-

Mapping Realistic Data Sets on
Parallel Computers

R. Ponnusamy
A. Choudhary
G .Fox

CRPC-TR92265
September 1992

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

SCCS - 366

Mapping Realistic Data Sets on Parallel Computers

by
R. Ponnusamy, N. Mansour, A. Choudhary, and G. C. Fox
Technical Paper

submitted to
IPPS ‘93

September, 1992

Syracuse Center for Computational Science
Syracuse University
111 College Place
Syracuse, New York 13244-4100
<sccs@npac.syr.edu>
(315) 443-1723

Mapping Realistic Data Sets

on Parallel Computers

R. Ponnusamy N. Mansour A. Choudhary
G. C. Fox

Northeast Pé.ra.llel Architectures Center
111 College Place, Suite 3-201

Syracuse University
Syracuse, NY 13244-4100

Abstract

Mapping data to parallel computer aims at minimizing the execution time of the
associated application. However, it can take unacceptable amount of time in compari-
son with the execution time of the application if the size of the problem is large. In this
paper, we propose reducing the problem size by a mapping-oriented graph contraction
technique. We present a parallel graph contraction (PGC) heuristic algorithm that
yields smaller representation of the problems to which mapping is then applied. The
mapping solution for the original problem is obtained by straight- -forward interpola-
tion. The experimental results show that the PGC algorithm still leads to good quality
mapping solutions to the original problem, while producing remarkable reductions in
mapping time. The PGC algorithm allows large-scale mapping to become efficient,
especially when slow but high-quality mappers are used. ‘

1 Introduction

Given an application based on an algorithm, a, and a data set, D, the data mapping prob-
lem refers to mapping disjoint subsets of D to the processors of a distributed-memory mul-
tiprocessor such that the execution time of the application, tapp, on the multiprocessor is
minimized. Data mapping is an NP-hard optimization problem, and several heuristic and
physical optimization algorithms have been proposed for finding good sub-optimal mapping
solutions. Examples of heuristic algorithms are recursive bisection [Berger and Bokhari
1987; Dragon and Gustafson 1989; Fox 1988; Pothen et al. 1990; Simon 1991}, mincut-based
heuristics [Ercal 1988], clustering and geometry-based mapping [Chrisochoides et al. 1991;
Farhat 1988; Houstis et al. 1990; Lee and Aggarwal 1987; Sadayappan and Ercal 1987], and
scattered decomposition [Fox et al. 1988]. Examples of physical optimization algorithms are
simulated annealing [Flower 1987; Fox et al. 1988; Mansour and Fox 1992b; Williams 1991],
neural networks [Byun et al. 1992; Fox and Furmanski 1988; Mansour and Fox 1992b], and
genetic algorithms [Mansour and Fox 1992a].

For large data-sets, the high-quality physical optimization (PO) mapping algorithms are
very slow [Mansour 1992). Their execution time is unacceptable when compared with typical
execution times of applications using the data sets. In fact, the same assessment holds even
for faster good-quality heuristic mapping algorithms, such as recursive spectral bisection
(RSB) [Pothen et al.]. For example, mapping takes non-trivial amount of time relative to
the actual solution time when the date set is reasonably large [Das et al. 1991]. Therefore,
for realistic applications, we need to minimize the sum of tapp and tmap, Where tmap is the
mapping time. That is, the goal is to reduce the mapping time significantly while preserving
a favorable mapping quality.

An approach to reducing tmap is to shrink the problem first, and then map the reduced-
size problem to the multiprocessor. The mapping solution of the: coarse problem can be
simply interpolated to yield the mapping solution of the original problem. The need for such
an approach has been recognized in previous works [Fox 1988; De Keyser and Roose 1991].
However, its implementation has not had much attention. We note that Nolting [Nolting
1991] has proposed the formation of blocks of data objects during the process of generating
the data set itself. This technique may be useful for the data and apphcatlon dealt with in
[Nolting 1991}, but it lacks flexibility and generalizability.

In this paper, we propose graph contraction for reducing the problem size prior to map-
ping. For example, to study air flow over an aircraft, the structure of the aircraft can be

represented as an 3D unstructured mesh [Mavriplis] and the flow variables are computed only

at the vertices of the mesh. In a typical mesh representation, for a good quality solution,
there will be thousands of vertices and millions of edges connecting the vertices in the mesh.
Efficiently mapping such a realistic mesh, as it is, onto a multiprocessor system might take
more time than the solution time. We propose to merge (cluster) the vertices of the original
mesh to form a contracted mesh maintaining the edges between the vertices. The contracted
mesh is given as input to the data mapping algorithms. Since the problem size is reduced
the mapping can be done in an acceptable amount of time. The result of contracted mesh
mapping can be used to map the original mesh. We present a parallel graph contraction
(PGC) heuristic algorithm oriented to satisfying the requirements of the mapping step. One
of these requirements is that its execution time, ¢pgc, is significantly smaller than ¢map. That
is, the ultimate goal can be recast as the minimization of the total sum: (fpgc + tmap + tapp)-
Also, PGC is not restricted by assumptions about the problem structure and thus enjoys
general applicability. The results show remarkable savings in mapping time, while preserving
good mapping solutions.

This paper is organized as follows. Section 9 describes the data mapping problem. Section
3 explains graph contraction and discusses requirements for guiding the development of the
graph contraction heuristics. Section 4 presents a sequential graph contraction algorithm.
Section 5 presents a parallel algorithm based on the sequential one. Section 6 describes how
graph contraction can be employed by PO and other mapping algorithms. Section 7 presents
and discusses the experimental results. We use a Parallel Genetic Algorithm (PGA) mapper
to evaluate the performance of the PGC algorithm. Section 8 presents conclusions and future

work.

2 Data mapping

To characterize processor workloads for a data mapping instance, we define a computation
graph, Gc = (Ve, Ec), where its vertices, V¢, represent the data set and its edges, Ec,
represent the computation dependences among the data objects specified by the particular
algorithm, «a, used by the application. Hence, the degree, 0(v), of a vertex ‘v determines
its computation weight. The two terms, data objects and computation graph vertices, will
henceforth be used interchangeably. We note that in this representation the weights of
edges, £(v,u), are unity for all vertices v and u. Automatic methods for determining com-
putation graphs are discussed in [Ponnusamy et al. 1992] and [Balasundaram et al.]. The
multiprocessor to which G, is mapped, is also represented by a graph Gu = (Var, Em). The

vertices, Vi, refer to the processors, and the edges, Eu, refer to their interconnections. Data

2

mapping becomes a function from Vg to Vi such that tapp is minimized. A data mapping
configuration can be represented by an array MAP[v], for v =0 to |Ve| — 1, where MAP{v]
is the processor number, from 0 to |Va| — 1, to which v is mapped. For a given configuration
MAP[v], the workload of a processor, p, is composed of computation and communication
components. The computation load is determined by the sum of the degrees of the vertices
mapped to p. The communication cost is determined by the sum of the numbers of boundary
vertices, B(p, q), with other processors ¢. A vertexis a boundary vertex if it has an incident
edge whose other end is a vertex mapped to a different processor; we refer to such an edge
as crossedge. Thus, a high-quality mapping solution is that which balances computation
loads among the processors and minimizes interprocessor communication. A more formal

formulation of the mapping problem is given in [Mansour 1992].

3 Mapping-oriented graph contraction

In this section, we explain pre-mapping graph contraction and its parameters. We also discuss
the requirements of data mapping that should guide the development of graph contraction
heuristics.

The basic graph contraction operation involves merging two adjacent vertices, v; and vj,
to form a supervertex v;; whose computational weight is ©(vi;) = O(v;) + O(v;). vi and v;
are henceforth referred to as partner vertices. Merging two vertices, v; and vj, is equivalent
to the contraction of the edge connecting them. Also, a superedge connecting supervertices
v;; and Uam is assigned a weight £(Vij, Unm) = Lu,cvijivy€vam £(ve, vy), where §(vz,vy) =1
initially.

The contract-and-merge operations are applied to all vertices in the graph in an iteration
k. The number of such iterations is equal to a user-defined level of contraction determined

by the parameter |
Ve

x=In (1)
W |

where |V;|y is the size of the contracted graph and (X) is the nearest higher power of 2

integer to X. Equivalently, the level of contraction is determined by the parameter

LA™
5= Vol (2)

the ratio of the sizes of the contracted graph and the multiprocessor. Graph contraction,
with parameter x , leads to big reduction in the search space of data mapping from | Vag|1Ve!
to |Var|™V<l , where k|V,]| is the size of the contracted graph and can be considerably smaller

3

than the original size, |V.| . This makes the mapping of contracted graphs a much faster
step.

When mapping a contracted graph, the weights of supervertices determine the computa-
tional workload of processors, and the edge weights affect the interprocessor communication
cost. Hence, for mapping purposes, an optimally contracted graph would be a fairly homo-
geneous weighted graph that involves relatively small edge weights. That is, optimal graph
contraction is identical to finding an optimal solution to the mapping problem, which is
intractable. Therefore, we can only hope for reasonable heterogeneous contracted graphs.
The heterogeneity of contraction contributes to placing an upper bound on the contraction
parameter, x , as shown in Section 7. On the other hand, PO mapping algorithms have
degrees of flexibility and adaptability, which allows them to utilize graph contraction despite
non-optimality.

Based on these considerations, the requirements guiding the development of graph con-
traction heuristics can be stated as follows. The first requirement is making edges with large
weights intra-supervertices edges, ensuring that most of the inter-supervertices edges have
relatively small weights. This requirement helps in reducing the communication cost in a
mapping configuration. The second requirement is having a small average supervertex degree
in the contracted graph. Small supervertex degrees are useful for decreasing the number of
communicating processors, and hence the communication cost, in a mapping configuration.
The third requirement is keeping the Omaz t0 Omin ratio as small as possible; smaller vari-
ations in the weights of the vertices of a contracted graph reduces heterogeneity and yields
smaller size graphs. This requirement is also necessary to support the second requirement.
The fourth requirement is that a graph contraction heuristic algorithm must be efficient; its

execution time must be smaller than the mapping time.

4 Sequential graph contraction algorithm

A sequentiél graph contraction (SGC) heuristic algorithm which aims for satisfying the above
mentioned requirements is presented in this section.

An outline of SGC is given in Figure 1 . In each contraction iteration, k, pairs of vertices,
i.e. partners, are selected from G'c‘;'l, to be merged. The first vertex, v;, is that which has
the minimum ©(v;). Its partner,v; , is an unpaired vertex adjacent to v; with maximum
£(vi,v;). If v; does not exist, v; becomes a vertex of G&. The way v; is selected ensures
that vertices with smaller weights are merged before those with larger weights, which limits

the differences in the weights of supervertices in G&. It has been observed that this yields a

Input: Gg(Ve, Ec); X;
Oo(v) = 8(v); bo(vi,v;) = 1; [Velo = [Vels
fork =1to x do
Counting-Sort();
repeat (of order of |V|k-1)
v; = unpaired vertex with minimum ©x_,(v;);
/* find v;’s partner, if exists */
if k =1 then
v; = randomly chosen unpaired vertex adjacent to v;, if exists;
else
v;= unpaired vertex adjacent to with maximum Ex(vi, v5), if exists;
end-if-else
Form supervertex v;; = v;, vj;
until all vertices are paired or considered
Determine |V, |k; |
Construct_contracted_graph(G& (Vz, Ok-1(vij), £k (vij, Vam));
endfor
Output: G%(VZ, E¥) with size [Vc|y;

Figure 1: Sequential graph contraction algorithm

Omaz t0 Omin ratio in Gé that is smaller than or same to that in G’E’l, which is a reasonable
result satisfying the third design requirement mentioned in the previous section. A partner
vertex, v;, is selected with maximum &(v;,v;) to satisfy the first design requirement. Also,
both techniques for selecting partner vertices support the second design requirement.

SGC is an efficient heuristic algorithm. A counting sort algorithm, with complexity of
the order of (|Vz|k-1+ ©maz(k-1)), can be used for sorting vertex weights since the maximum
weight is known and is relatively small in every contraction iteration [Cormen et al. 90]. It
can be easily shown that the complexity of SGC is of the order of (Omaz|Ve|) It is also clear
that SGC’s complexity is considerably less than that of any of the PO mapping algorithms
[Mansour 1992].

. Two simultaneous
ode 0 A conflict at k=1 conflicts at k=1

node 1

node 2

A supervertex at k=2

Figure 2: Possible conflicts and supervertex produced by PGC

5 Parallel graph contraction algorithm

A parallel graph contraction (PGC) algorithm is presented in this section. The PGC al-
gorithm is based on distributing the vertices among the Ny processing nodes, PEs, and
executing SGC concurrently on the distributed subgraphs. This strategy involves conflicts
in different nodes over nonlocal partner vertices. Resolving conflicts in accordance with SGC
requires sequential processing of boundary vertices over all nodes, which leads to deterio-
ration in PGC’s efficiency. Since our goal is to efficiently produce contracted graphs that
satisfy the design requirements mentioned in Section 3 to a reasonable extent, deviating
from SGC is both acceptable and necessary. Another issue that PGC has to address is the
expansion in the amount of nonlocal information needed in successive contraction iterations.
Figure 2 illustrates how a supervertex formed across node boundaries leads to an increase in
nonlocal and non-boundary information; it also shows examples of conflicts. The design of
PGC presented next addresses the two issues of conflicts and expanding nonlocal informa-
tion. The guiding concerns are: making the decisions in PGC as close as possible to those
in SGC, and keeping the PGC’s time significantly smaller than the mapping time.

An outline of PGC is given in Figure 3. PGC is based on executing SGC concurrently in
Ny nodes. The initial graph, G¢, is partitioned among the nodes in a naive way: each node
is allocated |V2|/Ng vertices; node n; is allocated vertices n;(|V2|/Nu) to (ri+1)V3/Nu —1.
Such subgraphs are denoted as (G%/Ny). A PGC iteration includes the same steps of SGC

concerning the selection of vertices and their partners for forming supervertices. Selection

of nonlocal partners is allowed, which sometimes causes conflicts as illustrated in Figure 2.
We note that only the vertices at the node boundaries may be involved in such conflicts.
Although there are many ways in which the conflicts can be resolved, a simple rule would
be to respect a nonlocal request for a partner vertex only if the requested vertex is still
free or has also selected the requesting vertex as a partner. This simple rule prevents any
ambiguities in forming supervertices.

After deciding about nonlocal partnership requests, the decisions are exchanged among
neighboring nodes in order to update the local information about the nonlocal requests in
the most recent period. Those vertices that find that their requests have been turned down
select a new partner, if possible, within the local set of vertices before proceeding to the
next PGC period. This offers these smaller-computation-weight vertices earlier chances for
merging than the other free local vertices, in accordance with SGC.

After partner selection process, the node boundaries are redrawn in order to place
whole supervertices in one node. This avoids the problem of expanding nonlocal infor-
mation. Boundary shifting is accomplished by some nodes transferring their part of the
cross-supervertices to the other nodes that own the other part. Figure 4 shows an example
of boundary shifting after the first iteration. While merging two vertices, the vertex with
lower number is merged with its higher numbered partner in even iteration steps. It is done

the other way in odd iteration steps. Finally, the new contracted graph is constructed.

6 Mapping using graph contraction

Some remarks are given in this section about how three PO algorithms and a recursive bisec-
tion algorithm make use of pre-mapping graph contraction. The algorithms include parallel
simulated annealing (PSA), parallel genetic algorithm (PGA), parallel neural network (PNN)
and a recursive spectral bisection (RSB).

All four algorithms map the contracted graph first; we refer to this step as coarse-structure
mapping. Then, the mapped graph is decontracted by a simple interpolation in order to
specify MAP[v], for v = 0 to |Vc|. That is, a vertex, v, in the original graph is mapped to
the same processor as the supervertex it belongs to in ; we refer to thls step as fine-structure
mapping.

In coarse-structure mapping, the PO algorithms lose some information in computing their
objective functions. For example, it becomes impossible to compute the correct numbers of
boundary vertices, B(p,q), from supervertices. These are replaced by an approximation

derived from the crossedges.

Read computation subgraph (G2/Ng);
fork =1to x do
counting-sort(Qk-1(v));
while (m=0 to m< |V,|x-1) do
Select v; and its partner v; as in SGC;
resolve_conflicts();
for (all boundary vertices v, requesting nonlocal partners) do
if (request_of{vs] = REJECT) then
Select another local partner by an SGC step;
end-if : :
end-for
end-while
merge(); /* remap vertices */
Build contracted subgraph (G¥/Ng); /* involves communication */
end-for
["/
resolve_conflicts() _
exchange_boundary(v;, mate[v;]); /* exchange decisions */
for all local boundary vertices v,
match mate[vy] with a received vj;
if (matefvs] # v;j)
request_of[vy] = REJECT;
end-if
end-for
exchange_result(request_of{vs])
for all local boundary vertices vy
if (request_of{vs] == REJECT) then mate[v;] = FREE;
end-for
[—"*/
merge()
if (k is odd) then
if (v; < v;) then merge v; with v;;
else merge v; with v;;
else '
- if (v; < vj) then merge v; with v;;
else merge v; with v;;
end-if-else

Figure 3: The Parallel graph contraction algorithm

node 1

' g W— ™\ 7,
0—00

®
%

Figure 4: New node boundaries due to remapping in PGC (only 0-1 boundary shown)

Table 1: Graph contraction Time for USM(10K) (Time in Sec.)

Contraction Level
No. 1 2 4 6 8

Procs | tpgc | Voge | tpge Voge | tpge Voge | tpge Voge | tpge | Vpge
8 9.53 | 5003 | 12.29 | 2668 | 14.4 815 | 15.97 | 380 | 16.4 | 212

16 | 2.84 | 5153 | 4.05 | 2879 | 5.02 | 1021 | 5.72 470 | 6.00 | 300
32 |1.00|5391| 1.57 | 3429 | 2.22 | 1461 | 2.70 970 | 3.10 | 750

7 Experimental results and discussion

This section presents experimental results for graph contraction algorithm and use of its
output graph on the Parallel Genetic Algorithm. The experiments employ data sets with dif-
ferent sizes. These data sets constitute coarse and fine discretizations of an aircraft wing [20]
(unstructured mesh representations) and are hence forth referred to as USM(x), where x
is the number of data points. These data are to be mapped to hypercube multiprocessors.
We studied the effect of graph contraction on these data sets on one of the PO methods,
genetic algorithm based data partitioner. The PGC and the PGA have been implemented
on iPSC/860. The scheduling of irregular communications that occur in graph contraction
algorithm are handled using PARTI software [5].

The performance of the PGC for USM(10K) on various processor sizes is shown in Table 1.
1

9

Table 2: Cost of Data Partitioning after graph contractions for PGA(Time in Sec.)
Contraction Level

Mesh 3 4 5 | 6|78
USM(2K) | 102] 64 | 69 |30
USM@3K) |113| 78 | 42 |25
USM(10K) | 365 | 162 | 141 | 76 | 60 | 43

The table shows the time taken for executing the PGC algorithm and the corresponding size
of the contracted graph. There are two important observations to be made from the table.
First, the total time for contraction increases sublinearly as the contraction level is increased.
For example, time to go from contraction level 1 to contraction level 8 results in only a three-
fold increment in the time. Second, the effect of approximating the sequential algorithm by
a parallel one is illustrated when the number of processors is varied. As the number of
processors is increaséd, the contracted graph’s size also increases for the same contraction
level. This is because the number of conflicts increases with the number of processors.

The most important performance metrics for the PGC algorithm, however, are the re-
duction in the mapping time and the quality of the mapping based on the contracted graph.
The effect of PGC on PGA mapping time for meshes USM(2k), USM(3k) and USM(10K)
is shown in Table 2. Note that there is a five fold improvement (reduction) in the mapping
time for the PGA on a graph contracted from level 3 to level 6. Therefore, it can be seen that
by paying a small penalty for GC, mapping time can be considerably reduced. However, the
reduction in mapping time should be coupled with the quality of the mapping solution to
judge the overall performance. One of the ways to measure the solution quality of a mapper
is using cross edges (Section 2). Cross edges determine the communication cost of mapping.
The average cross edges for USM(2k) and USM(10k) for different levels(x) of contraction
is shown in Table 3. For example, for contraction level 6 for USM(10K), the number of
crossedges increases by approximately 10%. That is, for a reduction in mapping time of
five-fold, the mapping degrades by 10% in terms of average cross edges. However, note that
the corresponding increase in the communication time is expected to be less than 10% be-
cause a major factor of communication cost is the startup cost, which does not increase. As
expected, for smaller values of x the number of crossedges stays close to the number of cross
edges obtained without contraction. However, beyond a threshold, the degradation in terms

of cross edges increases rapidly.

10

Table 3: Average Cross edges after contractions on 16 processors (for PGA)
Mesh Contraction Level (x)

3 4 5 6 7 8
USM(2K) | 536 | 596 | 796 | 924
USM(3K) | 660 | 740 | 785 | 941
USM(10K) | 1554 | 1537 | 1618 | 1713 | 2100 2691

8 Conclusions

A parallel graph contraction algorithm with a user-defined contraction parameter, X, has
been presented for reducing the problem size prior to mapping. The experimental results
show that PGC leads to considerable reductions in the execution time of the mapping algo-
rithms, while maintaining good sub-optimal mapping qualities. The time reduction is larger
for larger problems, because with graph contraction, time is determined by x and |Var|, not
by |Ve|. These findings make the application of physical optimization algorithms to large
problems feasible and allows the mapping step itself to be an efficient and scalable operation.
Therefore, the use of graph contraction is imperative for large problems.

It was shown that with a small degradation in the quality of the mapping solution,
considerable savings in the mapping time can be obtained. In our experiments we were
limited by the memory size of the available parallel computer to apply our algorithms to
even larger problems. We expect that the performance gains are expected to be even better
for much larger problems. In the near future, we expect to obtain access to machines with
larger memory to experiment with larger problems. '

As an extension of this work, we will try the PGC on other PO methods such as Neural

networks and Simulated Annealing as well as on other algorithms such as spectral bisection.

Acknowledgements

We would like to thank Dimitri Mavriplis for providing us with his unstructured meshes. We
also would like to thank R. Das and J. Saltz for providing us PARTI software. This work
was sponsored in part by DARPA under contract no. DABT63-91-C-0028 and in part by
NSF grant MIP-9110810.

11

References

[1] Berger M., and Bokhari S. 1987. A partitioning strategy for nonuniform problems on
multiprocessors. IEEE Trans. Computers, C-36, 5 (May), 570-580.

[2] Byun H., Kortesis S.K., and Houstis E.N. 1992. A workload partitioning strategy for
PDEs by a generalized neural network. Purdue University, Computer Science, Technical
Report CSD-TR-92-015.

[3] Chrisochoides N.P., Houstis C.E., Houstis E. N., Papachiou P.N., Kortesis S.K., and
Rice J.R. 1991. Domain decomposer. In Domain Decomposition Methods for Partial
Differential Equations, editors R. Glowinski et al. SIAM Publication.

[4] Cormen T., Leiserson C., and Rivest R. 1990. Introduction to Algorithms. McGraw Hill.

[5] Das R., Ponnusamy R., Saltz J., and Mavripilis D. 1991. Distributed memory compiler
methods for irregular problems - data copy reuse and runtime partitioning. ICASE
Report No. 91- 73.

[6] Das R., Mavripilis D., Saltz J., Gupta S., and Ponnusamy R. 1992. The design and
implementation of a parallel unstructured Euler solver using software primitives. AIAA

Aerospace Sci ences Meeting, January.

[7] De Keyser J., and Roose D. 1991. A software tool for load balanced adaptive multi-
ple grids on dis tributed memory computers. Sixth Distributed Memory Computing
Conference, April, 122-128.

[8] Dragon K., and Gustafson J. 1989. A low cost hypercube load-balance algorithm. 4th
Conf. Hyper cube Concurrent Computers, and Applications, 583-590.

[9] Ercal F. 1988. Heuristic Approaches To Task Allocation For Parallel Computing. Ph.D.
thesis, Ohio State University. '

[10] Farhat C. 1988. A simple and efficient automatic FEM domain decomposer. Computers
and Struc tures. Vol. 28, no. 5, 579-602.

[11] Flower J., Otto S., and Salama M. 1987. A preprocessor for finite element problems.
Symp. Paral lel Computations and their Impact on Mechanics. ASME Winter Meeting
(Dec.).

19

[12] Fox G.C. 1988. A graphical approach to load balancing and sparse matrix vector mul-
tiplication on the hypercube. In Numerical Algorithms for Modern Parallel Computers,
ed. M. Schultz, Springer-Verlag.

[13] Fox G.C., and Furmanski W. 1988. Load balancing loosely synchronous problems with
a neural network. 3rd Conf. Hypercube Concurrent Computers, and Applications, 241-
278.

[14] Fox G.C., Johnson M., Lyzenga G., Otto S., Salmon J., and Walker D. 1988. Solving

Problems on Concurrent Processors. Prentice Hall.

[15] Houstis E.N., Rice J.R., Chrisochoides N.P., Karathonases H.C., Papachiou P.N,,
" Samartzis M.K., Vavalis E.A. , Wang K.Y., and Weerawarana S. 1990. //ELLPACK:
A numerical sim ulation programming environment for parallel MIMD machines. Int.

Conf. on Super computing, 3-23, ACM Press.

[16] Lee S-Y, and Aggarwal J.K. 1987. A mapping strategy for parallel processing. IEEE
Trans. on Computers, Vol. C-36, No.4, April, 433-442.

[17] Mansour N. 1992. Physical optimization algorithms for mapping data to distributed-
memory mul tiprocessors. Ph.D. Dissertation, School of Computer Science, Syracuse

University.

(18] Mansour N., and Fox G.C. 1992a. Parallel genetic algorithms with application to load
balancing parallel computations. Supercomputing Symposium, Montreal, June 8-10.

[19] Mansour N., and Fox G.C. 1992b. Parallel physical optimization algorithms for allocat-
ing data to multicomputer nodes. Syracuse Center for Computational Science, SCCS-
305, sub mitted for publication.

[20] Mavriplis D., Three dimensional unstructured multigrid for the Euler equations, In AIAA
10th Computational Fluid Dynamics Conference, June 1991.

[21] Nolting S. 1991. Nonlinear adaptive finite element systems on distributed memory com-

puters. Eu ropean Distributed Memory Computing Conference, April, 283-293.

[22] Ponnusamy R., Saltz J., Das R., Koelbel C., and Choudhary A. 1992. A runtime data
mapping scheme for irregular problems. Scalable High Performance Computing Confer-
ence, May, 216-219.

13

(23] Pothen A., Simon H., and Liou K-P. 1990. Partitioning sparse matrices with eigenvectors
of graphs. SIAM J. Matrix Anal. Appl., 11, 3 (July), 430-452.

[24] Sadayappan P., and Ercal F. 1987. Nearest-neighbor mapping of finite element graphs
onto proces sor meshes. IEEE Trans. on Computers, vol. C-36, no. 12, Dec., 1408-1424.

[25]- Simon H. 1991. Partitioning of unstructured mesh problems for parallel processing.
Conf. Parallel Methods on Large Scale Structural Analysis and Physics Applications,
Permagon Press.

[26] Williams R.D. 1991. Performance of dynamic load balancing algorithms for unstructured
mesh calculations. Concurrency Practice and Experience, 3(5), 457-481.

14

