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Abstract. This work presents a global convergence theory for a broad class of trust-region
algorithms for the smooth nonlinear progranuning problem with equality constraints. The main
result generalizes Powell’s 1975 result for unconstrained trust-region algorithms.

The trial step is characterized by very mild conditions on its normal and tangential components.
The normal component need not be computed accurately. The theory requires a relaxed normal
component to satisfy a fraction of Cauchy decrease condition on the quadratic model of the linearized
constraints. The tangential component then must satisfy a fraction of Cauchy decrease condition
on a quadratic model of the Lagrangian function in the translated tangent space of the constraints
determined by the relaxed normal component. The Lagrange multipliers estimates and the Hessian
estimates are assumed only to be bounded.

The other main characteristic of this class of algorithms is that the step is evaluated by using the
augmented Lagrangian as a merit function and the penalty parameter is updated using the El-Alem
scheme. The properties of the step together with the way that the penalty parameter is chosen are
sufficient to establish global convergence.

As an example, an algorithm is presented which can be viewed as a generalization of the Steihaug-
Toint dogleg algorithmn for the unconstrained case. It is based on a quadratic programming algorithm
that uses a step in a relaxed normal direction to the tangent space of the constraints and then does
feasible conjugate reduced-gradient steps to solve the quadratic program. This algorithm should
cope quite well with large problems for which effective preconditioners are known.

Key Words: Constrained Optimization, Global Convergence, Trust Regions,
Equality Constrained, Nonlinear Programming, Conjugate Gradient, Inexact Newton
Method.
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1. Introduction. This work is concerned with the development of a global con-
vergence theory for a broad class of algorithms for the equality constrained minimiza-
tion problem:

o _ | minimize f(z)
(EQC) = { subject to C(z)=0.

The functions f : R — R and C : R* — R™ are at least twice continuously differen-
tiable where C(z) = (¢1(z), ..., em(2))T and m < n. :

Our purpose is to generalize to constrained problems a powerful theorem given in
1975 by Powell for the unconstrained problems.

The global convergence theory that we establish in this work holds for a class of
nonlinear programming algorithms for (EQC) that is characterized by the following
features: o
1. The algorithms of the family use the trust-region approach as a globalization

strategy. ‘
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2. All these algorithms generate steps that satisfy very mild conditions on the
trial steps’ normal and tangential components. The normal component sat-
isfies a fraction of Cauchy decrease condition on the quadratic model of the
linearized constraints. It is important to note that the normal component
s? is not required to be strictly normal. Instead, it is allowed to satisfy

the relaxed condition that ||s?|| < K||C(z.)|| for some independent constant
. The tangential component satisfies a fraction of Cauchy decrease on the

: qua.dratic model of the reduced Lagrangian function associated with (EQC).

3. The estimates of the Lagrange multiplier vector and the Hessian matrix are
assumed only to be bounded uniformly across all iterations.

4. The other main characteristic of this class of algorithms is that the step is
evaluated for acceptance by using the augmented Lagrangian function with
penalty parameter updated by the scheme proposed by El-Alem [8].

Conditions 1, 2, and 3 are satisfied by the algorithms of Byrd, Schnabel, and

Shultz [2], Celis, Dennis, and Tapia [4], Omojokun [18], and Powell and Yuan [21].
We use the following notation: the sequence of points generated by an algorithm

is denoted by {zx}. This work also uses subscripts -, ¢ and + to denote the previous,

the current and the next iterates respectively. However, when we need to work with

a whole sequence we will use the index k. The matrix H. denotes the Hessian of the

Lagrangian at the current iterate or an approximation to it. Subscripted functions

mean the function is evaluated at a particular point; for example, f. = f(z.), £ =

#(z., A;), and so on. Finally, unless otherwise specified, all the norms will be £2-norms.
The rest of the paper is organized as follows: In Section 2, we review the concept

of fraction of Cauchy decrease. In Section 3, we review the SQP algorithm. In Section

4, we survey existing trust-region algorithms for solving problem (EQC). In Section 5,

we present a general trust-region algorithm with the conditions that the trial step must

satisfy. In Section 6 we state the algorithm. Sections 7 and 8 are devoted to presenting
the global convergence theory that we have developed. In Section 7.1, we state the
assumptions under which global convergence is established. In Section 7.2, we discuss
some properties of the trial steps. In Section 7.3, we study the behavior of the penalty
parameter. Section 8 is devoted to presenting our main global convergence result. In

Section 9, we present, as an example, an algorithm that solves problem (EQC), and

we prove that it fits the assumptions of the paper. This algorithm can be -viewed as

a generalization to constrained case of the Steihaug-Toint dogleg algorithm for the

unconstrained case. This algorithm has worked quite well for some large problems

Finally, we make some concluding remarks in Section 10. '

2. Fraction of Cauchy decrease condltlon Consider the following uncon-
strained minimization problem L
minimize f(z)

(UCMIN) = { subject to z € R",

where f : ®" — R is a continuously differentiable function. A trust-region algorithm
for solving the above problem is an iterative procedure that computes a trial step as
an approximate solution to the following trust-region subproblem:

_ [ minimize m.(s)=f.+ VfTs+ 1sTG.s
(TRS) { subject to ||s||a < 6.,

where G. is the Hessian matrix V2§, or an approximation to it and 6. > 0 is a given
trust-region radius. For complete survey see Moré [15] and the book of Dennis and
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Schnabel [6].

To assure global convergence, the step is required only to satisfy a fraction of
Cauchy decrease condition. This means that s, must predict via the quadratic model
function m, at least as much as a fraction of the decrease given by the Cauchy step
on m, that is, there exists a constant ¢ > 0 fixed across all iterations, such that

(2.1) me(0) = me(se) > o[me(0) — m.(sSP)],

where s¢¥ = —tPV £, and its step length
v A 2 . v A 3
tcp_{ ol it Gl <6 and VTGS >0
c = )

W;c_"- otherwise.

Thus, scP is the steepest descent step for m. inside the trust region.

The form of (2.1) we use to prove convergence is given in the following technical
lemma. More details about the role of this lemma in the convergence theory of trust-
region algorithms can be found in Carter [3], Moré [15], Powell [20], and Shultz,
Schnabel and Byrd [23].

LEMMA 2.1. If the trial step s. salisfies a fraction of Cauchy decrease condition,
then

(2.2) me(0) = me(se) > FIVANmin{ ILL 5.1,

NGl ’

Proof. See Powell [20]. a

We end this section by stating Powell’s powerful theorem for unconstrained trust-
region algorithms. The proof can be found in Powell [20]. More details about the
convergence theory for trust-region algorithms for unconstrained optimization can be
found in Fletcher [11], Moré [15], Moré and Sorensen [16], and Sorensen [24].

THEOREM 2.2. Lel f:R™ — R be continuously differentiable and bounded below
on the level set {z € R™ : f(z) < f(zo)}. Assume that the sequence {Gy} is uniformly
bounded. If {zr} is the sequence generated by any trust-region algorithm that satisfies
(2.1) or (2.2), then:

lim inf”ka” =0. i

3. The SQP algonthm The Lagrangian function £ : R" x R™ — R associated

with problem (EQC) is the function - .

{z,N) = f(z) + ATC(z),

where A = (Aq, ..., Am)T is a Lagrange multiplier vector estimate.

A common algorithm for solving problem (EQC) is the successive quadratic pro-
gramming algorithm. It is an iterative procedure. At each iteration, a step s9* and
associated Lagrange multiplier AA9F are obtained by solving the following quadratic
program

(QP) = minimize ¢.(s) = 1sTHes + Vo4l s + L.
~ | subject to V(‘Ts + C.=0,

where the matrix H, is the Hessian of the Lagrangian at (z., A¢) or an approximation
to it.
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Unfortunately, the SQP algorithm can not be guaranteed to work without modifi-
cation. There is a fundamental difficulty in the definition of the SQP step because the
second-order sufficiency condition need not hold at each iteration. By this we mean

that, the matrix H. need not be positive definite on the null space of VC7; hence =

the QP subproblem may not have a solution or a unique solution. This difficulty will
not arise near a solution of problem (EQC) if the standard assumptions for Newton’s
method hold at the solution. For this reason, the SQP algorithm usually performs
very well locally. See Tapia [26] for more details.

An effective modification that deals with the lack of positive definiteness on the
null space is to use a trust-region globalization strategy. This takes us to the following
section.

4. Existing trust-region algorithms for (EQC). A straightforward way to
extend the trust-region idea to problem (EQC) is to add a trust-region constraint to
the (QP) subproblem to restrict the size of the step. So, at each iteration, we solve
the following trust-region subproblem:

minimize q.(s) = -;-sT Hes + Vs + ¢,
subject to VC?S +C. =
llsl| < -

However, in this straightforward approach, observe that the trust-region constraint
and the linearized constraints may be inconsistent, and thus the model subproblem
will not have a solution. To overcome this difficulty, two main approaches have been
introduced for dealing with the case when {s: VCTs+C. =0} N {s:||s|| < 6.} = 0.
They are the tangent-space approach, and the full-space approach. We describe them
briefly in the next section. More details can be found in Maciel [14]. See also Byrd,
Schnabel and Shultz [2], Celis, Dennis and Tapia [4], Omojokun [18], Powell and Yuan
(21], and Vardi [29] and [30].

4.1. The tangent-space approach. In this approach the trial step is deter-
mined as s. = s? + s. where s? is the normal component, that is s? is inside the
trust region and in the normal direction to the null-space of the constraint Jacobian,
N(VCT), and st is the component of the step in the tangent-space of the constraints
given by s{ = W35}, with 5% € R"~™ and W, is an n x (n — m) matrix whose columns
form a basis for N(VCT). S

This. gives two questions to be answered. We must say how to determine s7, and
given s¢, we must say how to determine s'. We proceed in reverse order. Given ST,
we determine s} by considering the transformed subproblem o T

minimize qc(s* + s7)
subjectto VCTs' =0
: ”st“ S 6C1

where 8. = /62 — ||s?[[2. We choose st by using one of the standard unconstrained
trust-region trial-step selection methods on this reduced problem. '

These algorithms have the trust region capability of dealing quite well with zero
or negative curvature in the tangent space of constraints. Thus, nonexistence of an
SQP step at the current iterate is readily handled.

To choose s, Byrd, Schnabel and Shultz (2] and Vardi [29],[30] suggest relaxing
the linearized constraints by replacing C; by «C, where a € (0, 1], is chosen to ensure
that the above trust-region subproblem is feasible. Thus, s? = —a(VCT)*C,, where
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(VCT)* denotes the pseudoinverse matrix of VCT. Observe that if @ = 0 then
VCTs+aC. =0 contains s = 0 and hence for any o € (0, 1], there is some «, € (0, 1)
for which {s: VCTs + aC. = 0} N {s: ||s]| < 06.} # 0.

The drawback of the above approach is that the step depends on the parameter
«, which it is not clear how to choose. '

Omojokun [18], used this approach to compute a trial step that does not depend
on « by choosing s¢ to be the step that solves the following problem

minimize 1||VCTs + C.||?
subject to ||s|| < o6,

for 0<o<l.

It might appear that Omojokun has traded the choice of « for the choice of o,
but in fact, ¢ is easy to choose. Some nominal value like o = 0.8 is used throughout
and the particular value of o at a given iteration is allowed to be in some uniformly
bounded strict subinterval like (0.7,0.9). This subinterval corresponds to stopping
criteria on a trust-region algorithm to solve for s*. See Moré [15], Moré and Sorensen
(16], or Dennis and Schnabel [6].

4.2. The full-space approach. The other approach to overcoming the prob-
lem of inconsistency is the full-space approach. Algorithms based on this approach
compute s. at once in the whole R" space instead of considering the decomposition of
the trial step. This has the advantage of avoiding the computation of a pseudoinverse
solution.

The first example we know of this category of trust-region subproblems is the
CDT subproblem proposed by Celis, Dennis and Tapia [4]. Instead of considering
the linearized constraints VCT's + C, = 0, they replace it by a particular inequality:
IVCTs+ C.|| < 6., where 8. € ®. The CDT subproblem can be written as follows

minimize g.(s)
subject to ||VCTs + C.|| <.
lIs]] < -

The key to the CDT subproblem (and its variants) is the choice of §.. For more
details, see Williamson [31]. Celis, Dennis, and Tapia [4] choose 6. based on a fraction
of Cauchy decrease condition on ||[VCT s+ C.||. They ask the step to satisfy, for some
r € (0,1],

ICell? = ICe + VCT sl|* 2 r{lICell* = IVCT sP + ClI*}.
This can be done by choosing
(4.1) 02 = (6)? = rl|VCTs® + Col? + (1 = PICI1?
where 0 < » < 1 and 5P solves the problem,
minimize 1||VCTs + C.||?

subject to ||s|| < ré.
s = —tVC,.Cl, t>0.

Note that in this case the CDT subproblem minimizes the quadratic model of ¢
over the set of steps inside the trust region that gives at least r times as much decrease
in the £3-norm of the residual of the linearized constraints as does the Cauchy step.

In order to prevent the possibility of a single point for the subproblem and obtain
a meaningful trust-region subproblem, it is suggested that r < 1, for instance r = 0.8.
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5. A general trust-region algorithm. In this section we describe a very in-
clusive class of trust-region algorithms.

The typical form of trust-region algonthms for solving (EQC) is basically as
follows: At the current point (z., A.), a step s. is computed by solving some trust-
region subproblems and a Lagrange multiplier vector A4 is obtained by using some
scheme. The point (4, A+), where £4 = z.+ s., is tested using some merit function
to know whether it is a better approximation to a solution (z4,As). Such merit
functions often involve a parameter, which is updated using some scheme. The trust-
region radius is then adjusted and a new quadratic model is formed.

In our requirements on the trust-region algorithm, the way of computing the trial
steps is replaced by some conditions the steps must satisfy and the estimates of the
Lagrange multiplier vector and the Hessian matrix need only be uniformly bounded.
This allows the inclusion of a wide variety of trust-region algorithms and it is exactly
in the spirit of Powell’s Theorem 2.2 for unconstrained trust-region methods. In
Section 9, we will present an example algorithm that satisfies these easy conditions.

5.1. Computing the trial steps. We first write the trial step as s, = s% + s7,
where s and s? are respectively the tangential and a relaxed normal component. We
do not require that sg be normal to the tangent space. See Figure 1.

F1G. 1. The Step sc = s™ + st.

We will require that the components s? and s’ satisfy a fraction of Cauchy de-

crease condition on appropriate model functions. At the current iterate, if ||C.|| # 0,
then we will require that the relaxed normal component gives at least as much decrease
as —ng’ VC.C. on the quadratic model of the linearized constraints in a trust-region
of radius ré,, where the step length n¢P is given by -

vVC.C. . vC.Co? <
neP — { I’"L""—"‘u'flvc vC if [obroois < b
P —

§ .
__
TVC.Call otherwme,

where 3c =rd. and 0 < r < |. In words, the step s? is chosen from the set of steps
that satisfy a fraction of Cauchy decrease condition on the quadratic model of the
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linearized constraints inside ||s|| < é.. Equivalently, s7 lies in the set
Se={s:llsll <&} {s:IVCTs + Cel|? < (674)%)
where (879)2 is given by (4.1). See Figure 2. ‘ A

FiG. 2. The set Se.

Because the relaxed normal component s? is not required to be normal to the
tangent space, a condition on the step is needed to ensure global convergence. In
particular, the following condition is required

(5.1) llsell < Kil|Cell,

where K is some positive constant independent of the iteration.

If s7 is normal to the tangent space, this condition holds (see Lemma 7.1). How-
ever, this condition has to be enforced in the case when s? is not normal to the tangent
space. One way of enforcing this condition is to redefine é. to be

(5.2) 8. = min {ré., K1|C:||},

where K is positive constant chosen to be large enough to bound uniformly the “right
inversion” operator implicitly defined by the procedure used when linear feasibility
is attained. In other words, we do not suggest choosing K; and enforcing (5.2).
Rather, we suggest (as in Section 9) that (5.1) is enforced naturally by any reasonable
algorithm. It is convenient here to think of K; as prechosen to be greater than a
uniform bound on the norm of the right inverse for VC(z).

We will deal with the relaxed normal components of the trial steps assuming that
they satisfy (5.1).

Now we pick a linear manifold M, parallel to the null-space of the constraints.
Let M. = {s:VCTs =VCTs?, s* €5S.}. Thus, M.N{s:||s +s7|| < b} #0.

Observe that, in the set .S., we are taking a fraction of 6., in order to forestall
the case that M. lies too close to the boundary of the trust-region of radius é..
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On the manifold M., we consider a quadratic model g¢.(s) of the Lagrangian
function associated with the (EQC) problem. Then, when ||WT Vq.(s?)|| # 0, we ask
the tangential component s! to satisfy a fraction of Cauchy decrease condition from
s on gc(s) reduced to M. That is s7 + st € G. N M., where

Ge = {sp+s" I8 +sCI| < b, qe(s?+5")—ge(s?) < olge(sF —tP W] Vae(s2))=ae(s7)]},

for some 0 < ¢ < 1, and

LW 9ge () g IWTGn s
V4 (s2)TWHWIVqc(s?) Ve (sP)TW . HWTI Vg (sr) = ¢

tP = and Vg.(s?)T WchWZFVQc(S'c') >0

6 .
——-p-—“—" WV oGOl otherwise,

where H. is the reduced Hessian matrix and §, is the maximum length of the step
allowed inside the set M. N {s:|[|s + s7|| < é.} in the direction s.
It is easy to see that, 8. satisfies

(5.3) (1+7)é. > 6. > (1-rj5c.

5.2. Updating the Lagrange multiplier and the model Hessian. The
method for updating the multiplier A. is left unspecified. We only require that the
Lagrange multiplier sequence {A;} be bounded. Any approximation to the Lagrange
multiplier vector that produces a bounded sequence can be used. Also, for example,
setting Ar to a fixed vector (or even the zero vector) for all k is valid. Similarly
we require only boundness of the sequence {H} of approximate Hessians. Thus all
Hj = 0 is allowed. Note that, here, we are not addressing the question of the choice
of the Lagrange multiplier vector and the Hessian matrix that produces an efficient
algorithm. We are addressing some weak assumptions on {A¢} and {H}} that pro-
duce a globally convergent algorithm. For example, our theory applies to a form of
successive linear programming.

5.3. The choice of the merit function. Let z. be the current iterate. We
need to decide if a trial step chosen to satisfy s? € S. and s, = s? +st € G.N M. isa
good step, that is, if the step s. gives a new iterate z, that is a better approximation
than z. to a solution, say z,, of (EQC). In constrained optimization, the meaning
of better approximation should censider improvement not only in f but also in the
constraint violation ||C||2. The evaluation of the trial step requires the choice of
a merit function, which usually involves the objective function and the constraint
violations. ' '

Here, we use the augmented Lagrangian as a merit function

(5.4) L(z,%:p) = f(z) + ATC(z) + pC(z)TC(z),  p>0.

This function has been used as a merit function in trust-region algorithms also by
Celis, Dennis, and Tapia [4], El-Alem [8], [9] and Powell and Yuan [21].

El-Alem [9] and Powell and Yuan [21] used the formulaA(z) = —(VC(z)TVC(z))~!
VC(z)TC(z) for updating the Lagrange multiplier. For this particular choice of the
multiplier, A is a function of ¢ and (5.4) is an exact penalty function. See Fletcher
(10]. Celis, Dennis, and Tapia [4] and El-Alem [8], on the other hand, with a particular
choice of the multiplier, have treated the multiplier as an independent variable.

In the context of a line search globalization strategy, Gill, Murray, Saunders,
and Wright [12] and Schittkowski [22] have considered the augmented Lagrangian
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as a merit function. They have treated the multiplier as an independent variable
and proved global convergence for their algorithms. In this work, the choice of the
multiplier is left open.

Having an exact penalty function as a merit function is, of course, a desirable
propriety. But it is not necessary to prove global convergence. Note that for us the
merit function is used only for evaluating the steps. It is not used in choosing the
trial steps. :

5.4. Evaluating the trial step. Let s. be a trial step chosen to satisfy the
conditions of Section 5.1. We will accept it if sufficient improvement is produced in
the merit function. To measure this improvement we compare the actual reduction
and predicted reduction in the merit function from the current iterate z. to the new
one £y = z.+ s.. The actual reduction is defined by

(5~5) ATEdc(sc;Pc) = C(zm ’\c;Pc) - [,(z+, A+§Pc)
Uze, Ac) = Uz, A1) + pe(lICE? = (IC41P),

and the predicted reduction is defined to be
(56) . Predc(sc;,ﬂc) = Ac(l'c; Ac; Pc) - Q(sm A/\C;Pc)

where Q(sc, AXc, pc) = €z, Ae)+ Vo l(ze, Ac)Tsc+%sZHcsc+(A/\c)T(Cc+VCfsc)+
pe(lICe + VCT sc||?).

We will accept the step and set z, = z. + s, if %‘,;—:Zf > m where n; € (0,1)isa
fixed constant. A typical value for 7; might be 10~%. :

5.5. Updating the trust-region radius. The strategy that we follow for up-
dating the trust-region radius is based on the standard rules for the unconstrained
case. More details can be found in Dennis and Schnabel [6] or Fletcher [11]. How-
ever for our global convergence theory, a modification in the strategy of updating the
trust-region radius is introduced. The reader will see that this modification is of no
importance in practice; it is merely a formality. At the beginning we set constants
Omax > Omin and each time we find an acceptable step, we start the next iteration
with a value of 64 > 8min. In short, 6. can be reduced below §min while seeking an
acceptable step, but 64 > émin must hold at the beginning of the next iteration after
finding an acceptable step. The following is the scheme for evaluating the step and
updating the trust-region radius. . oo

ALGORITHM 5.1. Evaluating the step and updating the trust-region ra-
dius . : e e

Given the constants: 0 < ay < l,ap > 1 and 0 < 11 < 72 < | and bmax > 6. >

Omin > 0.
While ﬁ%g—: <m (*eg. m=10"%%)

Do not accept the step.
Reduce the trust-region radius: 6. — ai||sc|| (* e.g. a1 =0.5 *), and
compute a new trial step s..
End while
I g < %%:—Zj <72 (*eg.712=057%* then
Accept the step: ¢4 = z. + s..
Set the trust-region radius: 64 = max{6., Smin}-
End if
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If %f—:—‘js > 12 then
Accept the step: z4 = z. + s..

Increase the trust-region radius:
(5.7) &4 = min{Smax, max{Smin, w26 }}

(*e.g. ag=2 %)

End if

It is worth noting that in practice one might have another branch in which some
13 € (1, m2) is used to reduce the trust-region radius if 7; < '}:r:‘;‘- < n% "A typical
value for 73 is .1, and the motivation is to try to avoid the expense of a next unac-
ceptable trial step. Of course, in our work we would have to decrease the trust-region
radius only when the step is rejected. Another modification sometimes used in prac-
tice is to allow internal doubling. This can be viewed loosely as letting a in (5.7)
depend on %:—:'ﬂ-‘- See Dennis and Schnabel, Page 144, [6].

Observe that in (5.5) and (5.6) we have expressed the quantities Ared and Pred
as functions of p. Thus p. does not effect the choice of the trial step s. but we need to
determine p. before evaluating the step s.. The right choice of the penalty parameter
is one of the most important issues for algorithms that use the augmented Lagrangian
as a merit function. This takes us to the following section.

5.6. The penalty parameter. Numerical experience with nonlinear program-
ming algorithms that use the augmented Lagrangian as a merit function has shown
that good performance of the algorithm depends on keeping the penalty parameter
as small as possible. See Gill, Murray, Saunders and Wright [13]. On the other hand,
global convergence theories developed by El-Alem (7], [8] and Powell and Yuan [21],
require that the sequence {pr} be nondecreasing El-Alem [7] requires that p be cho-
sen so that the predicted decrease in the merit function be at least as much as the
decrease in ||[VCTs + C||2.

We consider, as an update formula for the pena.lty parameter, El-Alem’s scheme
given in [8], since it ensures that the merit function is decreased at each iteration by
at least a fraction of Cauchy decrease in the quadratic model of the constraints. This
indicates compatibility with the fraction of Cauchy decrease conditions imposed on
the trial steps. In addition, good performance was reported when 1mplement1ng thls
scheme. See Williamson [31] It can be stated as-follows

ALGORITHM 5.2. Updating the penalty parameter

1. Initialization

Set po = 1 and choose a small constant 3 > 0.
2. At the current iterate x., after s has been chosen:
Compute

Pred.(sc; p-) = Qc(o)‘qc(sc)‘A’\Z‘(CC‘FVCZS)'*‘P- [”Ccl|2_“VCZ'3c+Cc“2]-

If Prede(se;p-) > 5[|Cel|? = [IVCT se + Ce||?],
then sel p. = p_,
else set p. = p. + 3, where

- 2[%(36) - qc(O) + A’\Z‘(Cc + VC?S)]
Pe = IClIZ = [VCT s, + C.|P?

End if



A THEORY FOR GENERAL TRUST-REGION-BASED ALGORITHMS 11

The initial choice of the penalty parameter pq is arbitrary and scale dependent.
Here, we take pg = 1 for convenience.

An immediate consequence of the above algorithm is that, at the current iteration,
we have :

(5.8) Prede(se; pe) 2 ELICel” = I + VCT s |2,

5.7. Termination of the algorithm. We use first order necessary conditions
for problem (EQC) to terminate the algorithm. The algorithm is terminated if
IWIVole|l + |ICell < €tor where €101 > 0 is a pre-specified constant and W, is a
matrix with columns forming a basis for the null space. We require that {Wk} be
uniformly bounded in norm for all k.

6. Statement of the algorithm. We present a formal description of our class
of nonlinear programming algorithms.
ALGORITHM 6.1. The NLP-algorithm.
step 0. (Initialization)
Given g, Ao, compute Wy.
Choose 6min, Smax, and €io1 > 0.
Set po =1 and B > 0.
step 1. (Test for convergence)
I |[WIVl(ze)l| + (IC(ze)l| < €tor
then terminate.
End if
step 2. (Compute a trial step)
If z. ts feasible then
a) find a step st that salisfies a fraction of Cauchy decrease condition
on the quadratic model q.(s) of the Lagrangian around z.. (See
Section 5.1)
b) Set s. =st.
else (*C(zc) #0 %)
a) Compute s? that salisfies a fraction of Cauchy decrease condition
on the quadratic model of the linearized constraints. (See Section
5.1) :
b) If |WIVg(s2)l| =0
then set st =0
else find s! that satisfies a fraction of Cauchy decrease condition
on the quadratic model q.(s? + s) from s?. (See Section 5.1)
End if o S LT
‘ c) Set s, = s + st.
End if
step 3. (Update \.)
Choose a Lagrange multiplier vector A4.
Set A/\c = /\+ - /\c.
step 4. (Update the penalty parameter)
Compute

Predc(se;p—) = ¢o(0) = ge(se) = ANT(C. + VCTs)
+p-[ICel? = IVCT se + Ce| ).

Update p_ to obtain p. by using Algorithm 5.2.
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step 5. (Evaluate the step)
Compute

Arede(scipe) = Az, Ae) = Uz, Ax) + pe(lICe||? = ICHI1%).

Evaluate the step and update the lrust region radius by using Algo-
rithm 5.1.
If the step is accepted
then update H. and go to step 1.
else
go to step 2.
End if
The above represents a typical trust-region algorithm for solving problem (EQC).
We leave the way of computing the trial steps undefined. This will allow the inclusion
of a wide variety of trial step calculation techniques. For similar reasons we left the
way of updating the Lagrange multiplier vector and the Hessian matrix undefined.
In the next two sections we prove global convergence of the above algorithm class.

7. The global convergence theory. Before beginning our global convergence
theory, let us give an overview of the steps that comprise this theory.

The trial step is shown to satisfy a sufficient predicted decrease condition, the
fraction of Cauchy decrease. Note that in our algorithm, we assume that the tangential
and the relaxed normal components of the trial step each satisfy this condition. In
Lemma 7.1, we will express this in a technical form similar to inequality (2.2).

The definition of predicted reduction is shown to give an approximation to the
actual reduction that is accurate to within the square of the step length. This is
proved in Lemma 7.5.

The penalty parameter p; is shown to be bounded. The technique is to prove
that, at any iteration k at which the penalty parameter is increased, the product of
the penalty parameter and the trust-region radius is bounded by a constant that does
not depend on k, this is done in Lemma 7.10, and the sequence of the trust-region
radii is shown to be bounded away from zero. This is proved in Lemma 7.11. The
proof of this lemma shows the crucial role that is played by setting the trust region
to be no smaller than &, after every acceptable step. See Section 5.5. Finally, the
penalty parameter py is shown to be bounded. The proof is given in Eemma 7.12.

The algorithm is shown to be well-defined in the sense that it always finds an
acceptable step after finitely many unacceptable trials. This result is proved in The-
orem 8.1. Using the above results and Theorem 8.1, the trust-region radius is shown
to be bounded away from zero. The proof is given in Lemma 8.2.

Finally, In Theorem 8.3, it is shown that the algorithm always terminates. i. e.,
the termination condition of the algorithm will be met after finitely many iterations.

Now we start by stating the assumptions under which global convergence is
proved. The same assumptions as Al - A5 (see below) are used by Byrd, Schnabel,
and Shultz [2], El-Alem [7], [8], [9] and Powell and Yuan [21] and their particular
choices of Lagrange multiplier vectors satisfy A6.

7.1. The standard assumptions. We state assumptions needed to prove global
convergence for the nonlinear programming Algorithm 6.1.

Let the sequence of iterates {z;} generated by the algorithm satisfy:

Al. For all k, z and z} + 51 € Q, where Q is a convex set of R".

A2. f,Ce C'Z(Q)
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A3. rank(VC(z))=mforall z € Q.

A4. f(z),Vf(z), Vif(z), C(z), VC(z), (VC(z)TVC(z))~!, W(z), and
V2Ci(z) fori = 1,---,m are all uniformly bounded in Q.

AS5. The matrices Hg, k= 1,2, .. are all uniformly bounded in Q.

A6. The Lagrange multiplier vectors Az, k = 1,2,.. are all uniformly bounded
in Q.

Assumption A4 means that for all z € Q, there exist positive constants v, vy, vy,
va, V3, Vs, Vs, and vg such that:
£ @) < v, IVf(@)|| < v, IC(2)I| < w1, IVC(@)]| < va, (VC(2)TVC(2))™Y| < vs,
IV2f(@)ll < va, [V2ei(2)| Svs Vi=1,--,m, and [W(z)| < ve.

An immediate consequence of Assumptions A4 and A5 is the existence of a con-
stant 7 > 0 that does not depend on k such that ||Hk|| < ve, ||WT Hi|| < vr, and
IWF HeWe| < vr.

Assumption A6 means that for all z € Q, there exists a constant vg > 0 that does
not depend on k, such that [|[A¢|| < vs.

The following three subsections are devoted to presenting lemmas needed to prove
global convergence.

7.2. Properties of the trial step. The following lemma shows that (5.1) holds
for the component s? of s. when it is normal to the tangent space. It is an immediate
consequence of the standard assumptions.

LEMMA 7.1. At the current iterate z., let the component s? be normal to the
tangent space, then under the standard assumptions, there ezists a constant K; > 0
independent of the ilerates, such that
(7.1) llscll < KallCel.

Proof. The proof follows directly from the standard assumptions and the fact
that [|Cx + VCTse < ICell . O

The following lemma expresses in a workable form the pair of fraction of Cauchy
decrease conditions imposed on the trial steps. '

LEMMA T7.2. Let the trial steps salisfy the condilions given in step 2 of Algo-
rithm 6.1, then under the standard assumptions there ezist constants K2, K3, and Kg
independent of the iterates such that

(7.2)° ICEI? = ICk + VCT skl|* > K2||Cl| min{ K3]|Ck], 6k },
and

1 . n
(73)  qi(sk) — qe(se) 2 §HW/¢TV%(82)II min{(1 = r)8k, KalW{ Var(sE)II}-

Proof. The proof is an application of Lemma 2.1 to the two subproblems, followed

by a use of the standard assumptions and (5.3). O
Now we deal with the trial steps assuming that they satisfy inequalities (7.2) and
(7.3).

LEMMA '7.3. Under the standard assumptions, there ezists a constant Ks >0
independent of the iterates, such that

(7.4) qx(0) = qk(sk) — AA[(Ck + VT sk) > —Ks||Ckl.



14 J. DENNIS, M. EL-ALEM , AND M. MACIEL
Proof. Consider

1
a(0) = a(si) = —Valist = 5(sE)" Hes}

v

1
—IV=Lell listll = Sl Hxll s2 11

I

~(IV=2ell + 31l 21 1521

Using (5.1), the fact that ||s}|| < 6max, Ak and AXg are bounded, ||Ck + VCT s¢|| <
||Ck|l, and the standard assumptions, we have

9k (0) — qk(sp) =AM (Ce + VCTs) > —Ks||Chll,

and we obtain the desired result. a v

The following lemma gives an upper bound on the difference between the actual
reduction and the predicted reduction. ‘

LEMMA 7.4.  Under the standard assumptions, there ezist positive constants
Ke, K7 and Kg, independent of k, such that

(7.5)  |Aredi(sk; p) — Predi(se; pi)| < Kellsel|® + Krpellsell® + Kspkllskl)[|Crll-

Proof. The proof follows directly from El-Alem [8]. o

If the penalty parameter were uniformly bounded, the next lemma would show
that the predicted reduction provides an approximation to the actual merit function’s
reduction that is accurate to within the square of the step length.

LEMMA 7.5. Under the standard assumptions, there ezists a constant Ko > 0

that does not depend on k, such that

(7.6) |Aredi(sk; pr) — Predi(se; pe)| < Kope|si||*.

Proof. The proof follows directly from the above lemma, the fact that ||si|| and
[|Ck|| are bounded, and p; > 1. 0

7.3. The decrease in the model. This section deals with the decrease in the
merit function by the trial step. We start with the following lemma.

LEMMA 7.6. Let s, be generated by Algorithm 6.1. Then under the standard
assumptions, the predicted decrease in the meril function satisfies

1 . n e
Predc(sc; pe) > E”Wchqc(sZ)" mln{K4||W;rch(sc)[| , (1=7)é}
(7.7) = Ks||Cel| + pellICell® = IVCT s + Cell?],

where Ky is as in Lemma 7.9.
Proof. We have

Pred.(sc;pe) = 4o(0) = ge(se) = AN (Ce + VCT's.)
+PC[”C¢:”2 - HVC;PSc + Cc||2]
= (ge(s2) = ge(se))
+(9e(0) — ¢e(57)) — AN (Ce + VCT sc)
+ pe[lICel? = IVCT se + Cel ).
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From (7.3) and Lemma 7.3, we have

1 . s
Prede(scipe) 2 SlIWS Vae(s?)l| min{ Kal|WTVao(s2)||, (1 - r)6.}
= KsllCell + pe[llCell? = IVCT s + Ce?].

Hence the result is established. 0

If z. is feasible, then the predicted reduction does not depend on p,, so we take
Pe as the penalty parameter from the previous iteration. The question now is how
near to feasibility must an iterate be in order that the penalty parameter need not be
increased. The answer is given by the following lemma.

LEMMA 7.7. Assume that the algorithm does not terminate at the current iterate.
If ||Ce|l < @b, where a is a constant that satisfies:

[ _€tal Etol Eta_ . Ks€ta
. < y ) 1 -
(7 8) « - fin { 36max ’ 31/71{1 6max 12K5 mln{ 36max r}}
then
1 P
Prede(scip-) 2 ZIWI Vae(s2)l| min{ Kal|WT Vae(sP)|, (1= )8}
(7.9) + p- Ks||Ce|| min{ K3||C.||, 7. ).

Proof. If the algorithm does not terminate at z., then IWTVoLe|| + ||Cell > €tor,

and since ||C¢|| < aéd. with « < s—é‘n'_‘ﬂa;-, therefore, ||C¢|| < ¢t and the reduced

gradient satisfies ||WTV £|| > Z¢101. Now,

WS V(s = IWT(Vole + Hes?)|| > |IWTVole|| - [|WT Heos?||
: ] 2 N
> St~ KilIC| 2 e - Kias.
But since « < ﬁg‘m, it follows that

1
i IIWZVQC(52)|| 2> §€tol-
From Lemma 7.6, we have
1 L
Predc(sc;p-) > §||WcTch(S?)ll min{(1 — r)8c , K4||W]Vq.(s2)||}
= Ks||Ce|| + p-[l|Ce||? = [IVCT 5. + Cc||?).
Since [WTVq(s?)|| > Letor, we have
1 .
Predc(sc;p-) > ZIIWCTch(S’Z)H min{(1 = r)é. , Ka[|WTVqc(s3)I|}
K
+ iewl min {(l - r)é. , Erol 4}

12 3
— Ksabe + p_[IICell” = [VCTs. + Clf].
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Thus

1 . .

Predg(sc;p-) 2 ZIIWcTch(S'c')II min{(1 - r)éc , f I}
Etolbe . €tot K4

+ o mln{l r, o }

— Ksad. + p_[lICc|I*> = IVCT sc + Cell?],
and since

Etol . | Ka€tal
*< ok, m“‘{ e | r}’

we have

1 L .
(7.10)  Prede(sc;p-) 2 -lIWcTch(S")H min{ K4 ||W] Vae(s2)Il , (1 = r)éc}
p-[ICI? = IVCT sc + Cell*].

Now, using (7.2), we obtain the desired result. =~ O

Inequality (7.10) guarantees that if the algorithm does not terminate and if
|Ce|l € abe, then the penalty parameter at the current iteration does not need to
be increased in step 2 of Algorithm 6.1. This is equivalent to saying that the possible
increases in the penalty parameter will be only when ||C.|| > aé..

LEMMA T7.8. There ezists a constant K10 > 0, such that at any iteration at which
the algorithm does not terminate and ||C|| < b where o is as in Lemma 7.7, the
following inequality holds

(7.11) Predk(.sk;pk) > Kok

Proof. Since the algorithm does not terminate and ||Ck|| < adi, where « is as in
(7.8), then from (7.9) and using a similar argument as in Lemma 7.7, we can write

Predy(si; pr) > =2 mm{(l )6k m_‘i} > 29 in {(1 "), Ka4é€tol } 6.

3 12 30max
Defining g
_ Etal K4€tol
Ko = 5 mn{l T, 35max}’ .
we have Predi(sk;pr) > K106k and this is the desired result. 8]

‘In the next section we will discuss the role of the penalty parameter in the global
convergence of the nonlinear programming algorithm.

7.4. The behavior of the penalty parameter. In this section we discuss the
behavior of the penalty parameter. The crucial result here is that the sequence of
trust-region radii {6} is bounded away from zero. This will allow us to conclude that
the sequence {pr} of penalty parameters is bounded.

According to the rule for updating the penalty parameter, we use the penalty
parameter from the previous iteration if the amount of predicted decrease with the
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old penalty parameter is at least a fraction of the decrease in the quadratic model of
the linearized constraints, that is, if

(7.12) Predy(sci p-) > Z=[ICIl? = [|Ce + VCT 5|2,

then p. = p_. Otherwise, we use p. = g, + 3, which enforces (5.8). See Section 5.6.

LEMMA 7.9. Let {pr} be the sequence of penally parameters generated by the
algorithm, then

1. {pr} forms a nondecreasing sequence.

2. If the penalty parameter is increased, it will increase by at least .

3. If the penalty parameter is not increased, then inequality (7.12) will also hold.

Proof. The proof is straightforward. a

LEMMA 7.10. If pi is increased at the current iterale, then there ezists a constant
K11 > 0 that does not depend on k, such that

(7.13) peée < Ky

Proof. If pi is increased at the current iterate, then it is updated by the rule

p = 2[qe(sk) — qx(0) + AXT(Cr + VCT s1)]
ICEIZ = [ICk + VCT 51 ||?

+ 8.
Hence,
%[IICkllz —ICe +VCTsel’] = [gr(se) = gx(0)] + ANT (Ck + VCT s)
LGP = l1Cx + VT s 7]

= [qk(sk) — qr(s})]
+ gk (s?) = qe(0)] + AN (Ci + VCT se)

+ 512V s ~ 9 CT 7.

Applying (7.2) to the left-hand side, and (7.3) and Lemma.7.3 to the right-hand side,
we can obtain the following: '

K .
Bt 2 |\ Cellmin {réx , KallCi|l}

2
1 .
< =3 IWF Vaulsp)llmin {KIWE Ta(sPl, (1= r)de}
+ KsllChll = (T CaCu)Tox = SIVCTsul®
< KSlICull - B(VCxCo)se
< KellCull + BIVCHl Gl s
< (Ks+ BTG s DIICH
Then,

prst min {rbx , Ks||Cell) < Ks + Bvadman.
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Since at the current iterate the penalty parameter increases, then from Lemma 7.7
we have ||C|| > «dr. Hence

d

pkﬁ min {7‘51: y K3(¥5k} S 1<5 + ﬁuzamax

2
and
s 2K5 + 2Pv26max
PEOk = Kz min {r, Kza}’
Defining
2Ks + 2Bv26max
1{11 - - )
K2 min {r, K3za}
we obtain the desired result. ]

The following lemma gives a lower bound for the sequence {6;} for those iterates
at which the algorithm does not terminate and the penalty parameter is increased.

LEMMA 7.11. Under the standard assumptions, there ezists a constant &, which
does not depend on the iterates, such that for any k at which the algorithm does not
terminate and the penally parameter is increased,

(7.14) § > &

Proof. Let si be the current step (this step can be acceptable or unacceptable)
and let sg—; be the last acceptable step. Let us denote the indices of unacceptable
steps between sg_; and sg by ki, kq, ..., k;. That is

Sk—1,5kysSkay " * "5 Sk Skjp = Sk-
.

rejected

We consider three cases:
i) sk, = sk, that is, there are no unacceptable steps between sg.; and sk
i) sk, # sk and ||Ck|| > abi, foralli=1,...,5+ 1. .
iii) sk, # sk but ||Ci|| > adg, does not hold foralli =1,...,5+1.
i) If sg = s,, then from the way of updating the trust-region radius,

(7‘15) o 2> max{6k~1,6min} > Omin- )

ii) If sk, # sk and at the same time the constraint violation |ICe|l > céi, for all
i=1,---,7, then from Lemma 7.5, we have

|Aredi(sk,; pr;) — Predi(sk,; pr,)| < Kopr,|Isk||*-

Now since ||C|| > bk, then from the way of updating pr, and using inequality (7.2),
we have

Predi(seioe) 2 BEIICHI = 1ICk + VCT sk |17

> %Kzuc,,u min{ Ksa, r},.
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Hence
|Aredi(sk,; pe,) — Predi(sk,; px,)| 2Ko||sk, ||
(7.16) L | .
Predi(s,; px,) = K2||Ci|| min{K3«, r}
Since all the steps si, fori=1,---,j are rejected, it must be the case that
(7.17) (l=m) < |Arede(sesioe) |

Predy(sk,; pk,)
So from (7.16) and (7.17), we have

(1 - 1)1)K2min{aK3,
2Ky

(T18) sl > e, Vi=1,-i

Since 6k,,, > a1l|sk;|l, and since [|Ck|| > aby,, it follows that

(1 = m)K2 min{aKs, r} b
2K, Fr

(7.19) 6k2am%u2m[

Now, according to the rule for updating the trust-region radius,
ok, = max{8ec, Smin} > min-

Then

5 > ay(1 - 171)K2r’nin{aK3, r}a
21&9
iii) If sk, # s¢ and ||Ck|| > «ék; does not hold for all i = 1,---,j + 1, then there

exists at least one index p such that ||Ci|| < abk,. Let I be the largest index such
that ||Ck|| < abk, holds.

bmin = K12.

rejected
sk-lyfkuskzs o ',skcj Skig1s ' " Skjr Sk = Sk
ICkNIS b ICkIl> b,

Observe that for all indices i such that I+ 1 <i < j+1, we have ||Ci|| > aép,, then
as in the first two cases we will see that there exists a constant K3 such that

(7.20) o 2 Kisllskll,

If sg,,, = sk, then

(7.21) bk > allsk, |-

If sk, # sk, since [|Ci|| > by, foralli=1+1,...,5+ 1 from (7.19), we have

(1 — 1)Ko min{aKsj, r}
21(9

(7.22) aZa{ ]amML

Defining

K5 = min{ ay, (1- 1)1)K2‘ rrtm{a[&;;, r} N
2Ky
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we obtain (7.20). Now, since [|Ck|| < aédg,, the penalty parameter does not need to
be increased. From (7.5) we have

|Aredi(sk,; pk,) — Prede(sk; o)l < [Ks + (K7 + «K3)pk, llsi 1]l sk |6k, -

But
O K
£ <pp—< — = .
pkl ”skl“ -— pk [{13 -— KIS K14

Therefore,

(7.23)  |Aredi(sk,; pr,) — Predi(sk;pr)l < [Ke+ (K7 + aKs)Kia]llsk,||6k, -

Also, since ||Ci|| < adg,, then from Lemma 7.8, we have

(7.24) Predi(sk,; pr,) > Kiobk,-

Using (7.23), (7.24) and the fact that sg, is rejected, we obtain

Aredi(ski; pry) 1 < [Ks + K7K14 + aKsKy4]||sk,||
Predi(sk,; px,) = Ko '

(1=-m)<

Hence

(1 =m)Kio
Ke+ K7K14 + aKsK14'

Now, using (7.20) and (7.25), we obtain the bound
(l - 1)1)1{10 K3

(7'25) “'skt” >

8 > )
"= Ko+ KrKia + aKsK1a
Defining
< . (1—7}1)K10 K13
6= .
min{Smin, K1z, K¢+ K7K14+ aKgK14 "'’
we obtain the desired bound. |

Now we can show that the nondecreasing sequence of penalty parameters gener-
ated by the nonlinear programming Algorithm 6.1 is bounded. _

LEMMA 7.12. Under the standard assumptions, if the algorithm does not termi-
nate then

(7.26) klim pr = p~f<oo.

Furthermore, there ezists a positive integer k, such that pr = p* for every k > k,.
Proof. If the penalty parameter at z; is increased, then from Lemma 7.10 and
Lemma 7.11, we have
K K
k S — S -_—=.
p Ok ]
Therefore {pr} is a bounded sequence, and since it is nondecreasing, there exists
p* < oo such that

lim p; = p*.
k—o00
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According to the penalty parameter updating scheme, we know that if the penalty
parameter is increased, it is increased by a quantity greater than or equal to 8, and
since the sequence {p;} converges to p* < oo, the number of iterations at which the
penalty parameter is increased must be finite. Thus there exists an index k, such that
Pk = pk, Yk > k,. This completes the proof. 0

This last result will play a crucial role in the proof of the global convergence of
Algorithm 6.1.

8. The main global convergence results. This section is devoted to present-
ing our main global convergence results. We start with the finite termination theorem
where we show that the general nonlinear programming algorithm is well-defined. In
Section 8.2, we will present more properties of the trust-region radius sequence gener-
ated by the algorithm. In Section 8.3, we prove global convergence of our algorithm.

8.1. The finite termination theorem. The following lemma shows that the
nonlinear programming Algorithm 6.1 is well-defined in the sense that at each iteration
we can find an acceptable step after finite number of trial step computations, or
equivalently, trust-region reductions. ‘

THEOREM 8.1. Under the standard assumptions, unless some iterate z. satisfies
the termination condition of Algorithm 6.1, an acceptable step from z. will be found
after finitely many trust-region subproblem solutions.

Proof. The proof follows from Theorem 5.1 of El-Alem [8]. 0

8.2. Properties of the sequence 6. From the way of updating the trust-
region radius, {6¢} is bounded from above. The following lemma shows that the
sequence {6} is also bounded from below. i. e. it is bounded away from zero.

LEMMA 8.2. Under the standard assumptions, assume that the algorithm does
not terminate. Then there exists a positive constant §, which does not depend on the
wterates such that for all k,

(8.1) S > b

Proof. The proof follows by using the same technique as in Lemma 7.11. In the
notation of that proof, we have three cases to consider.
i) sk, = sk, that is, there is no unacceptable step in between; then accordingly to the
rule for updating the trust-region radius we have
(8.2) 6k > max{6k-1,6min} > Omin-
ii) If sk, # sk and ||Ck|| > ab, for alli = 1,...,5 , the proof is exactly the same as
before; see ii) in Lemma 7.11, for details. '
iii) Now, if sg, # si and ||Ck|| > @bk, does not hold for all i = 1,...,j, as in Lemma

7.11, let [ be the largest index such that ||C|| < @b, holds, and from (7.20), we have

(83) o > K13”5k,”.

Now, since for the iterate ki, ||Ck|| < «ad,, then Predi(sk,;pr,) > Kio0k,- Since
|Aredi(sk,; pr,) — Predi(sk,; pr, )| < Kopr,||sk,||?, and because the step sg, is an un-
acceptable step, we have

Aredk(sh;ph) —1l < 1{9pk¢”5kl“2 < [{9p*“5kl“.

1 -
( 7’1) < Predk(sk,;pk,) - Kmék, - 1(10
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The above inequality implies that

(L=m)K1o
1EM Z‘ Tp*-'

This inequality and (8.3) allow us to write

(1 - 7]1)1{10]{13
(8.4) 0 > Kop* .

From (7.14), (8.2) and (8.4), if we let

(1 =m)Ki0K3
Os mm{ Kop ,

we obtain 8 > é,, which is the desired result. 0

8.3. The global convergence theorem. Now we present our main global con-
vergence result. Namely, under the standard assumptions, the general nonlinear pro-
gramming algorithm generates a sequence of iterates {z;}, which has at least a sub-
sequence that converges to a stationary point of problem (EQC).

THEOREM 8.3. Under the standard assumptions, given any €:5 > 0, the algo-
rithm terminates because

(8.5) WY Valicll + [|Cell < €tar-

-Proof. Let us assume that the algorithm does not terminate. We prove (8.5) by
contradiction. We begin by assuming that the sequence {||C||} is bounded away from
zero. Then there exists 7 > 0 such that for all k,||Ck|| > 7. Let k be some iterate
such that k > k,, where k, is as in Lemma 7.12. For all z € Q, we have

ICE@) 2 IC (=)l = IC(z) = Cp)ll 2 IC(=p)ll = vallz — zgl.

Define o = H_L_&lll.czfa- and consider a ball & of center z; and radius ¢. Then for all
z € U, we have : i

(36) lc@l 2 slicEl

Now let us assume that all z; € U, j > k. Inequalities (5.8), (7.2), and (8 6), and the
fact that [|Cg|| > 7 and §; > 6, allow us to write, for all j > k

j , -, K .
Pred; 2 %[IIC;H2 =G + VCT 551 2 —2|ICjII min{K3||Cjl|, ré;}

K, T . [ Kat
> ZECal min{Z2Cal, 76} > T2 min { 52T, v,
> K;5>0.

Since an acceptable step can be found in a finite number of iterations and for all
T €U, j >k,

(8.7) Lj — Ljp1 = Ared; > 0y Pred; > n1 K;s.
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So there are infinitely many iterates for which L is decreased by a positive quantity.
This gives a contradiction to the fact that, under the standard assumptions and
because of Lemma 7.12, £(z; p) is bounded below on © and means that {z;} must
leave the ball. . : : :

(Consider the iterates outside the ball &. Let i+ 1 be the first iterate that leaves
the ball. Since z;4; # zf, there exists at least one acceptable step from iteration k&
through iteration i + 1. For those iterates, we have '

i i i
(8.8) Ly—Liy = Z(Lp - Lpt1) = ZAredp > Z mPred,.
=k k

p=Fk p=k

Now, by using (8.7) we have
(8.9) Lg—Lip >mK;s = Kig > 0.

Since the sequence {L;} is bounded and decreasing, it has a limit £,. Now if we take
the limit as ¢ goes to infinity, we obtain

(8.10) Lr—Ly>Ki>0.

Now contradiction would arise if we take the limit as & goes to infinity. Thus the
assumption ||C|| > 7 can not hold. Therefore there exists a subsequence {k;} such
that

(8.11) Jim {[Cell = 0.

Now let us suppose that |WT V. 4| > 7. Since [ICk;]| goes to zero and the
sequence of trust-region radii is bounded away from zero, there exists an index N| > 0
such that for all k; > Ny, ICk;|l < ab,, with « as in (7.8). Then from Lemma 7.8,
we have

(812) Pred/,,. > Kloélc.' > K96, > 0.

On the other hand, because of Theorem 8.1, for any iterate k an acceptable step (and
hence new iterate k + 1) is found. In addition to this, if for any j € {k;} there is no
j+ 1 € {ki}, this will contradict (8.11). So, for any j € {ki} and j > k,, where k, is
as in Lemma 7.12, we have

(8.13) L= Lip1 > Ared; > gy Pred; > K106, > 0.

Again a contradiction will arise if we take the limit as J goes to infinity. So
(8.14) Jim IWIVte |l = o
Then from (8.11) and (8.14) we have

lim inf [[[W7 7. €l| + |4l = 0.

This contradicts the assumption that the algorithm does not terminate and implies
that the algorithm terminates for any given ;,; > 0. This completes the proof. 0
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9. An example algorithm. In this section we propose, as an example, a par-
ticular step choice algorithm for step 2 of Algorithm 6.1. We include different ways
for computing s? accordingly to the dimension of the problem. We will then state
the complete algorithm for finding the trial step. Finally, in Sections 9.5 and 9.6 we
will show that the trial step generated by this algorithm satisfies the pair of fraction
of Cauchy decrease conditions and (5.1).

The step choice algorithm we propose in this section is based on a conjugate
directions method. It can be viewed as a generalization of the Steihaug-Toint dogleg
algorithm for the unconstrained problem. This algorithm is much like a trust-region
version of an algorithm due to Nash [17].

9.1. The Steihaug-Toint dogleg algorithm. This section is devoted to de-
scribing the generalized dogleg algorithm introduced by Steihaug [25] and Toint (28],
for approximating the solution of problem (TRS), (see Section 2). This algorithm is
based on the linear conjugate gradient method. o

ALGORITHM 9.1. Steihaug-Toint dogleg algorithm for (TRS)

Given z. and §..

step 0: (Initialization)
Set 50 = 0.
Set ro = —(Gcﬁ;‘o + Vfc)
If 7o = 0 then terminate.
Set do =To.
Seti=0.

step 1: Compute v; = dF G.d;.
Ifv; > 0 then go to step 2: .
Otherwise  (* d; is a direction of negative or zero curvature *)
compute T > 0 such that ||3; + 7d;|| = 6.
Set s, = 5; + Td; and terminate.

step 2: Compute a; = ”"—7‘”:
Sel Siy1 = 8 + ayd;. '
If |3i]| < éc go to step 3:
Otherwise  (* the step is too long, take the dogleg step *)
compute T > 0 such that ||8; + 7d;|| = b..
Set s, = 5; + 7d; and terminate. -

step 3: Compute riy; = r; — a;G.d;.

Irssall '
F 22— < &, (0<é. <E<1) then
wrg S G 0<tsi<d

set s, = §;41 and terminate.

step 4: Compute 3; = %%ﬁ-gi
Set diy1 = riy1 + Bid;.
Seti=1i+ 1 and go to step 1:
The Steihaug-Toint dogleg algorithm is well-known for being suitable for large-
scale unconstrained problems. It can be used in the framework of any general trust-
region algorithm for solving problem (UCMIN).

9.2. Computing a relaxed normal component. We start our proposed step
choice algorithm by finding a relaxed normal component s? of the trial step. This step
must satisfy a fraction of Cauchy decrease condition on the constraint norm inside
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the inner trust region. It determines for us which translate of the null space of the
constraint Jacobian will be the one in which we choose the tangent component st.

We repeat, because it is so important, that we do not require that s? be normal
to the tangent space, just that it satisfies (5.1). In fact, below we will see that one way
we might choose the relaxed normal component by finding a linearly feasible point
and just scaling it back onto the inner trust region. :

9.2.1. Via Craig’s algorithm. First we note that we can solve for a linearly fea-
sible point by using Craig’s algorithm on the underdetermined linear system VCT s +
Ce = 0. Craig’s algorithm consists of making the transformation s = VC.y and
applying the standard conjugate gradient algorithm to the following m x m linear
system

VCTVC.y+C. =
This implies that
. Siraig - s?n = _v(’vc(v(‘v’crv /'c)—lcvc‘

Furthermore, the result is the constraint normal and it requires no more than m
iterations. Preconditioning is very important of course, but it certainly will depend
on the particular application.

Therefore, we can find the step s? by a Steihaug-Toint version of Craig’s algorithm
in the inner trust region of radius ré.. In this algorithm, iterates will be generated
until we find the desired constraint normal s{™ such that [|sP™|| < ré. or until s5™'¢

and s;f;‘ straddle the ré. trust-region boundary. For the first case, we set s? = s™".
For the second case, we choose the dogleg step: s3°8 ¢ [s77", s; sl N {s : [Is]) = ré.}

and set s = 5308

It is clear that s? = s‘3°5 satisfies the fraction of Cauchy decrease condition
required by step 2 of Algorithm 6.1. It is not difficult to prove that each Craig

iterate is the normal to the subspace of the tangent space spanned by the steps up
to that point and that each {s;-:ra'g} satisfies (5.1). Hence, by convexity, sI°€ satisfies
(5.1).

9.2.2. Via a linearly feasible point. There are some problems for which
Craig’s method might be too slow and too hard to precondition to use the “inner
Steihaug-Toint” algorithm given above. Or, for reasons too technical to be of much
interest here, someone might prefer to do an implementation that computes a linearly
feasible point s'cf either by Craig’s method or by some special application dependent
methods. The point of this subsection is that when this is the case, s? can be taken
to be the projection of s!f back onto the inner trust region. If s¥f satisfies (5.1), then
so does s7.

Suppose we have any linearly feasible point sf that satisfies (5.1). Then, if it is
inside the inner trust region, we can take s? to be that point and it clearly satisfies
the fraction of Cauchy decrease condition required by step 2 of Algorithm 6.1. If
|Is¥]| > ré., then we take

T'(Sc If
-8, .
(B

A classical mathematical programming way to compute a linearly feasible point
that encompasses some special purpose methods we have seen for some inverse prob-
lems is as follows. In some way, divide s into so-called basic and nonbasic components.

n
st‘-
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Let us assume that we have done so, and using column pivoting, we write VCT as
VCT = [B|N] where B is a nonsingular matrix corresponding to the basic components
—-B-!N,

. Now since
In.-m .

of s. This corresponds to W = [

VCTs = Besg + Nesy = —Ce,
we have
sp = —B'(Ce + Nesn),
and then if we choose sy =0 and sgp = —B; ! C., a feasible point will be
s = (sp,sn)T = (-B;'C.,0)T.

As long as {||B;!||} is uniformly bounded by some constant 7. (see Lemma 9.3 for a
proof), sif satisfies (5.1) where the constant here is 7..

9.3. Computing the tangential component. We now assume that we have
the relaxed normal component step s?. We start the process of computing the tangent
space component s% by formatting the basis matrix W, € ®**(*~™). The columns of
W, form a basis to the null space of the constraints N'(VCT).

We then transfer the constrained problem into an unconstrained trust-region prob-
lem of dimension n — m, in the following form:

minimize %E'T H.5" + Vqc(s?)TW.5 + q(s?)
subject to ||W. 5" + s2|| < 6,

where 58 € R*™™, and set st = W.5!. The step s is the component in the tangent
space of the constraints and the matrix H. = WCTHCW,; € Rn=m)x(n=m) i the
reduced Hessian matrix. Now we use the Steihaug-Toint algorithm to determine 5!
such that [|W,5* + sT|| < 6.

The complete algorithm for finding the trial step is presented in the following
section -

9.4. Conjugate reduced gradient algorithm for EQC. Here we write, in
more detail, the example algorithm for computing a trial step.

ALGORITHM 9.2. Given z. € R" and 6. > 0,

I. FEASIBILITY:

' 1) If z. is feasible go to II.

. do,
2) Determine s*. (* Use, for ezxample, s? = s¢°% or s? = “'6"3': and
’c

s¢ = (=B;'C.,0)T. %)
II. MINIMIZATION:
(* Find s. by applying the CRG/Steihaug-Toint algorithm, to

subject to VCT(s—s") =0
llsll < ée-

{ minimize qc(s)

starting from s = s7  *)
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step 0: (Initialization)
Set 50 = 9?
Set ro = —WT (Hs? + VE,).
If ro = 0 then terminate.
Set dy = rg.
Seti=0.
step 1: Compute v; = rf,-rHcd;.
If vi > 0 then go to step 2:,
otherwise  (*d; is a direction of negative or zero curvature *)
compute T > 0 such that ||5; + rd;|| = 6..
Sel s, = 5; + 7d; and terminate.
step 2: Compule a; = L”—
Set 5;41 = 5 + a;d;.
If ||5:]] < 8. go to step 3:,
oltherwise  (* the step is too long, lake the dogleg step *)
compute T > 0 such that ||5; + 7d;|| = 6.
Set s, = §; + 7d; and terminate.
step 3: Compute rip) = r; — a; H.d;.

i el €e, (0<E& <E<1) then

ey S
set s = §;41 and terminate.
2
Tidl

step 4: Compute §; = -
Set diyy = riyp1 + Pid;.
Seti=1i+1 and go to step 1:

9.5. Suflicient decrease by the steps. In this section we show that the conju-
gate reduced gradient algorithm produces steps that satisfy the conditions we impose
on the steps in step 2 of Algorithm 6.1. In particular, we show that both the re-
laxed normal and the tangential components of the trial steps satisfy their respective
fraction of Cauchy decrease conditions.

The following Lemma gives a bound on the matrix B(z)~?.

LEMMA 9.3. Under the standard assumptions, the matriz B(z)~! is bounded for
allz € Q.

Proof. The proof follows from the continuity of B(z) for all z € Q and using the
well-known Banach Perturbation Lemma (see, for example, Ortega and Rhemboldt
[19], page (46)). o

The following Lemma gives a bound on the reducer matrix W.

LEMMA 9.4. Under the standard assumptions, the reducer matriz

Wie) = [ —B(a:z:;N(z) ]

is bounded for all z € Q.

Proof. For all z € Q, ||[VC(z)T|| = || [B(z) | N(2)] || £ va. Clearly, B(z) and
N (z) are bounded, that is, there exist constants vg, vy > 0 such that the Frobenius
norms of B(z) and N(z) are bounded. i. e., ||B(z)||r < vg and ||N(z)||F < vn.
Now, consider:

IW@IE = tr(W(2)TW(z)) = tr((B(z)" N(2))" B(z) "' N(=)] + tr(ln-m)

(1B(z)"'N(z)||% + n — m.
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Lemma 9.3 allows us to write || B(z)~!|| < vg-1. Hence ||W(z)|| < \/ufa_lufv +n-m

and we obtain the desired result. 0

The following lemma shows that the relaxed normal component s?, satisfies a
fraction of Cauchy decrease condition on the quadratic model of the linearized con-
straints.

LEMMA 9.5. Let si be a step generated by Algorithm 9.2 at the current iterate.
Then si satisfies a fraction of Cauchy decrease condition on the quadratic model of
the linearized consiraints, i.e,

(9.1) CEl? = ICe + VCTsel> > Kal|Cel| min{réy , Ks||Cll},

where K3 and K3 are constants independent of the iterates.
Proof. We first prove that

(9.2) IVCT s + Cell < IVCTsP + Coll.

If z. is feasible, (9.1) is valid a fortiori.
Assume C. # 0. We consider three cases:

Case 1: If s7 = s7" with ||s™"|| < ré,, then, because s™ solves a minimum norm
subproblem we have [|VC’T mM 4 < ||V({Ts + C|l-

Case 2: Suppose that we are applying the conjugate reduced gradient algorithm
to find s7. Let {s;,s2,...} be the sequence of iterates generated by the algorithm,
hence for all i

si = argmin{||VCTs + C.||, s € span{p,...,pi}}.
Assume that ||s;|| < ré. and ||si41|] > r6.. Therefore
sf°‘ =a15i+ (1 —a1)sip1 with «y €0, 1].
It is easy to see that

IVCTsi + Cell < IVCT P + Cell,

||v0 siv1 + Ce|| < |IVCTsP + ¢4
By convexity, R
IVCT 538 + C.|| < [VCTsP +Cof|. |

Case 3: Now suppose that s? is given by s? = ys™ with v = —mﬁ— and y < 1.

The boundedness of vy from below follows directly from the a.bove lemma We
have S

(IVCTs? + Ce|| < |IVCTsP + C|.

For a proof see Lemma 5.2 of El-Alem [9).
For the above three cases, we note that since

IVCTsz +Call < IICH = I9CT 057 + C.
and ”VCZS?-{-CC” > IVCT - 1-s™ +C.| .

N
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Therefore, we have for some v, € [0, 1],

IVCTs2 + Cell

IVCTyisP™ + |
IVCT1sT™ + 11 Ce + Ce = 1 €|
I (VCTS™ 4+ C) + (1 = 1)l
NIVETsT" + Cell + (1 = m)|ICl|
nlIVCTsP + Cell + (1 = m)lICe.
The rest of the proof then follows from Lemma 6.1 of El-Alem (8]. 0
The following lemma shows that the null-space component st, satisfies a fraction

of Cauchy decrease condition on the quadratic model of the Lagrangian.
LEMMA 9.6. Let s be a trial step generated by the algorithm, then

ny _ l T n : ”Wl?vqk(s,l-:)”
(ot = lor) 2 GIWE VoDl min { ZERCD (]

INTIA

Proof. Since we are solving the reduced probiem

minimize 35T H5' + Vq.(s?)TW.5 + q(s")
subject to  ||5* + 57| < 6.,

which is an unconstrained trust-region subproblem. Then using Theorem 2.5 of Stei-
haug [25], the proof follows immediately. 0

LEMMA 9.7. Let s. be a trial step generated by the algorithm. Then there ezists
a positive constant K4, which does not depend on z, such that

1 . .
ge(se) = ge(sc) 2 §||Wquc(~9?)ll min { Ka[|W] Vae(s)l|, (1 —r)c}

Proof. The proof follows from the above lemma and Lemma 9.4. o

9.6. The relaxed normal component and (5.1). In the following lemma,
we show that the relaxed normal component obtained by our proposed step choice
algorithm satisfies inequality (5.1).

LEMMA 9.8. The relazed normal component computed by our proposed step choice
algorithm satisfies

lIskll < Krl|Chll,

where K| is a positive constant independent of k.
Proof. The proof is given with the discussion of how to compute a relaxed normal
component. See Section 9.2. ]

10. Discussion and concluding remarks. We have established a global con- -
vergence theory for a broad class of nonlinear programming algorithms for the smooth
problem with equality constraints. The class includes algorithms based on the full-
space approach and the tangent-space approach. The family is characterized by gen-
erating steps that satisfy very mild conditions on the normal and tangential compo-
nents. The normal component satisfies a fraction of Cauchy decrease condition on the
quadratic model of the linearized constraints and the tangential component satisfies a
fraction of Cauchy decrease condition on the quadratic model of the Lagrangian func-
tion associated with the problem, reduced to the tangent space of the constraints. Of
course the step, which is the sum of these components, satisfies both conditions.



30 J. DENNIS, M. EL-ALEM , AND M. MACIEL

The augmented Lagrangian was chosen as a merit function. The scheme for
updating the penalty parameter is the one proposed by El-Alem [8] since it ensures
that the merit function is decreased at each iteration by at least a fraction of Cauchy
decrease. This indicates compatibility with the fraction of Cauchy decrease conditions
imposed on the trial steps.

The algorithm was proved to be well-defined, in the sense that at each iterate an
acceptable step can be found after solving a finite number of trust region subproblems.
Because of the properties of the step and the way that the trust-region radii are
updated, we were able to prove that the sequence of trust region radii is bounded
away from zero. This result together with the way that the penalty parameter is
chosen allowed us to prove that the sequence of penalty parameter is increased only
finitely many times. The global convergence analysis was constructed on these results.

In presenting the algorithm, we have left open the way of computing the trial
steps to satisfy the double fraction of Cauchy decrease condition. This will allow the
inclusion of a wide variety of trial step calculation techniques. For the same reason we
have left the way of updating the Lagrange multiplier vector and the Hessian matrix
undefined.

With respect to the trial steps, we have suggested an algorithm of the class that
should work quite well for large problems. The algorithm is a generalization of the
Steihaug-Toint dogleg algorithm for the unconstrained case.

The projection formula for the multiplier can be used as a scheme for updating
the multiplier since it fits the condition imposed on the multiplier updating scheme.
Namely, under the standard assumptions, it produces bounded multipliers. For large
problems, A = —=B~!Vf can be used as an update formula. This will match better
with the reducer matrix W, specially for problems where B can be easily identified.
See Dennis and Lewis [5]. In either case, the uniform boundedness of {A;} follows
from our global assumptions.

The exact Hessian matrix can be perhaps gotten by using automatic differenti-
ation. See Bischof et al. [1]. However, an approximation to the Hessian of the La-
grangian can be used. Also, for example, setting H} to a fixed matrix (e. g. Hy = 0)
for all k is valid. The question of how to use a secant approximation of the Hessian
of the Lagrangian in order to produce a more efficient algorithm is a research topic.
We believe that Tapia [27] will be of considerable value here.

A related question that has to be looked at is the search for preconditioners to
produce more efficient algorithms. We believe that the reducer matrix W should play
a role in that search. See Dennis and Lewis [5). ‘

For future work, there are some questions that we would like to answer: *

Currently, the local analysis of this class of algorithms is being studied and a
preliminary implementation of the algorithm based on the CRG/Steihaug-Toint via a
tangent-space approach has to be completed. An efficient implementation should be
based on the right selection of the submatrix B in the CRG-algorithm.

This theory is developed for the equality constrained case, but it can be applied to
the general case, by one of the strategies known as EQP and IQP. Here, we mean that
in the EQP strategy the choice of the active set is made outside the algorithm that
determines the step while in the IQP strategy, that choice is made inside the procedure
that determines the step. Since the active set may change at each iteration, the choice
of the submatrix B, will be strongly affected. Certainly, this is an important topic
that deserves to be investigated.
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