port arrays passed as arguments; connections between components
are established by the code that sets up these port arrays. As the port array is distributed,
these connections can be established in constant time.

4.1 Software Cells and Templates

An important aspect of these abstractions is that they permit us to define what we call
cells and templates. A software cellis a reusable parallel program component that executes
within a virtual topology. A cell definition specifies the processes that are to execute within
the topology, the code to be executed by these processes, and the port arrays to be used
for intercell communication. A cell definition does not specify mapping decisions (these
are encapsulated in the mapping function used to define the virtual topology), intercell
communication decisions (these are encapsulated in the code that sets up the port arrays
passed as arguments), or scheduling decisions (these are encapsulated in the scheduling
algorithm that supports lightweight processes). Hence, a cell definition can be reused

without change in different contexts.

The code to be executed by a cell may be specified by parameters, in which case we
refer to the cell definition as a template. Templates increase the potential for reuse by
allowing the same parallel structure to be used for different purposes.

As our terminology suggests, there are similarities between these mechanisms and
constructs used in VLSI design. A software cell is much like a VLSI cell, and the port
arrays used to connect cells resemble the arrays of pins used for the same purpose in VLSI.

4.2 Virtual Topologies

We provide additional information on virtual topologies. A topology comprises one or more
nodes and an associated type indicating how these nodes are organized. Simple topologies
include the point (a single node), the one-dimensional array, the two-dimensional mesh,
and the balanced binary tree. We shall also define more complex application-specific
topologies.

A mapping function is used to embed a virtual topology in a physical or virtual topol-
ogy. It specifies the type and size of the new topology and the embedding of its nodes
in the existing topology. A mapping may perform one or more of the following types of
transformation.

Reshaping: The new topology has a different type from its parent, or its nodes are
ordered differently — for example, a mapping that embeds an array of size m*n in
a mesh of size m X n.

Restriction: The new topology does not embed nodes in every node of its parent — for
example, a mapping that embeds an array in a row of 2 mesh.

Expansion: The new topology embeds more than one node in a node of the parent
topology — for example, 2 mapping that embeds two nodes in every parent node.

For example, the following pseudo-code specifies a restriction mapping row(r) that
embeds an array in the rth row of a mesh. The function topology() returns the parent
topology type. As the mesh has size mxn, the new topology has type array and size m; the
function oldnode specifies that node i (0 <i<m) is located in node i+r*m of the mesh.

function row(r):

if topology() !'= {"mesh",m,n} or r < 0 or r >= n then error
else return(
{"array",m}, /* Type of new topology */
m, /* Size of new topology */
oldnode(i) = i + r*m /* Embedding function */
)

A location function is used to specify relative or absolute positions within a topology.
It maps a node number and a topology type to a node nvmber. As examples, we specify
location functions node(i), which computes an absolute location i in any topology, and
north, which computes a relative location in a mesh. The function location() returns
the node number of the procedure that executes it.

8

function node(i): /* Absolute location */
if 1 < 0 or i >= nodes()-1 then error

else
return i /* New location */
function north: /* Relative location in mesh */
if topology() !'= {"mesh",m,n} or location() < m then error
else

return location()-m /* New location */

5 Using the Abstractions

Our presentation has so far focused on concepts. We now examine how virtual topologies,
virtual channels, lightweight processes, and port arrays can be used to develop parallel
programs.

Although some multicomputers- and operating systems incorporate certain of these
abstractions as primitive mechanisms (25, 11, 28], it will in general be necessary to provide
compile-time or run-time support. There is much to be gained from standardizing this
support so that it can be reused in many applications. It is also desirable to define
interfaces that encourage or enforce correct usage. :

One viable approach is to incorporate the necessary concepts in an extended message-
passing library. This can be layered on top of an existing message-passing library, and
may implement virtual topolcgies by accessing an indirection table when sending messages,
lightweight processes by using operating system facilities, and virtual channels by message
types.

We prefer the alternative approach of encapsulating the abstractions in language con-
structs. Responsibility for implementation then restsin a compiler. This reduces potential
for programmer error, allows more succinct specifications, and facilitates compile-time ver-
ification and optimization.

The language constructs required to support the abstractions are not complex and
can in principle be defined for any language. For example, we have defined appropriate
extensions for both Fortran and the high-level concurrent language Program Composition
Notation (PCN) [6, 14]. We choose to work with PCN here, as this already provides
elegant representations of virtual channels and lightweight processes and can be extended
straightforwardly to support virtual topologies and port arrays. We describe those aspects
of the extended PCN language that are relevant to the present discussion.

5.1 Extended PCN
The syntax of PCN is similar to that of the C programming language.

Lightweight Processes. A PCN solution to a programming problem is a set of proce-
dures, each with the following general form (k,! > 0).

name (arg,...,argk)
declaration;, ..., declaration;
block

A block is a call to a PCN procedure (or to a procedure in a sequential language
such as Fortran or C), a composition, or a primitive operation such as assignment. A
composition is written { op block;, ..., blockm}, n > 0, where op is one of “||”, “”,
or “?”, indicating that the blocks block;, ..., block,, are to be executed concurrently, in

sequence, or as a set of guarded commands, respectively. Blocks in a parallel composition
execute as lightweight processes.

Virtual Channels. Interprocess communication is expressed in terms of read and write
operations on specialized definitional variables. These variables are distinguished by a lack
of declaration, are initially undefined, can be written (defined) once using the primitive
operator “=", and once written cannot be modified. A process that requires the value of
an undefined variable blocks until the required data is available.

A shared definitional variable can be used to exchange a sequence (stream) of values
between a producer and a consumer. The producer sends a message by defining the shared
variable to be a structured term (a tuple) containing the message plus a new variable. This
process can then be repeated with the new variable. For example, the producer could use
the following sequence of operations to communicate the messages "hello" and "goodbye"
to any process with a reference to x. (The notation {e;,...,e,} denotes a tuple with
elements ey, ...,ep.)

x = {"hello",t}, t = {"goodbye",t2}, t2= [

A shared definitional variable provides an elegant implementation of a virtual channel,
with read and write operations on the variable corresponding to send and receive opera-
tions. A powerful feature of this data type is that it can be included in messages. This
allows channels to be established dynamically, as in the stream communication protocol
outlined in the preceding paragraph.

Location and Mapping. Programs invoke mapping functions to execute subcomputa-
tions within different virtual topologies. An annotation “in M” on a block denotes invo-
cation of mapping function M; it causes the block to execute within the virtual topology
returned by M.

Programs invoke location functions to place subcomputations on specific virtual pro-
cessors. An annotation “@ L” on a block location denotes invocation of location function
L; it causes the block to execute on the virtual processor with index returned by L.

Port Arrays. A port declaration creates a one-dimensional distributed array of defi-
nitional variables. A declaration “port P[N];” creates a port array P with N elements,
distributed blockwise across the nodes of the virtual topology in which the port array is
declared. For example, a declaration “port p[2*nodes()];” creates a port array p with

10

2*nodes() elements; p[2*i] and p[2*i+1] are located on the ith node of the current
topology (0<i<nodes(), where the function nodes () returns the number of nodes in that

topology).

Cells and Templates. Cell and template definitions use location functions to place
procedure calls within the current topology and may pass port array elements to individual
procedure calls. For example, the following template executes the procedure named by
parameter op on every node of the current topology, passing each call the local element of
port array P. The quantification i over 0. .nodes () -1 causes i to range over the nodes,
and the location function node(i) locates the ith call to op on the i node. The variable
op is quoted in the parallel composition to indicate that it is being used as a variable,
not a string. For clarity, we capitalize variable names denoting port arrays in this and
subsequent programs.

replicate(op,P)
port PJ;
{I| i over 0..nodes()-1 : ‘op‘(P[il) @ node(i) }

Execution of this procedure in a four-node array topology creates the following set of
processes, with the lines representing the port elements passed as arguments: the cell’s
interface to the outside world. These port elements can be used to establish connections
to other cells.

P(0] | P(1] P[2] 1’[3]I
| [

op| |OP| [OP] [©OP

For brevity, we shall sometimes use the following more compact representation of a
cell. This represents the same cell as the preceding figure, and indicates that the port P
is to be used for input.

MP
op

5.2 Ring Pipeline Example

We use an example to illustrate how PCN programs are developed by composing simpler
cells and templates. The following template creates a single process in each node of the
current topology and uses the local port array S to establish internal communication
streams between neighboring processes, so that each process has two streams, one shared
with each neighbor. The code to be executed at each node is provided as a parameter. In

11

addition, the ith node of this ring pipeline structure is given elements I[i] and 0[i] of
the two port arrays I and 0 passed as parameters, so as to allow communication with the
outside world. The “%” represents the modulus operator. As in C, the dimension of an
array passed as an argument is not specified.

ring_pipe(op,I,0)

port S[nodes()], 100, 00;

{Il i over 0..nodes()-1 :
‘op(I[il,0[i]l,s[(i+1)%nodes()],S[il) @ node(i)

}

The process structure created by this procedure can be drawn as follows, with the solid
lines indicating the port connections to the outside world and the dotted lines representing
internal streams.

1[0] I[1] I[2] I[3]

| — —/—= — — M| :
-|op|—|op|—|op |—|OP |~ OR op
Vo

o[0} Of11] o[2] O[3]

The following procedures implement simple input and output cells. The procedure
load reads values from a file and sends them to successive elements of the port array P;
the procedure store writes to a file values received on successive elements of port array
Q. Both use the sequential composition operator to sequence I/O operations.

load(file,P)
port P[J;
{ ; i over 0..nodes()-1 : read(file,stuff), P[i] = stuff }

store(file,Q)

port Q0J;
{ ; i over 0..nodes()-1 : write(file,Q[i]) }

We compose the three cells to obtain a program main that reads data from infile,
executes a user-supplied function in the ring pipeline (e.g., a naive N-body algorithm),
and finally writes results to outfile.

main(infile,outfile)

port Pi[nodes()], P2[nodes()];

{ll load(infile,P1),
ring_pipe(nbody(),P1,P2),
- store(outfile,P2)

12

Data flows from load to ring_pipe via port array P1 and from ring.pipe to store
via port array P2. This is illustrated in the following figure, which shows the cell structure
represented by program main, and the process structure that would be created on a four-
processor computer.

load
load
M / J O\ O\
rmg;{plpe L) op P> op P> 0p P> 0p u
P2
store \A\ ¢/
store

This program can be developed and tested on a uniprocessor. We can then experiment
with alternative mappings. Let us assume that the program main is invoked in a ring
topology (i.e., main(infile,outfile) in ring). Mapping decisions are then encapsu-
lated entirely within the mapping function ring. Possible mappings include the following.
(1) One ring node is placed on each processor. This is simple, but may prevent placement
of ring neighbors on adjacent processors. (2) Two ring nodes are placed on each processor.
This ensures that ring neighbors can always be located on adjacent processors. (3) Many
ring nodes are placed on each processor. This can be useful if there is significant variation
in the amount of work performed at different pipeline nodes, or if it desirable to overlap
computation and communication.

This example, although simple, illustrates most aspects of our approach. (One impor-
tant exception is restriction mappings, which will be demonstrated in subsequent exam-
ples.) Note how easy it is to change mapping decisions. No change to the application code
is required: only a mapping function need be modified, even if a mapping places more than
one subdomain (process) on a physical processor. Note also how logically distinct program
components are separated and packaged as reusable cells and templates. This separation
is possible because the cell definitions specify only local decisions; mapping decisions are
encapsulated in the mapping function that implements the ring topology, communication
decisions in the code that sets up the port arrays P1 and P2, and scheduling decisions in
a scheduling algorithm.

6 DBuilding Blocks

The climate modeling algorithms of Section 2, like the ring pipeline, can be constructed
from simpler building blocks. Here, we present six such cells and templates: ££t, reduce,
mesh, mesh_io, mesh_io2, and router. Some of these are illustrated in Figure 4. All six
interact with other components by means of port arrays. The first five operate loosely
synchronously: that is, each computation phase consumes one data item from each element
of an input port and produces one data item on each element of an output port. The sixth
operates asynchronously: data items can be received and processed independently. In
the Appendix, we show that the £ft and reduce cells can be expressed as instances of a
common template, butterfly. We also present an implementation of mesh_io2.

13

M N

M In Mln M In
fft reduce router mesh

: <
U Out U Out U Out

U W
Figure 4: Building Blocks

Cell fft(in_port,out_port): The f£ft procedure defines a cell that computes the fast
Fourier transform of distributed data. The data to be transformed is input on the elements
of in_port. The £ft nodes compute the transform and output the transformed data on
the elements of out_port.

Template reduce(op,in_port,out_port): The reduce template is used to define cells
that reduce distributed data by using a specified binary operator (e.g., maximum, addition)
and distribute the reduced value to the nodes participating in the reduction. The data
to be reduced is input on in_port. The reduce nodes reduce the data by using op, and
output a copy of the reduced value on each element of out_port.

Template mesh(op,nsi,nso,wei,weo): A variety of mesh templates can be defined to
implement different communication patterns, boundary conditions, etc. The mesh tem-
plate invokes op in each node of a 2-dimensional mesh and establishes communication
streams between each node and its north, east, south, and west neighbors. Communica-
tion streams to nodes on the edges of the mesh are taken from ports nsi, nso, wei, and
weo. The ports nsi and nso provide input and output on the north and south edges of
the mesh, and ports wei and weo provide input and output on the west and east edges.

Template mesh_io(op,i,o0,nsi,nso,wei,weo0): The related template mesh-io in ad-
dition associates an element of an input and output port with each node in the mesh.

Template mesh_io2(op,il,01,01,02): The template mesh_io2 provides two input and
output ports and no edge connections.

Cell router(in_port,out._port): A router cell provides general routing capabilities.
A message with the general form {i,msg} appended to any element of in_port causes the
specified msg to be appended to the ith element of out_port.

The router cell abstracts traditional message-passing facilities, with three extensions.
First, routing is performed within a user-defined virtual topology rather than a physical
computer. Second, messages transmitted via the router cannot interfere with other com-

‘munications. Third, the router provides a termination mechanism: it shuts down, defining

14

all elements of out_port to be the special element nil ([1), if all elements of in_port are
defined to be nil.

7 Spectral Transform Implementation

We now develop implementations for the algorithms presented in Section 2. Similar strate-
gies are employed in each case. We first define a virtual topology with the same structure
as the domain decomposition. Then, we develop the implementation by composing various
cells (e.g., mesh, FFT, reduction) in the framework of this topology. Finally, we specify the
mapping of the complete program, using the mapping function that defines the topology.

We first examine the spectral transform algorithm (Section 2.1). Recall that this
decomposes the latitude/longitude mesh into latxlong subdomains.

7.1 Virtual Topologies

We define a spectral mesh topology with the same structure as the domain decomposition:
i.e., latxlong nodes, organized as a mesh. The mapping function spectral.mesh for
this topology will be discussed in Section 7.3. We shall also require mapping functions
row(r) and col(c), which define subtopologies of type array comprising the rth row and
cth column of the spectral mesh, respectively. The mapping function row(r) has been
defined in Section 4.2; col(c) is similar.

7.2 Code Sketch

Recall that our parallel algorithm involves lat parallel FFTs (each operating on data
from long subdomains), long parallel summations (each operating on data from lat
subdomains), and one parallel summation that operates on all subdomains (Section 2.1).
As we illustrate in Figure 5, this structure can be constructed by composing two existing
components (reduce and £ft cells: Section 6) with the code to be executed within a single
node (submesh: shown as n).

—'ere—s_: (0 [n] (0] (]
@ @

—&3333&reduce& .[E[El
ul Jul el mimfnlio
Lej 1el [e e (ni (0] [n] [n]

Figure 5: Code Structure for Spectral Transform

This composition is specified in Figure 6. The top level composes a summation cell
with the procedure spectral, which executes within the spectral mesh topology. The
procedure spectral composes lat FFT cells, one per row of the spectral mesh; long

15

summation cells, one per column; and latxlong submesh processes, one per node. The
summation cells are instances of the reduce template.

Six port arrays are used to connect co-located processes from the various cells. The
ports i and o connect the global reduce cell to the rest of the program. The ports fti,
fto, 1ri, and lro connect the fft and local reduce cells to the submesh processes. In
total, each submesh process is passed six communication streams as arguments. These are
three input/output pairs, to the global summation cell, a FFT cell, and a local summation
cell, respectively.

sphere(lat,long)

port I[nodes()], O[nodes()];

{l| spectral(I,0,lat,long) in spectral_mesh(lat,long),
reduce(sum(),I,0)

}

spectral(I,0,lat,long)

port 100, 00;

port Fti[nodes()], Fto[nodes()], Lril[nodes()], Lro[nodes()];

{1l {Il i over 0..lat-1 : £ft(Fti,Fto) in row(i) 1},
{ll j over 0..long-1 : reduce(sum(),Lri,Lro) in col(j) },
{ll k over 0..nodes()-1 :

submesh(k,I[k],0(k],Fti(k],Fto[k],Lri[k],Lro(k]) @ node(k)

}

Figure 6: Code Sketch for Spectral Transform

Several aspects of Figure 6 bear careful study. First, consider the hierarchy of virtual
topologies used in this program. At the top level, we have some unspecified topology.
The mapping function spectral mesh reshapes this topology to create a structure with
the same shape as the spectral transform’s domain decomposition: this allows the parallel
algorithm to be developed independently of mapping issues. The mapping functions row
and col restrict the spectral mesh topology to create array subtopologies: this serves both
to locate the £ft and reduce cells correctly within the spectral mesh and to allow reuse
of these cell definitions, which create an appropriate process structure within the virtual
topology in which they are invoked. Finally, the location function node replicates the
submesh procedure throughout the spectral mesh topology.

Second, consider the techniques used to compose the cells spectral and reduce. The
ports I and O connect co-located process pairs from the two structures. The spectral cell
will generate periodically a data item on each element of I. The reduce cell receives these
values, performs internal communication to compute their sum, and outputs the sum on
each element of 0. The result computed is independent (modulo rounding differences) of
the mapping employed in the spectral structure, as specified by the mapping function
spectral mesh, as long as this mapping is one-to-one from nodes of the spectral mesh to

16

nodes of its parent topology, that is, as long as spectral mesh only reshapes and does
not expand or restrict. The techniques used to compose cells when a mapping is not
one-to-one are discussed in Section 9.3.

It is apparent that a substantial part of the program is formed from pre-existing build-
ing blocks; the application-specific code is primarily concerned with putting these blocks
together. Our abstractions, by separating mapping, communication, and scheduling deci-
sions from algorithm specifications, allow cells (in this case, £ft and reduce) to be used
in different contexts without modification. Mapping decisions are encapsulated in the row
and column operators that define the subtopologies in which the £ft and reduce cells
are executed. Communication decisions are encapsulated in the declarations of the port
arrays. Multiple processes (FFT, reduction, submesh) mapped to the same processor are
scheduled according to the availability of data. '

We complete this code sketch by outlining in Figure 7 the code executed within a
single submesh. This represents the application-specific computational code that must
be provided to complete the program. In essence, each submesh alternates between per-
forming computation with local data and communicating with cells that perform FFT,
local summation, and global summation operations. The submesh procedure initiates an
FFT or summation by sending a message on the appropriate communication stream. The
processes constituting this structure perform the transform or summation and eventually
return a result. This communication is encapsulated in the procedure exchange, which
sends a message in (to = [in|to1]) and concurrently awaits a reply out (fr ?= [o|f]
> ...

7.3 Mapping

We explore alternative mappings by changing the mapping function spectral mesh. (The
global summation structure is mapped separately.) For example, the following procedure
implements mapping (1) in Figure 1. It uses the identity function (oldnode(i) = i) to
embed each node of the new topology in the corresponding node of the old topology.

function spectral_mesh(lat,long):
if topology() != {"mesh",m,n} or m*n != lat*long then error
else return(
{"mesh",lat,long},
lat*long
oldnode(i) = i
)

The following procedure implements mapping (2) in Figure 1. The mapping function is
more complex, but remains manageable.

function spectral_mesh(lat,long):
if topology() !'= {"mesh",m,n} or m*n ‘= lat*long then error
else return(
{"mesh",lat,long}, -
lat*long,

17

submesh(id,to_gs,fr_gs,to_fft,fr_fft,to_sum,fr_sum)
{ ; init(id,state),
compute(state,to_gs,fr_gs,to_fft,fr_fft,to_sum,fr_sum)

}

compute(state,to_g,fr_g,to_f,fr_f,to_s,fr_s)
{ ; computei(state,fftdata),
exchange(fftdata,resultl,to_f,fr_f,to_f1,fr_£f1),

- compute2(resultl,state,sumdata),
exchange(sumdata,result2,to-s,fr_s,to_sl,fr_sl),
compute2(result2,state,diagnostics),
exchange(diagnostics,globsum,to_g,fr_g,to_gl,fr_gi),
compute(state,globsum,to_gl,fr_gi,to_£f1,fr_fi,to_si,fr_s1)

}

exchange(in,out,to,fr,tol,fr1)
{l] to = [inlto1],

fr 7= [olf] -> {l| out=o, fri=f}
}

Figure 7: Spectral Transform — Submesh Code

oldnode(i) = mm + nn*m

where 1s = sqrt(long)
i/long, 1n = illong
(1t%(m/1s))#*1s + 1lnils
(1t/(m/1s))*1ls + 1n/1s

1t
mm
nn

8 Control Volume/Icosahedral Mesh Implementation

Recall that the problem domain in the second algorithm consists of two polar points and
ten equal-sized rhombi (meshes) and that each mesh is partitioned into C? submeshes
(Section 2.2).

8.1 Virtual Topologies and Mapping

As in the spectral transform, we define a specialized virtual topology with the same
structure as the domain decomposition (Figure 2). The icosahedral mesh topology com-
prises ten C x C mesh structures and two polar nodes. We assume a mapping function
jcosahedral_mesh that defines a mapping for this topology. We shall also require map-
ping functions rhombus(i) and pole(j), defined below, which create subtopologies (of -
type mesh and point, respectively) comprising the nodes in the ith mesh or jth pole.

18

function rhombus(i):
if topology() '= {"icosahedral_mesh",C} or
i < 0or i>9 then error

else return(
{"mesh",C,C},
CxC,
oldnode(i) = r*C*C + i
)

function pole(i):
if topology() != {"icosahedral_mesh",C} or
i € 0or i> 1 then error

else return(
{"point",1},
1,
oldnode(i) = 10*CxC + i
)

The mapping function icosahedral.mesh is not presented here. We have observed that
on modern multicomputers such as the 528-node Intel Touchstone DELTA, performance
is not particularly sensitive to the mapping employed (9], as high-performance communi-
cation reduces the importance of locality. On machines where communication locality is
important, we can fold the virtual topology (locating two or more nodes per processor) so
as to reduce message latency.

8.2 Code Sketch

The parallel algorithm involves nearest-neighbor communication within each thombus and
more complex communication between rhombi and the poles. In addition, global reduc-
tions are used to compute diagnostic information (Section 2.2).

The code sketch in Figure 8 shows that this structure can be constructed by composing
two pre-existing components (mesh_io and reduce: Section 6) and an application-specific
procedure (interconnect). Ten calls to the mesh_io template establish intrarhombus
communication channels and create the processes that handle computation in submeshes.
One call to reduce creates the cell used to perform global reductions. The interconnect
procedure establishes interrhombus communication channels.

Note that the parallel program is specified as a template, with the code to be exe-
cuted at polar and nonpolar nodes provided as arguments. The mapping functions “in
rhombus(_)” and “in pole(.)” locate the rhombus cells and pole processes within the
icosahedral mesh topology.

The interconnect procedure establishes interrhombus communication channels by
connecting elements of ports nsi, nso, wei, and weo. For example, the following fragment
establishes communications betweea the southern edges of rhombi 0-4 and the northern
edges of rhombi 5-9. The rest of the procedure is similar.

{1l i over 0..4, j over 0..c-1:

19

sphere(meshop,poleop)

port I[nodes()], O[nodes()];

{Il ico(meshop,poleop,I,0) in icosahedral_mesh,
reduce(maximum(),I,0)

X

ico(meshop,poleop,I,0)

port 100,00;

port Nsi[nodes()],Nso[nodes()],Weilnodes()],Weo[nodes()];

{11 {Il i over 0..9 :

mesh_io(meshop,I,0,Nsi,Nso,Wei,Weo) in rhombus(i)

},
‘poleop‘(0,I,0,Nsi,Nso,Wei,Weo) in pole(0),
‘poleop‘(1,I,0,Nsi,Nso,Wei,Weo) in pole(1),
interconnect(Nsi,Nso,Wei,Weo)

}
Figure 8: Code Sketch for Icosahedral Mesh
{11 Nsi[i*c*c+j] = Nso[(i+5)*c*c+(c-1)*c+j])
Nso[i*c*c+j] = Nsi[(i+5)*c*c+(c-1)*c+j])
} @ node(i*c*c+j)
}

As in the spectral code, a substantial part of the program is formed from existing
building blocks. It is also instructive to examine what is involved in making various mod-
ifications. The reduction algorithm can be changed simply by substituting an alternative
template. A change to the numerical method’s stencil involves substitution of an alterna-
tive mesh template and some changes to interconnect. As always, alternative mappings
are specified simply by changing a mapping function. In each case, modifications are
restricted to a small piece of code.

9 Finite Difference/Composite Mesh Implementation

Recall that in the third algorithm the problem domain consists of two equal-sized meshes
and that each mesh is partitioned into C? equal-sized charts (Section 2.3).

9.1 Virtual Topologies and Mapping

As in the first two algorithms, we define a specialized virtual topology with the same
structure as the domain decomposition (Figure 3). The composite mesh topology com-
prises two meshes, each partitioned into C X C charts. We assume a mapping function
compositemesh that defines the mapping of this topology to a physical computer. We

20

shall also require mapping functions northern and southern, which create subtopologies
of type mesh, comprising just the northern and southern component of the composite
mesh, respectively.

Mapping is complicated by the fact that different charts perform varying amounts of
computation and communication. An optimal mapping should probably locate a varying
number of charts on different processors so as to minimize load imbalances. The use of
the composite mesh topology makes the implementation of this mapping strategy straight-
forward. The composite mesh program locates ore chart in each node of the composite
mesh topology. The composite mesh mapping function maps a variable number of nodes
to each physical processor.

9.2 Code Sketch

The parallel algorithm involves nearest-neighbor communication between charts within
each mesh and more complex intermesh communication for the purposes of interpolation.
In addition, global reductions are used to compute diagnostic information (Section 2.3).

The code sketch in Figure 9 shows that this structure can be constructed by compos-
ing three pre-existing components: mesh_io2, reduce, and router. The procedure solve
composes the procedure composite (in the composite mesh topology) and a reduce tem-
plate, used to implement the global summation. The procedure composite composes two
invocations of the mesh_io2 template and a router cell. Recall that the mesh_io2 template
takes two pairs of port arrays as arguments; in this case, these are used for communication
with the reduce and router cells.

The calls to mesh_io2 create sets of C? chart processes in the northern and southern
meshes and establishes the communication streams needed for communication between
neighboring charts in each mesh. Each chart process (except those on 2 mesh edge) has
connections to north, south, east, and west neighbors. Each process must determine
whether to engage in computation and which connections to use for communication.

The interpolation communication structure is complex and not easily defined in terms
of indices into port arrays. Fortunately, it is straightforward to construct the communi-
cation structure dynamically by using the router. First, each chart process determines
the data that it requires from other charts. Then, each chart uses the router to send a
message to each chart from which it requires data. This message contains a description
of the required data and a new definitional variable to be used for subsequent exchanges.
For example, if a chart A requires data D from a chart B, it uses the router to send a
message {D,S} to B, where S is a definitional variable. Upon receipt of this message,
B records the data to be sent to A (D) and the stream on which it must be sent (5).
As A also records §, this exchange dynamically establishes a channel between A and B.
Note that this exchange takes advantage of the virtual channel’s status as a first-class data
structure, which allows it to be included in messages.

Finally, each chart process possesses streams to and from neighbors in the grid, streams
on which it is to send interpolation data, and streams on which it is to receive interpola-
tion data. All necessary communication channels have been established, and each chart
process can proceed to execute a compute-communicate cycle similar to that defined for
the spectral transform submesh process (Figure 7).

21

main()
{ll solve() in composite_mesh }

solve()

port I[nodes()], O[nodes()];

{I| composite(I,0),
reduce(maximum(),I,0)

}

composite(I,0)

port I[d, 00, Rilnodes()], Ro[nodes()];

{l| mesh_io2(chart(0),I,0,Ri,Ro) in northern,
mesh_io2(chart(1),I,0,Ri,Ro) in southern,
router(Ri,Ro)

Figure 9: Code Sketch for Composite Mesh

9.3 Many-to-One Communication

The program in Figure 9 creates two cells (reduce and composite) within a composite
mesh topology. A deficiency of this formulation is that the composite mesh mapping is
unlikely to be optimal for the reduce cell, as we have assumed in Section 9.1 that it
would be optimized for the composite ccll. We would prefer to create the reduce network
directly on the underlying computer; in this way, any clever embeddings developed for the
reduce cell can be exploited. Hence, we rewrite the top level of the composite mesh code
as follows.

solve()

port I[nodes()], O[nodes()];

{l! composite(I,0) in composite_mesh,
reduce(maximum(),I,0)

}

Recall that this technique is applied in the spectral transform and icosahedral codes
(Figures 6 and 8). We did not apply it in Figure 9 because the mapping function
composite_mesh may ezpand as well as reshape the topology in which it is applied. That is,
it may place several nodes of the new topology on each node of the original topology. This
creates difficulties when we compose a cell defined on the new topology (e.g., composite)
with a cell defined on the parent topology (e.g., reduce): there is no longer a one-to-one
relationship between nodes in the two cells. (A swilar situation arises if the mapping
function used to produce the offspring topology performs a restriction operation.)

This turns out to be a common-situation; in fact, although we have ignored the possi-
bility, it can also arise in the spectral transform and icosahedral algorithms if the mapping

22

functions spectral mesh or icosahedral mesh expand and/or restrict as well as reshape.
Hence, we provide the following mechanism for dealing with many-to-one communication.
Consider two ports, the first of dimension 1 in the parent topology and the second of
arbitrary dimension in the expanded and/or restricted offspring topology. The primitive
operation connect, when invoked with these two ports as arguments, defines each element
of the first port to be a tuple containing those elements of the second port that are mapped
to the corresponding parent topology node.

More precisely: Let P be a port of dimension 1 defined in a topology T', and Q be a port
of dimension q defined in S, the subtopology of T’ obtained by the mapping function F. The
primitive operation connect(P,Q) defines each element P[i] of P, 0 < i <sizeof(T),to
be a tuple containing those elements Q[j*q¢+1],0<j <sizeof(S),0 < k < g, such that
the mapping function F locates the jth node of S in the ith node of T.

We use this mechanism in the procedure composite. Two additional ports are defined,
Li and Lo, and two connect calls are used to define each element of I and 0 to be a tuple
of port elements. The reduce cell most be modified to deal with tuples of streams as input
and output.

composite(I,0)
port I(d, 00J;
port Ri[nodes()], Ro[nodes()], Li[nodes()], Lo[nodes()];
{|| mesh_io2(chart(NORTH),Li,Lo,Ri,Ro) in northern,
mesh_io2(chart(SOUTH),Li,Lo,Ri,Ro) in southern,
router(Ri,Ro),
connect(I,Li),
connect(0,Lo)

10 Related Work

Program structuring and reuse are important themes in parallel computing research. These
themes are particularly visible in CSP [19], functional programming (21, 18], concurrent
logic programming [10, 16], object-oriented programming [1], and Unity [7]. Most of these
systems are based on lightweight process and message-passing ideas similar to those ex-
plored in this paper. However, for a variety of reasons, they do not support the same
forms of composition and reuse. CSP’s processes and channels cannot be created dynam-
ically or communicated in messages. Some of these restrictions can be removed (3], but
the overall model is static rather than dynamic. We have not emphasized the dynamic
aspect of our approach in this paper, but in practice we frequently generate or change the
configuration of software cells during program execution. In concurrent functional and
logic programming, the concept of a distributed array of channels is absent, making it
difficult to specify the composition of process ensembles. In concurrent object-oriented
programming, the concept of a channel is absent, making it difficult to specify determin. .
istic computations.

There are clearly similarities between our ideas and fundamental concepts of VLSI
design [23]. In particular, the notions of cell and port are used in an analogous manner,

23

to control complexity in large circuits. However, it is important not to be misled by the
obvious analogies. Software is more flexible than hardware and admits more general and
elegant solutions to many problems. For example, a software cell is not restricted to two
dimensions and need not be mapped to contiguous processors; software cells and wires can
overlap.

Concepts similar to our software cells and ports have been proposed by several re-
searchers, notably the iWARP group [2], Griswold et al. [17], and Browne et al. [4]. The
focus of iWARP is the generation of efficient programs for a systolic processor. Hence,
the forms of programs that can be specified is limited: the contiguous submesh is the only
topology supported and the number of channels is limited. Griswold et al. propose pro-
cess ensembles as a means of organizing data, computation, and communication. However,
their concepts do not support hierarchies of topologies. Browne et al. propose a compo-
sitional calculus for specifying interconnections between software chips. The integration
of this calculus into a programming notation is not discussed, and the notion of virtual
topology is absent.

The use of virtual topologies to abstract mapping decisions was first proposed by
Martin [22]. Hudak [20] and Taylor [26], among others, have used similar ideas to specify
mapping decisions in declarative programming systems. In Hudak’s scheme, arbitrary
integer functions can be used to specify both relative and absolute locations. Taylor uses
them to specify relative locations in an infinite computing surface. However, the important
concepts of mapping function and software cells are absent from these proposals.

Chien and Dally’s Concurrent Aggregates (CA) language allows the definition of ho-
mogeneous collections of objects called aggregates; messages addressed to an aggregate are
routed to one of its members [8]. As in our proposal, concurrent structures can be de-
fined and composed with other structures to build concurrent programs. However, issues
associated with spatial organization of such structures are not addressed.

We conclude with a note concerning what is currently the most common approach to
multicomputer programming, which we will refer to as “heavyweight message passing”.
In this approach, applications are structured as heavyweight processes, one per physical
processor; processes communicate by sending and receiving messages. Unfortunately, this
structure fails to isolate design decisions concerned with mapping, communication, and
scheduling. As only one process can be located on each processor, and messages must be
directed to processors, logically disjoint design decisions become inextricably intertwined
and are clearly visible in module interfaces. As a consequence, programs become complex
and inflexible, and reusable libraries are hard to define. It is important to realize that in
many cases these difficulties are not inherent in programming problems but are instead
artifacts of this particular approach.

11 Conclusions

Research in sequential programming has demonstrated the value of isolating design de-
cisions that are difficult or likely to change. We have argued that in multicomputer
programs, design decisions concerned with mapping, communication, and scheduling are
problematic and hence deserving of encapsulation. We have described four computational

24

abstractions that together allow these decisions to be isolated and hidden. Virtual topolo-
gies, virtual channels, and lightweight processes provide mechanisms for isolating mapping,
communication, and scheduling decisions, while port arrays allow these techniques to be
applied to program components that must execute on many processors.

In addition to describing the abstractions, we have shown how they can be encapsulated
in programming language constructs, and have outlined solutions to three substantial
parallel programming problems. These code sketches indicate how the abstractions allow
complex programs to be developed by composing existing templates, and how mapping,
communication, and scheduling decisions can be separated from algorithmic specifications.
As a consequence, changes that in most programming systems would be extremely difficult
(e.g., exploring a different mapping) can be accomplished by changing a few lines of
code. Similarly, overlapping of computation and communication, normally difficult to
accomplish, is achieved automatically.

We believe that the most significant aspect of this work is that it is now possible to
define truly modular (and hence reusable) parallel libraries. In particular, we are able to
define cells: parallel program components with specified internal logic and external com-
munication ports, but encapsulating no mapping, communication, or scheduling decisions.
Instead, these decisions are isolated in the code used to compose cells to form applications.
Thus, the same cell can be used unchanged in different contexts. Even greater flexibility
is provided by templates: cell definitions parameterized with the code to be executed at
each node.

We have assumed in this paper that all cells are implemented with the same tech-
nology (PCN). However, there is no reason why cells should not be implemented using
different techniques (e.g., message-passing libraries or data-parallel languages), as long as
implementations do not encapsulate mapping, communication, or scheduling decisions.

Acknowledgments

This research was supported by the Applied Mathematical Sciences subprogram and the
Atmospheric and Climate Research Division of the Office of Energy Research, U. S. Depart-
ment of Energy, under Contract W-31-109-Eng-38. Development of PCN was sponsored
by the National Science Foundation’s Center for Research in Parallel Computation un-
der Contract NSF CCR-8809615. We thank fellow participants in the CHAMMP climate
modeling program at Argonne National Laboratory, the National Center for Atmospheric
Research, and Oak Ridge National Laboratory for assistance with development of sequen-
tial and parallel codes.

References

(1] Agha, G., Actors, MIT Press, 1986.

[2] Borkar, S., et al., iWarp: An integrated solution to high-st.>2d parallel computing,
Proc. Supercomputing Conf., 330-339, 1988.

[3] Brinch Hansen, P., Joyce — a programming language for distributed systems, Softw.
P. and F., 17, 29-50, 1987.

[4] Browne, J., Werth, J., and Lee, T., Intersection of parallel structuring and reuse

of software components, Proc. Intl Conf. on Parallel Processing, Penn. State Press,
1989.

[5] Browning, G., Hack, J., and Swarztrauber, P., A comparison of three numerical
methods for solving differential equations on the sphere, Mon. Wea. Rev., 117 (3),
1989.

[6] Chandy, C., and Taylor, S., An Introduction to Parallel Programming, Jones and
Bartlett, 1991.

[7] Chandy, K. M., and Misra, J. Parallel Program Design, Addison-Wesley, 1988.

[8] Chien, A., and Dally, W., Concurrent Aggregates, Proc. ACM Symp. on Principles
and Practice of Parallel Programming, ACM, 1990, 187-196.

[9] Chern, I., and Foster, 1., Design and parallel implementation of two methods for
solving PDEs on the sphere, Proc. Conf. on Parallel Computational Fluid Dynamics,
Stuttgart, Germany, Elsevier Science Publishers B.V., 1991.

[10] Clark, K., and Gregory, S., A relational language for parallel programming, Proc.
1981 ACM Conf. on Functional Programming Languages and Computer Architectures,
1981, 171-178.

[11] Dally, W. J., et al., The J-Machine: A fine-grain concurrent computer, Information
Processing 89, G. X. Ritter (ed.), Elsevier Science Publishers B.V., North Holland,
IFIP, 1989.

(12] Foster, I., Gropp, W., and Stevens, R., The parallel scalability of the spectral trans-
form method, Mon. Wea. Rev., March 1992.

[13] Foster, L., Kesselman, C., and Taylor, S., Concurrency: Simple concepts and powerful
tools, The Computer Journal, 33(6):501-507, 1990.

[14] Foster, L., Olson, R., and Tuecke, S., Productive parallel programming: The PCXN
approach, Scientific Programming, 1(1), 1992 (in press).

[15] Foster, I., and Taylor, S., A compiler approach to scalable concurrent program design,
Technical Report, Argonne National Laboratory, 1992.

[16) Gregory, S., Parallel Logic Programming in PA RLOG, Addison-Wesley, 1987.

[17] Griswold, W., Harrison, G., Notkin, D., and Snyder, L., Port ensembles: A commu-
nication abstraction for nonshared memory parallel programming, Proc. Intl Conf.
on Parallel Processing, Penn. State Press, 1990.

(18] Hendersdn, P., Functional Programming, Prentice-Hall, 1980.

26

[19] Hoare, C., Communicating sequential processes, CACM, 21(8), 666-677, 1978.
[20] Hudak, P., Para-functional programming, IEEE Computer, 60-70, Aug 1986.

[21] Kahn, G., The semantics of a simple language for parallel programming, Proc. IFIP
Congress 74, North Holland, 1974.

[22] Martin, A., The torus: An exercise in constructing a processing surface, Proc. Conf.
on VLSI, Caltech, 52-57, Jan. 1979.

[23] Mead, C., and Conway, L., Introduction to VLSI Systems, Addison Wesley, 1980.

[24] Parnas, D., On the criteria to be used in decomposing systems into modules, C4ACM
15(2), 1053-1058, 1972.

[25] Seitz, C. L., Multicomputers, Developments in Concurrency and Communication,
C.A.R. Hoare (ed.), Addison-Wesley, 1991.

[26] Taylor, S., Parallel Logic Programming Techniques, Prentice-Hall, 1989.

[27] Walker, D., Drake, J., and Worley, P., Parallelizing the spectral transform method —
Part II, Tech. Rep. ORNL/TM-11855, Oak Ridge National Laboratory, Oak Ridge,
Tenn., 1991. (Available from DOE Office of Scientific and Technical Information.)

[28] Young, M., et al., The duality of memory and communication in Mach, Proc. 1l1th
Symp. on Operating System Principles, ACM, 63-76, 1987.

Appendix: Implementation of Building Blocks

We present PCN implementations for three building blocks used in this paper. The
brief descriptions that accompany the programs highlight selected features but do not
explain all details.

Butterfly Template. Both the reduce and £ft cells (Section 6) can be defined in terms
of a butterfly template, which creates cells with a butterfly network as their internal
communication structure. The template operates loosely synchronously and is invoked as
butterfly(op,In,Out). Each time data arrives on the port array In, the supplied op
is invoked with the message and a list of butterfly communication streams as arguments.
The value returned by op is output on Out.

A possible implementation is given in Figure 10. The code verifies that the number of
processors (p) is a power of two, declares a port Ps of dimension log, p (for the butterfly
communication streams), and creates a streams and bflynode process on each node of the
current topology. Each streams process collects log, p input streams and log, p output
streams for its node. The bflynode processes handle the actual computation: when a
message arrives on in, a process invokes the supplied op with the message and a vector of
communication streams as arguments. The value réturned by the operator is output on
out.

27

The supplied program maps the ith node of the butterfly (0 < i < p) to the ith node of
the current topology. This mapping is efficient in an array topology but not necessarily in
other topologies. A more sophisticated implementation would specify alternative mappings
for different architectures.

Reduce Template. The reduce template reduces a set of values received on one port
array, using a supplied binary operator, and broadcasts the result of the reduction opera-
tion on another port array. This operation can be programmed with a butterfly network,
as shown in Figure 11. Note the use of the butterfly template, parameterized with the
reduce_bfly procedure. In each of log, p phases (one per element on the list of streams
passed to reduce_bfly), each node sends a partially reduced value to another node in the
network, receives a partially reduced value, and performs a reduction operation.

Mesh Template. An implementation of the mesh_io2 template is provided in Fig-
ure 12. This program actually implements a torus with wrap-around connections between
west /east and north/south edges, as the edge connections are ignored by the composite
mesh code that uses this template, and it is simpler to wrap the edges connections than
to leave them unconnected. Note how the call to op is passed the appropriate elements of
I1, 01, I2, and 02, as well as N, E, S, and W. (The macro I(i,j) is used to compute port
array indices, as two-dimensional port arrays are not supported directly.) The location
function mesh_node is used to locate the calls to op within the mesh topology.

2¢

butterfly(op,In,Out)
port In(], Out(];
{l| power_of_two(nodes(),r),

{ ? r == "false" -> error(),
default -> {|| log2(nodes(),12),
bfly(op,In,Out,12)
}
}
}
bfly(op,In,0ut,12)

port In{J, Out[], Ps[12*nodes()];
{l] i over 0..nodes()-1 :
{l| streams(i,12,12-1,i,1,Ps,is,o0s),
bflynode(op,In[i],Out[i],is,os) } @ node(i)
}

streams(i,12,1,ii,k,Ps,is,o0s)

port Ps[J;

{721>0->{ll {7 iif2 ==0 -> si = {"+",Ps[1%12 + i+k]},
iif2 1= 0 -> si = {"-",Ps[1*12 + i-k]}

},
so = Ps[1*12 + i],
is = [silis1], os = [solosi],

streams(i,12,1-1,ii/2,k*2,Ps,is1,0s1)
},
default -> {l| is=[1, os=[1}
}

bflynode(op,in,out,is,os)
{ ? in 7= [idlin1] ->
{11 ‘op‘(id,od,is,os,is1,o0s1),
out = [odlouti],
bflynode(inl,outl,isl,os1)

Figure 10: Butterfly Template

29

reduce(op,In,Out)
port In(d, Out(d;
{11! butterfly(reduce_bfly(op),In,Out)

reduce_bfly(op,in,out,is,os,is1,o0s1)
{ ? os ?= [olos2] ->
{Il o = [inlo1], os1 = [o1los3], /* Send IN on 0 */

is 7= [{_,[vlil}lis2] -> /* Recv V on I */
{Il ‘op‘(in,v,newv), /* Reduce IN and V */
ist = [{_,i}1is3], /* Prepare to recurse */

reduce(op,newv,out,is2,052,133,033)
}
1,

os 7= [J -> {l| out=in, isi=[, osi=[1} /* Done */

Figure 11: Reduction Template

#define I(i,j) (((()+m)/m)*n + ((j)+n)in)

mesh_io2(op,I1,01,I12,02)
port I100,010],1200,020;
port N[nodes()],E[nodes()],S[nodes()],W[nodes(0];
{ ? topology() 7= {"mesh",m,n} ->
{I! i over 0..m-1 :
{Il j over 0..n-1 :
‘op (I1[I(i,j)], 01[I(i,§)], I2[1(i,)], 02[1(i,)],
{N[I(i,j)], ELICG,HI, slId,j)I, wiId, 1,
s[I(¢i-1,j)], WII(i,j+1)],
N[I(i+1,j)], E[I(3,j-11}
) @ mesh_node(i,j)

Figure 12: Mesh Template

30

Mathematics and Computer Science Division
Building 221

Argonne National Laboratory

Argonne, Illinois 60439-4844

Recent Preprints:

J. N. Lyness, *“On Handling Singularities in Finite Elements,” MCS-P271-1091.

G. Kirlinger and G. F. Corliss, **On Implicit Taylor Series Methods for Suff ODEs,”” MCS-P272-1191.
Robert M. Corless and George F. Corliss, *“Rationale for Guaranteed ODE Defect Control,” MCS-P273-1191.

Christian H. Bischof, Biswa N. Datta, and Avijit Purkayastha, ““A Parallel Algorithm for the Multi-input Sylvester-
Observer Equation,’ MCS-P274-1191.

E. Lusk and L. Wos, “Benchmark Problems in Which Equality Plays the Major Role,” MCS-P275-1191.
J. N. Lyness and T. Sorevik, *“Latice Rules by Component Scaling,” MCS-P276-1191.
Mark Jones and Paul Plassmann, *“Scalable Iterative Solution of Sparse Linear Systems,” MCS-P277-1191.

C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland, “ADIFOR: Fortran Source Translation for Efficient
Derivatives (ADIFOR Working Note #4),” MCS-P278-1291.

M. K. Kwong, “A Dirichlet Problem with Infinite Multplicity,” MCS-P279-1291.

J. Zhang and L. Wos, “Automated Reasoning and Enumerative Search, with Applications to Mathematics,” MCS-
P280-1291.

J. Gamer, M. Spanbauer, R. Benedek, K. J. Strandburg, S. Wright, and P. Plassmann, *Critical Fields of Josephson-
Coupled Superconducting Multilayers,” MCS-P281-1291.

Ping Tak Peter Tang, *“Dynamic Condition Estimation and Rayleigh-Ritz Approximation,* MCS-P282-1291.

Richard G. Carter, “A Worst-Case Example Using Linesearch Methods for Numerical Optimization with Inexact Gra-
dient Evaluations,” MCS-P283-1291.

Gui-Qiang Chen, Qiang Du, and Eitan Tadmor, “Spectral Viscosity Approximations to Multidimensional Scalar Conser-
vation Laws,” MCS-P284-1291.

Larry Wos, “The Problem of Reasoning from Inequalities,” MCS-P285-0192.

Christian H. Bischof and Xiaobai Sun, “A Divide-and-Conquer Method for Tridiagonalizing Symmetric Matrices with
Repeated Eigenvalues,”” MCS-P286-0192.

Ewing Lusk, *“Performance Visualization for Parallel Programs,” MCS-287-0192.

C. Bischof, A. Carle, G. Corliss, and A. Griewank, “ADIFOR Automatic Differentiation in a Source Translator
Environment (ADIFOR Working Note #5),” MCS-P288-0192.

L. Wos, *“The Problem of Choosing between Using and Avoiding Equality Predicates,” MCS-P289-0192.

W. McCune and L. Wos, “Application of Automated Deduction to the Search for Single Axioms for Exponent
Groups,' MCS-P291-0292.

P. Plassmann and M. Jones, “The Effect of Many Color Orderings on the Convergence of Iterative Methods,” MCS-
P292-0292.

P. Takac, “Dynamics on the Attractor for the Complex Ginzburg-Landau Equation,” MCS-P293-0392.

