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SUMMARY

Three optimization methods derived from natural sciences are considered for allocating
data to multicomputer nodes. These are simulated annealing, genetic algorithms and neural
networks. A number of design choices and the addition of preprocessing and postprocessing
steps lead to versions of the algorithms which differ in solution qualities and execution times.
In this paper the performances of these versions are critically evaluated and compared for test
cases with different features. The performance criteria are solution quality, execution time,
robustness, bias and parallelizability. Experimental results show that the physical algorithms
produce better solutions than those of recursive bisection methods and that they have diverse
properties. Hence, different algorithms would be suitable for different applications. For
example, the annealing and genetic algorithms produce better solutions and do not show
a bias towards particular problem structures, but they are slower than the neural network
algorithms. Preprocessing graph contraction is one of the additional steps suggested for the
physical methods. It produces a significant reduction in execution time, which is necessary
for their applicability to large problems.

1. INTRODUCTION

Efficient utilization of the computational power of distributed-memory parallel computers
is highly dependent on how the composite calculation-communication workload is
distributed among the nodes (processors). An optimal load distribution depends on the
application, the algorithm and the machine. In this work we concentrate on loosely
synchronous algorithms(1] for MIMD distributed-memory parallel computers, henceforth
referred 10 as multicomputers, such as hypercubes. Loosely synchronous algorithms
are applicable to many problems in science and engineering. The programming model
associated with loosely synchronous computations is single-program-multiple-data, where
parallelism is achieved by partitioning the underlying data set of a problem and allocating
the disjoint subproblems to the processors. A subproblem determines the calculation
load of a node for a given algorithm. Further, the distribution of data usually necessitates
internode communication to exchange boundary information. The data allocation problem
refers 10 mapping data elements to nodes such that the calculation load is as balanced as
possible among the nodes and that internode communication is minimized and balanced.

The daua allocation problem is an NP-complete optimization problem, and several
heuristic methods have been proposed for finding good suboptimal solutions.
Deterministic heuristics have been popular because of their speed and predictable
execution time. Examples are recursive co-ordinate bisection, recursive graph bisection,
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recursive spectral bisection, mincut-based heuristics, geometry-based mapping algorithms
and scattered decomposit.ion[2—9]. Such methods, however, seem to favor certain
problem configurations. On the other hand, Physical computation has been advocated for
describing, simulating and solving intractable problems[10]. It uses methods borrowed or

applicability than deterministic heuristics; however, they are usual] slower. Physical
optimization algorithms have been applied to a number of NP-complefte problems, such
as quadratic assignment(1 1], graph partitioning(12,13], traveling salesperson problem[14]
and VLSI Placement[15]. Three physical algorithms have also been adapted 1o the data
allocation problem. Simulated annealing[16], from statistical physics, has been applied
to several cases[1,17], and continues to be of interest because of the design choices
it involves. Neural networks(18), from neurobiology and using physics, have been
proposed and applied to illustrative data allocation examples(19]. Recently, a genetic
algorithm[20,21], from population biology, has been adapted to data allocation and has
been applied to a limited number of test cases[22].

Although these heuristic data allocation algorithms have been known for a few years,
there continues 10 exist a lack of comparative Studies to assess their strengths, weaknesses
and applicability. In this paper, the three physical allocation algorithms are reviewed and
new versions are described. The versions are based on the following modifications:

2. OBJECTIVE FUNCTIONS FOR DATA ALLOCATION

A problem can be Tepresented by a computation graph with P vertices and edges. The
vertices represent the data elements in the underlying data set, and the edges represent
the data dependences determined by the algorithm. A hypercube multicomputer is also
a graph with size N; the vertices are the nodes and the edges are the interconnections.
Data allocation refers to mapping the vertices of the computation graph onto those of
the hypercube such that the total execution time is minimized.

In the loosely synchronous computational model, the hypercube nodes iterate
through a sequence of computation~communication steps. They concurrently execute
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OPTIMIZING DATA ALLOCATION TO MULTICOMPUTER NODES 3

the smnc,(progmm on different computation subgraphs. But in every iteration the nodes
communicate boundary information before proceeding with further computations. The
total parallel execution time, per iteration, is, then, determined by the slowest node, and
is typically given by

OF yp = max, {W (n) + Z_ C (n,m)} (1)

where W(n) is the calculation load of processor n and C(nm) is the cost of
its communication with processor m.W (n) is Z,w.Wt(v).lgoer, Where wt(v) is the
computational weight of vertex v given by its degree in the computation graph, w is
the average number of arithmetic operations per graph edge performed by the
algorithm between two communication operations, {g. is the time for a floating point
operation, and the summation is over the vertices allocated to node n X (nm) is the
product of the number of the common boundary vertices between n and m and the cost
of communicating one word, fcomm. We assume that communication cost is determined
by the Hamming distance and that message start-up time and link contention can
be ignored. Although an accurate objective function depends on the specific parallel
algorithm and the machine’s architecture and software, we consider OF y, a reasonable
choice for typical cases. For example, message latency is relatively small when message
sizes are sufficiently large. Also, the conservative Hamming metric favors near-neighbor
communication and, hence, would reduce the likelihood of link contention.

Equation (1) gives the objective function that is required to be minimized for optimal
data allocation, but OF,,, is not smooth and is computationally expensive for the large
number of incremental changes needed in the physical algorithms. To bypass these
drawbacks, an approximate objective function can be used, which involves the sum
of the mean square deviation of the calculation loads of the processors and the total
amount of communication costs. It is given by

OFappr =1 W )+ R Y C(n.m) o))

where R is the machine-dependent ratio, leomm [tpoassy and B and are scaling factors
expressing the importance of the calculation term and the communication term,
respectively. OF,,,, is smoother than OFy, and is, therefore, more suitable for
optimization methods. More importantly, it enjoys a locality property which makes it
much less expensive to compute than OF . Locality means that a change in OF,,,, due
to a change in data allocation is determined by the reallocated elements only[22]. Further,
OF app, is more robust than OF,,. In this work, the minimization of OF ., is the goal
of most of the versions of the physical optimization methods. However, all solutions
produced, including those of the recursive bisection methods, are evaluated using OF,,.
The discrepancy between one expression guiding the operation of the methods and another
evaluating their results has motivated the introduction of versions of the algorithms that
utilize both expressions, as discussed below.

3. GENETIC ALGORITHMS

Genetic algorithms are based on the theory of natural evolution. In artificial evolution,
a species is a population of possible solutions, called individuals, which adapt over
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4 NASHAT MANSOUR AND GEOFFREY C. FOX

successive generations, starting with random structures. In every generation, individuals
are selected for reproduction according to their finess, genetic operators are applied
to selected mates, and offsprings replace their parents. In this process, near-optimal
structures evolve by the propagation and the combination of high-performance fit building
blocks[20,21).

An outline of a hybrid genetic algorithm (GA) for data allocation is given in
Figure 1{22]. It is designed to alleviate the problem of premature convergence and
reduce the evolution time. It also makes use of problem specific knowledge to circumvent
some computational costs and to reinforce favorable characteristics of the genetic search.
An individual, i.e. a data allocation instance, is encoded as a string of integers, where
an integer refers to a processor and its position in the string represents the allocated
data element. The fitness of an individual is the reciprocal of the objective function
used. The reproduction scheme is based on ranking, where the individuals are sorted
by their fitness values and are assigned a number of reproduction trials according to
a predetermined scale of values. Ranking allows the control of selection pressure and,
thus, of population convergence. After ranking, pairs of parents are randomly chosen
from the list of reproduction trials. Further, the fittest individual ge@rated. up to the
current generation, always takes part in reproduction. The genetic operators employed
in GA are two-point crossover, two-phase mutation and inversion. Crossover is done
by swapping a random segment of the data allocation configurations of two individuals.
Mutation, with very small probability, refers to a random reallocation of a data element.
Inversion, with small probability, inverts the allocation configuration of a segment of
data in an individual. The rates of the three operators are made adaptive to the variation
in the average degree of Clustering of the data elements in the individuals, in a way that
counteracts premature convergence. The genetic algorithm is hybridized by including
a problem-specific hill-climbing procedure that directs the genetic search to the more
profitable regions in the search space. The procedure allows the transfer of boundary
data elements from overloaded to underloaded processors in a data allocation instance.
That is, hill-climbing only allows the incrgrjnental reallocations that increase the fitness of
an individual. In the later phase of the evolution, called the tuning phase, the population
loses diversity and approaches convergence. In this phase, standard mutation is replaced
with boundary mutation, inversion is abandoned, and, more importantly, the weights in
OF app,, are gradually varied for fine-tuning the converging structures(22]. Further, some
copies of identical individuals are gradually re moved, thus reducing the population size
and the evolution time.

The complexity of GA is of the order of (DEG*P*POP*GEN), where DEG is the
average vertex degree in the problem’s computation graph, POP is the population size
and GEN is the number of generations. In our implementation, POP has been chosen
to be 0.2*P 1o 0.6*P, with larger population corresponding to larger N (hypercube
size).

Two versions of GA are explored in this paper. Version GAl employs OF gpp, in
both fitness evaluation and hill-climbing. It also uses problem-dependent user-defined
parameters to0 invoke the tuning stage. A second version, GA2, uses OF, np foOr fitness and
OF gy, for hill-climbing. It also includes nearly automatic invocation, based on OF typ» OF
the last stage, which increases robustness at the expense of a small fraction of solution
quality and/or execution time for some problems.
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OPTIMIZING DATA ALLOCATION TO MULTICOMPUTER NODES ) 5

Random generation of initial population, size POP;
Evaluate fitness of individuals;
repeat (for GEN generations)
Set v, B, operator rates;
Rank individuals & allocate reproduction trials;
Jori=110POP step 2
Randomly select 2 parents from list of reproduction trials;
Apply crossover, mutation, inversion;
Hill-climbing by offsprings;
endfor
Evaluate fitness of offsprings;
Preserve the fittest-so-far;
until (convergence)
Solution = Fittest.

Figure 1. A genetic algorithm for data allocation

4. SIMULATED ANNEALING ALGORITHMS

The simulated annealing approach is based on ideas from statistical mechanics an_[d
is motivated by an analogy to the physical annealing of a solid[16]). To coerce some
material into a low-energy state, it is heated and then cooled very slowly, allowing it
10 come to thermal equilibrium at each temperature. The behavior of the system at each
fixed temperature in the cooling schedule can be simulated by the Metropolis algorithm.
An iteration of the Metropolis algorithm starts with proposing a random perturbation
and evaluating the resultant change in the energy of the system. If the change is
negative, corresponding to a downhill move in the energy landscape, the perturbation
is accepted and the new lower energy configuration becomes the starting point for
the next perturbation. Zero change is also accepted. If the energy change is positive,
corresponding to an uphill move, the proposed perturbation may be accepted with a
temperature-dependent probability. The main advantage of this Monte Carlo algorithm
is that the controlled uphill movements can prevent the system from being prematurely
trapped in a bad local minimum-energy state.

An outline of a simulated annealing algorithm (SAA) for data allocation is given in
Figure 2. The initial data allocation is random. The energy of the system is given by the
objective function used. The initial temperature is determined such that the probability
of accepting uphill moves is initially 0.8. The freezing point is the temperature at which
theAminimum increase in energy, resulting from the transfer of a data element from
an underloaded processor to an overloaded one, is very small (2-39), Perturbation is
accomplished by a random reallocation of a randomly chosen data element. As explained
above, a reallocation that leads o a lower or identical system energy is always accepted,
whereas an increase in the energy is only probabilistically allowed. At each temperature,
equilibrium is reached when a predetermined maximum number of perturbations has been
attempted or accepted. The maximum number of attempts allowed is the larger of N, the
size of the multicomputer, and DEG, the average vertex degree, whereas the maximum
number of accepted moves is the smaller of the two. These choices secure a sufficient
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6 -+ * NASHAT MANSOUR AND GEOFFREY C. FOX

number of moves for thermal equilibrium while not spending too much time at high
temperatures. The cooling schedule determines the next lemperature as a fraction k£ of
the present one. In our implementation, this fraction varies within the range 0.91 to0 0.99
in 2 way to counteract quenching (fast cooling) and to speed up cooling when possible.
k increases if the number of accepted moves decreases, and vice versa.

Determine initial temp. T(0);
Initial configuration = Random data allocation;
/* Annealing - SA1 and SA2 */
while (T>THRESHOLD] and #accepts>THRESHOLD?2) do
T =T();
repeat
Perturb(configuration);
E =A’ 4 K O'F;.ﬂ’r
if (dE <= 0) then Accept; Update configuration;
else rnd = random number (0.1);
if (rnd < exp(-dEIT)) then Accept and Update;
else Reject;
until (Equilibrium);
Determine k; ‘
T(i+1) = k* T(i); I* cooling schedule */
end-while
/* Annealing at low temperatures - SA2 only */
repeat
‘Anneal with Neighbor-Perturb(conﬁgumtion) & OF,, for E;
until (freezing or convergence)

Figure 2. A simulated annealing algorithm for data allocation

The complexity of the SAA algorithm is of the order of (DEG*maxDEG, NEP*A), ,( {

where A is the number of annealing steps; DEG, N and P are as defined before. For
adaptive schedules, A is problem-dependent, although of the order of log(initial T /
freezing T).

Two versions of SAA are explored below. The first version, SA1, uses OF 4, for the
energy until freezing. The second version, SA2, is identical to SA1 untl the number
of accepted perturbations is small, Then, at low temperatures, OF,, is used for the
energy. Also, random perturbation is replaced by neighbor perturbation. That is, only the
reallocation of boundary data elements to neighboring processors is attempted, so that
time is not wasted in random reallocations, The computation of OF,,, makes SA2 much
slower than SA1.

5. BOLD NEURAL NETWORK ALGORITHMS

The Bold Neural Network (BNN) is an improvement to the Hopfield and Tank model[18]
applied 10 data allocation. It is built from P = Ig2N neurons. Each neuron has a neural
variable, v(e, i, £) = 0 or 1, associated with it. The neuron’s label (e, i) corresponds to
data element e and bit i of the node label in the multicomputer (hypercube). Note that
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OPTIMIZING DATA ALLOCATION TO MULTICOMPUTER NODES 7

the label of a hypercube node is given by Z(v(i) - 2¥), where the summation isoveri =
0 to (Igz2V-1). The neural variables represent the amount of local information about the
solution at time ¢. The network starts with random neural values and converges to the
fixed point, where the solution is given by the global map of the converged neural values
in the whole network. The BNN repeats this procedure IgoN times, each time determining
one bit i in the network and, hence, the subcube to which each data element belongs.
That is, each iteration corresponds 10 a bisection of the subproblems from the preceding
iteration. After the last iteration, the problem will be partitioned into N -subproblems.
It is noteworthy that the neural representation used for BNN provides a natural way
for removing ambiguities, such as Placing the same element in two subdomains. Hence,
it dispenses with the redundant synaptic connections that would have been required to
enforce the problem constraints.

The fixed point of the network is associated with the minimum of the energy, OF ;.
To determine the network equations, the neural variables are replaced by spin variables,
s(e. i, f) = =1 or +1, and the energy expression is rewritten in terms of spin variables.
Then, a standard mean field approximation technique from physics is used to derive the
BNN formula[19]

s(e. i, t+1) = tanh{—ase, i, 1) + ﬂ%G(s.s’)- D'L sE.in} B L correchon o4 ‘P’f'"“
s’ i=1 : ) - o Mcx c
(4 ¥
where a is a scaling factor; G is the coupling matrix given by the computation grfaph; {:7\
D is the size of the current subproblem (to be further bisected) to which data element e
belongs; e’ in the third term refers to elements only in the current subproblem. The BNN
formula can be interpreted in the light of magnetic properties of materials. At a critical
lemperature, spontaneous magnetization domains of nearly equal numbers of spins are
formed in solids in such a way that spins within each domain are lined up, but have
opposite direction to those in the other domain. In equation (3), the second term can be
interpreted as the ferromagnetic interaction that aligns the neighboring spins. The third
term can be interpreted as the long-range paramagnetic force responsible for the global
up/down spin balance. The first term is inserted in the BNN equation as a noise term that
tries to flip the current spin and thus helps the system avoid local minima. The scaling
factors have the following effects: « determines how st able a solution can be after a i
number of iterations, g determines the speed of the formation of the domain structure,
and v controls the spin balance in the configuration. In our implementation, a=f=2 and
7 is gradually increased from 2 to 20 for every bisection level. g plays the role of inverse
temperature, and its value is chosen to ensure that the system is near the critical point,
as explained before. With these values, it has been shown that the number of iterations
required for the network convergence is a small number times the (1/x)th root of the
problem size(19], where x is the dimensionality of the problem.
The BNN algorithm is summarized in Figure 3. Its complexity is of the order
of (DEG*P *P‘/’ﬂgzN). This algorithm is henceforth called NN1. NN2 is a second /< x
version which includes a local optimization step for adjusting the boundaries of the data
distribution produced by NN1. In this step, boundary data elements are transferred to
neighboring processors only if OFy, decreases. In most cases, the execution time of
NN1 is much smaller than that of NN2. However, NN2 can, sometimes, improve the
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8 NASHAT MANSOUR AND GEOFFREY C. FOX

fori:Oroél-I)do / /eg-.]_

Generate random spins s(e, i, t) over whole domain;
repeat
Determine «;
Jor all spins in the domain
pick a spin randomly;
Compute s(e, i, 1+1); I'* equation (3) */
end-for
until (convergence)
Determine bit i in the neurons;
end-for

Figure 3. Bold neural network algorithm for data allocation

quality of NN1’s solutions significantly and is included here for comparison with the
genetic and annealing algorithms.

6. RECURSIVE BISECTION"

Two recursive bisection methods are considered here to give some indication of the
performance of the physical algorithms. These are orthogonal recursive cojordinate
bisection (RCB)(8) and recursive spectral biscctio;g;?].

The operation of both methods is not guided b objective function. Instead, RCB
utilizes the physical ccﬂc}rdinates of the vertices (data elements) of the computation graph
to recursively bisect the graph into two subgraphs with equal sizes. In each bisection
step, a direction (x or y) is chosen as a separator and directions alternate in successive
steps. Data elements are sorted by colBrdinates in the selected separator direction, and
each half of the elements is assigned to a subgraph. The recursive process continues
until the number of subgraphs equals N. The complexity of the RCB is of the order of
(P % IgaN (Ig2P — IgoN)).

RSB utilizes the properties of the Laplacian matrix associated with the computation
graph. Briefly, each bisection step consists of computing the eigenvector corresponding
to the second largest eigenvalue of the Laplacian matrix. The components of this vector
provide distance information about the vertices of the graph. Then, the vertices are sorted
according to the size of the eigenvector’s components and/split into two subgraphs
accordingly. The complexity of this algorithm is of the order of (DEG*P /P *Ig,N)[6).

For a consistent comparison of the bisection methods with the physical algorithms, we
have added a second step to map the subgraphs produced to the hypercube nodes. The
mapping step is carried out by a simulated annealing algorithm that minimizes OF .

7. VERSIONS INVOLVING HYBRIDS AND PREPROCESSING

Two versions of the physical optimization methods are described in this Section. Both
aim for reducing the execution time, especially of GA and SA. The object of studying
these versions is to further explore the practical applicability of these data allocation
methods.
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OPTIMIZING DATA ALLOCATION TO MULTICOMPUTER NODES 9

The first version is based on two observations. The first observation is that methods
such as NN1, RSB or RCB yield solutions of lower quality than those of SA and GA,
but are considerably faster. The second observation is that SA and GA take a longer
time to evolve solutions of the same quality as those of NN1 or the bisection methods.
Therefore, hybrid methods which start with NN1, for example, and continue with GA or
SA can be faster than pure GA or SA. In this work, NN1-GA and NNI1-SA are explored.
SA picks up at a low temperature which accepts uphill moves with probability 15%.
GA creates its initial population by randomizing the boundary regions of the solution
provided by NN1.

The second version utilizes a graph contraction step prior to data allocation. In this
preprocessing step, edges in the problem’s computation graph are contracted and vertices
are merged together to form a multigraph whose super-vertices are weighted by the sum
of the computational weight of the merged data elements and whose edges are weighted
by the sum of the edges in the original graph. The level of contraction can be determined
such that the size of the resultant multigraph is X times the size of the multicomputer.
Following the allocation of the contracted multigraph to the processors, the original
problem graph can be restored and more SA or GA iterations can be carried out for
improving the quality of the solution. Contraction can also speed up BNN in the same
way, with NN2's local optimization applied to the restored graph. However, X should
not be small, as discussed below. Methods involving contraction are henceforth referred
to as CONT-M, where M is the data allocation method used.

Graph contraction, with parameter X, leads to a big reduction in the search space of
data allocation from M=f? to M K=FTV), Where KL N is the size of the contracted
graph and can be considerably smaller than the original size, P. The assignment of the
contracted graph to the processors becomes a fast step. Subsequent SA iterations on the
restored original graph, therefore, start with a reasonable solution at a low temperature.
For GAs, the smaller contracted graph allows a smaller population size, POP, which can
be kept the same in the subsequent generations after the restoration of the original graph.

Graph contraction itself is not of concem here. It can be done by any fast procedure.
For example, at each contraction level, edges can be selected randomly and the
two vertices at both ends are then merged. In our simulations, NN1 is used for
contraction.

8. EXPERIMENTAL RESULTS

The performance of the data allocation algorithms is presented in this Section. Test
cases of different geometric shapes, dimensions, sizes and granularities are allocated to
hypercube multicomputers. The performance measures are the hypercube’s efficiency and
execution time. Efficiency is defined as T, W (n) /(N * OFy,). :

The test cases used are shown in Figure 4. GRID1 and GRID2 are 2-dimensional
and yield computation graphs with a maximum vertex degree, DEGpa,, Of 4. GRID1
is uniform with symmetric irregular geometry. GRID2 has large variation in the spatial
density of its points. FEM1 and FEM2 are finite-element meshes with DEG ma, ranging
from 8 to 12. FEMI is 2-dimensional and nonuniform. FEM2 is 3-dimensional. FEM3 and
FEM4 are 3-dimensional structures with DEG na, equal to 8. FEMW is the most realistic
of the seven examples; it is a coarse unstructured discretization of an aircraft wing with
DEGma: of 16. We concentrate on FEMW and GRID1 because of their interesting and
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Figure 4. Test cases.
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OPTIMIZING DATA ALLOCATION TO MULTICOMPUTER NODES 11

distinct properties. We assume that R = 5 and w = 12; that is, the computation workload
is moderate and communication is not inexpensive.

Table 1 provides a summary of the algorithms considered. Tables 2 through 6 show
results for these algorithms. The results for the most interesting case, allocating FEMW
to a 16-node hypercube, are also given in graphical form, in Figures 5-7. Each result of
a physical algorithm is the average of ten runs. Each entry in the best efficiency column
is the best result obtained from all runs carried out. The time given, in minutes, is for
a SPARC 1+ workstation. For clarity, the efficiency figures are shown as percentages
of the best efficiency, which itself is kept as an absolute number. Since the optimum is
not known, the best efficiency column serves as an indicator of how good the individual
average figures are. To further illustrate the performance of the physical methods and
to broaden the scope of comparison, Table 7 presents results for more test cases. Each
result in Table 7 is the average of five runs. RCB’s results are given only for FEMW and
GRID1 where cqz_?)rdinates ‘were available. The execution time shown for RCB and RSB
does not include the second mapping step because the annealing algorithm aimed for the
best mapping and was not optimized for time. The ‘+’ sign refers to this additional time.

Table 1. Summary of algorithms

Version .Description

GAl, SA], NN1 Basic algorithms using only OF pp,.

GA2 OFy, for fitness, OF 4, for hill climbing.

SA2 SAl, then uses OF,, and neighbor-perturbation.
NN2 NN, then local optimization based on OF .
NN1-M hybrids NN1, followed by physical algorithm M.

CONT-M Physical algorithm M preceded by graph contraction

(size of contracted graph = K*N).

100t 404 —

Efficiency
Time (min.)

GAl
SAl
NN
RSB
RCB
2

3
S

SA2
GAl
GA2
SA2

__'NNZ

g

HEE:

RCB

Figure 5. Results of versions involving OFy, and OF 5, for FEMW and N=16

9. DISCUSSION

This Section starts with a discussion of the individual Tables, 2 to 7, leading into
overall evaluations of the results. The measures considered for assessing and comparing
the performance of the algorithms are solution quality (i.e. hypercube efficiency)
and execution time. In addition, bias, robustness and parallelizability are qualitatively
discussed.
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Figure 7. Resulis of CONT-M versions for FEMW, N=16}‘ K=4 for GA ang SA, and K=16 Jor NN

Table 2 shows the results of the versions of the physical algorithms that use the
approximate objective function, OF 4. Table 3 shows the results of the versions
involving OFyp. The results of RCB and RSB are also included. Figure 5 illustrates
efficiency and time comparisons for FEMW. From the two Tables and the Figure, the
following observations can be made, When OF,,,, only is used, GA1 yields the best
solutions, but at 3 high cost in terms of execution time. For GRID1, all the solutions are
good. For FEMW, the quality of the solutions of the physical algorithms is clearly
better than those of RCB and RSB, for a longer execution time, Nevertheless, the
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OPTIMIZING DATA ALLOCATION TO MULTICOMPUTER NODES 13

Table 2. Results of versions using OF appr

Test Best GAl SAl NN1 RCB RSB
case eff. %eff. tme Yeff. time %eff. time Joeff. time Feff. time

FEMW 0338 89 402 80 526 77 058 52 006+ 72 016+
N=16

GRID1 0.85 95 211 8 066 8 017 88 003+ 90 0.06+
N=38

Table 3. Results of versions involving OFy,

Test Best GA2 SA2 NN2 RCB RSB
case eff. Joeff. time Foeff. time Deff. time Goeff. time oeff, time

FEMW 0338 92 3281 95 3654 89 364 52 006+ 72 0.16+
N=16

GRID1 0.85 96 241 94 1.03 93 021 8 003+ 90 0.06+
N=38

FEM3 0490 100 142 100 051 100 0.07 96  0.03+
N=38

-
FEM4 0.495}{ 96 1340 94 901 8 041 79  0.07+
N=16

In Table 3, results for FEM3 and FEM4 are given. Owing to its symmetry and
convenient number of points, FEM3 turns out to be an easy problem. The three physicai
algorithms find what seems to be an optimum. For FEM4, GA2 finds the best solution
for the longest time.

The long time taken, especially by GA2 and SA2 in Table 3, justifies the exploration of
the other versions, as in Tables 4-6. Table 4 and Figure 6 give the results for the hybrid
methods, which start with NN1 and continue with SA1, SA2 or GA2. It can be seen
that starting from partial information about the solution leads to a reduction in time for
SA1l and SA2 without degrading the final solution. The reduction in GA2’s time is more
pronounced, at a small price in terms of solution quality due to restricting randomness. In
comparison with Table 3 and Figure 5, SA2 is still the slowest, with the best efficiency;
the quality of NN1-GA2’s solutions is only a little better than that of NN2 while still
being slower. The ability of SA2 and GA2 o start from partial information about the
solution is, nevertheless, an advantage over ab initio methods such as NN2, RCB and
RSB. However, the times taken by NN1-SA2 and NN1-GA2 are still long, and their
decrease, as illustrated next, is of interest.

Tables 5 and 6 and Figure 7 show results based on graph contraction whose time
i]§ assumed o be relatively small. These Tables show a remarkable reduction in time
for all algorithms, the reduction for GA2 and SA1 being the greatest. Table 5 includes
results for different values of X. The efficiency values for CONT-GA2, CONT-SA2 and
CONT-SA1 are consistent with those in Table 3, and X can be as small as 2, leading to
the greatest decrease in time without degrading the solution quality. However, for lower-
quality contraction, we suspect that K should be 4 or greater. For CONT-NN1 and
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Table 4. Results of NN1-M hybrid versions

Test Best NN1-GA2 NN1-SAl NN1-SA2
case - eff. Yeff. time Yoeff. time Yoeff. time
FEMW 0.338 90 1596 82 4.82 96 28.38
N=16

GRID1 0.85 94 091 90 0.60 95 0.91
N=8

Table 5. Results of CONT-M vcrsiops for FEMW and N=16

Best CONT-GA2 CONT-SAl CONT-SA2 CONT-NN1  CONT-NN2
eff. Goeff. time oeff. time Toeff. time Toeff. time Peeff. tlime

=2 0338 91 S8 m2 084 95 1505 44 - 001 54 112, Py, wote cocret
. . o 0.0 . . .
k£ 4 i A s & o B2 % 8 4 1t < :
k=8 93 127 8 165 97 1958 62 006 8 196
K=16 ) 73 018 8 221
DAl
Table 6. Results of CONT-M versions for GRID} and N=8 Ll &R
Best CONT-GA2  CONT-SA1  CONT-SA2 CONT-NNI  CONT-NN2
eff. eff. time eff. time %efl. tme %efl. time %eff. time
K=2 085 93 018 91 021 96 036
K=16 035 74 003 92 010
Table 7. Results of CONT-M versions, K=2 for GA and SA, K=16 for NN
Test  Best CONT-GA2 CONT-SA1 CONT-SA2 CONT-NNI CONT-NN2  RCB RSB
case  eff. %eff. time %eff. me %eff. tme %eff. tme %eff. time %eff. time %eff. time
FEMW 0452 92 292 88 161 96 7.15 76 005 90 150 53 004 81 0.10
N=8
FEM1 0569 93 027 8 006 93 024 83 009 85 0.10 84 0.03
N=38
FEM2 0578 92 026 8 0.06 97 043 81 005 8 0.10 76 0.04
N=8
FEM2 0432 92 081 80 018 96 085 78 012 83 0.3 74 0.07
N=16
GRID2 0.787 92 142 77 028 94 194 73 020 85 030 84 0.16
N=16
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CONT-NN2, X should be greater than or equal to 16 to maintain reasonable efficiency
values. In this case, X should be greater because NN1 only allocates the contracted graph
and does not share, with GA and SAA, the flexibility of operating on the restored original
graph. Also, when the solution quality of NN1 is low, local optimization in NN2 gets
trapped in high local minima. CONT-SA2 still yields the best efficiency values followe
ed by GA2, but the time difference has become more pronounced in favor of CONT-
GA2. Further, unlike the case of the uncontracted graph, CONT-SA1 is, for most cases,
comparable to CONT-NN2 in terms of time and efficiency values.

Table 7 includes results for other examples, with K'=16 for CONT-NN and X =2 for
CONT-SA and CONT-GA2. These results clearly support the assessments made above,
based on Tables 3, 5 and 6. We note, however, that for GRID2 and FEMW, in Table 7,
RSB yields better solutions than CONT-NN1 with comparable execution time. This is
partly due to the use of contraction and because RSB performs well on 2-dimensional
graphs. In the remaining paragraphs, overall evaluations are presented.

The solutions evolved by GA2, SA2 and NN2 are very good sub-optimal solutions, T

hey are consistently better than those of recursive bisection. SA1 and NN1 also generate
better solutions than recursive bisection for general, unstructured and 3-dimensional
problems. For FEMW, for example, the improvements over RSB’s solutions by NN1,
SA1, GA2 and SA2 are 7%, 11%, 28% and 32%, respectively. The results for the various
topologies and sizes indicate that the annealing and genetic algorithms are not biased
towards particular problem topologies. Recursive bisection methods tend to favor 2-
dimensional problems. The neural network performs better for 2-dimensional geometrical
shapes, such as GRID], than for 3-dimensional irregular structures, such as FEM2, but
it does not show a strong bias. Therefore, the physical methods seem promising for a
variety of problems with different topologies and complexities. Interestingly, comparative
studies of algorithms for another NP-complete optimization problem, VLSI placement,
have given similar conclusions about the better solution qualities of annealing and genetic
algorithms(23].

The better solutions of the physical algorithms come at a price; physical algorithms are
slower than bisection algorithms. For FEMW, the ratios of the execution times of NN1,
SA1, GA2 and SA2 to that of RSB are 2, 16, 100 and 120, respectively. These ratios
decrease (0 1, 3, 20 and 60 when contraction is employed. SA2 is generally the slowest
and NN1 the fastest. It is worth noting that although NN1 and RSB have identical
complexity, NN1 is slower by a small factor. The difference would be smaller if the
mapping time is added to RSB’s time.

The annealing and genetic algorithms share the property of unpredictable convergence
and, thus, execution time. Nevertheless, their execution times increase with the size of
the problem and the multicomputer. The complexity expressions, mentioned above, serve
only as indicators of the factors that determine the execution time. Although the bold
neural network involves a probabilistic component, it has deterministic convergence.

The three physical methods, with their parameters chosen as described above, can be
considered to be fairly robust, where robustness, in this paper, refers to insensitivity to
design and problem parameters. Their robustness is enhanced by making some important
parameters adaptive; these are the cooling schedule in SAA, the operator frequencies in
GA, and v in BNN. In our implementation, they vary within a range of acceptable values.
BNN is the most robust among the three methods. Interestingly, SAA and GA have
analogous sensitivities to their design parameters. Both the cooling schedule for SAA
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and the frequencies of the genetic operators for GA affect the convergence speed and
have been made adaptive in our implementation. The number of attempted perturbations
at a particular temperature for SAA and the population size in each generation for GA
determine how many points in the solution space can be sampled. Both parameters have
been empirically determined. However, GA has been observed to be less robust than
SAA.

Parallel implementation, especially for GA and SAA, is important for their practical
use. Current SAA parallelization techniques involve conflicts in the concurrent decisions
made on different elements in the subproblems(9]. Conflicts are due to the presence
of global terms in the computation of the change in objective function resulting from
perturbations. The effect of these conflicts on the solution quality and execution time
requires further studies. Parallel BNN would also involve conflicts because of the global
paramagnetic term in equation (3). GA enjoys easier parallelizability based on distributed
population models{24].

10. CONCLUSIONS AND FURTHER RESEARCH

Versions of a genetic algorithm, a simulated annealing algorithm and a bold neural
network for data allocation have been described. Their performances have been evaluated
and compared for examples of various geometric shapes, dimensions and sizes. The
solutions produced by these physical optimization methods are good suboptimal solutions.
They are, for non-uniform problems, clearly better than those of recursive bisection
methods, RCB and RSB, especially for 3-dimensional imegular and unstructured
problems. However, the diverse properties of the physical methods and their versions
suggest that the choice of ore of them depends on the particular application. SA2 produces
the best solution quality. It is followed by GA2, NN2, SA1, NN1, RSB and RCB in
order of decreasing quality, for general problems. For uniform 2-dimensional problems,
the solutions of NN1 and RSB are rather close. The order of decreasing execution time is
the same as that for solution quality, with NN2 and SA1 swapped in several cases. The
physical algorithms are slower than recursive bisection. However, the execution times of
NN1 and RSB do not differ greatly.

The annealing and genetic algorithms have the ability to start from partial information
about the solution. This property results in a reduction in the overall execution time; the
reduction is the biggest for GA. BNN and recursive bisection do not share this property.
The applicability of the physical methods to realistic applications has been explored
by adding a preprocessing graph contraction step. The results show that this step s
advantageous for large problems because it leads to a significant reduction in execution
time without sacrificing the solution quality. It has been found that SAA and GA make
better use of graph contraction than does BNN. Conceming bias (o particular problem
structures, BNN exhibits some tendency to favor 2-dimensional problems; SAA and GA
do not show a bias. Concerning the robustness of the physical methods, BNN comes first,
followed by SAA; GA is the least robust. Based on the promising results of the physical
optimization algorithms, further research is underway to study their performances for
various classes of problems, such as large-scale data sets, complex geometries, adaptive
meshes, heterogeneous problems or dynamically varying problems. In particular, the
performance} of parallel physical algorithms is being explored(24].
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