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NON-MONOTONIC PENALTY PARAMETER SCHEME FOR
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Abstract. An algorithm for solving the problem of minimizing a non-linear function subject
to equality constraints is introduced. This algorithm is a trust-region algorithm. In computing the
trial step, a projected-Hessian technique is used that converts the trust-region subproblem to a one
similar to that for the unconstrained case. To force global convergence, the augmented Lagrangian
is employed as a merit function.

One of the main advantages of this algorithm is the way that the penalty parameter is updated.
We introduce an updating scheme that allows (for the first time to the best of our knowledge) the
penalty parameter to be decreased whenever it is warranted. The behavior of this penalty parameter
is studied.

A convergence theory for this algorithm is presented. It is shown that this algorithm is globally
convergent and that the globalization strategy will not disrupt fast local convergence. The local rate
of convergence is also discussed. This theory is sufficiently general that it holds for any algorithm
that generates steps whose normal components give at least a fraction of Cauchy decrease in the
quadratic model of the constraints and uses Fletcher’s exact penalty function as a merit function.
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1. Introduction. In this paper, we study the following non-linear equality con-
strained optimization problem:

_ [ minimize f(z)
(EQ) = { subject to  h(z) =0,

where h(z) = [h1(2), ..., hm(z)]T. We assume that f and h;,i = 1,2,...,m are twice
continuously differentiable and that VA has full column rank in the range of interest
where Vh(z) = [Vhi(z), ..., Vhm(z)].

We can obtain first and second order conditions of optimality with reference to the
Lagrangian function associated with problem (EQ), namely I(z,)) = f(z) + AT h(z)
where A € R™ is the Lagrange multiplier vector. The first order necessary condition
for a point z, to be a stationary point of problem (EQ) is the existence of a Lagrange
multiplier A, such that (z, A¢) is a zero of the following (n + m) x (n +m) nonlinear
system of equations:

Vl(z,A) | _ 10
(1.1) [ h(z) 0]
Consider an n x (n — m) matrix Z(z), with orthonormal columns that has the
property Z(z)TVh(z) = 0. The columns of Z(z) form an orthonormal basis for the

null space of VA(z)T. The matrix Z(z) can be obtained from the QR factorization
of Vh(z) as follows

(1.2) Vh(@) =[Y() Z(a)] [ Rz) ] ,
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2 MAHMOUD EL-ALEM

where Y (z) € ®**™. The orthonormal columns of Y (z) form a basis for the column
space of VAi(z) and R(z) is an m x m nonsingular upper triangular matrix. It is easy
to see that: Y(2)TY(2) = Im, Z(2)TZ(z) = In-m , and Y(2)Y (2)T+2(2)Z(z)T =
I .

Using this factorization, an equivalent first order necessary condition can be writ-
ten in the following form:

(1.3) [ Z(z*,)IZ;‘(w*) ] _ [ 8 ] _

The second order sufficiency condition for the point z, to be a solution of problem
(EQ) is the existence of a multiplier A, € R™ such that the point (z4,A) satisfies
the first order necessary condition (1.1) and the matrix Z(z4)T Vo2l(zx, M) Z(2x) is
positive definite.

Throughout this paper, all the norms used are 2-norms and subscripted values of
functions are used to denote evaluation at a particular point. For example f; means
f(zk), lx means I(zk, Ax), and so on.

Some of the algorithms that solve problem (EQ) use Newton’s method to find a
zero of (1.1). This gives rise to the following (n + m) x (n + m) linear system:

V,zlk Vhy Sk _ Vel
(1-4) [ AT 0 ][AAk]—_[ hi ]

If we pre-multiplying the first block of (1.4) by ZT, we obtain the following n x n
linear system:

v ). _ [ 2R
(15) [ Vh,{ S = hk .
Letting s = Yxug+ Zxvr and using the factorization (1.2), the above system becomes

(1.6) z{v,ZleYk ZIv 0z | [we | _[Z2iVf |
R{ 0 vk hi

By solving this system of equations for ug and vk, we can obtain si. More details can
be found in Gill and Murray (1974)[9] and Goodman (1985)[10].
The Lagrange multiplier A¢4+; is obtained using the least-squares estimate:

(1.7) Ak41 = argmin||Vhep1 A + V fiega|l

Using (1.2), this problem is equivalent to solving Re41Ak4+1 = —Y,;I_;_l V fe+1-

We can proceed by maintaining a quasi-Newton approximation B to the Hessian
of the Lagrangian V2l; in (1.6). More details can be found in Nocedal and Overton
(1985)[14]. So, the algorithm for computing the trial step sx and the multiplier Ax4)
can be outlined as follows:

Algorithm 1.1
At each iteration k, do

Solve R{uk = —hy, for ug.

Solve ZT ByZyvi = —2F V fi — ZT BYeuy, for vg.

Set sp = Yeur + Zrvr and zp41 = Tk + Sk .

Find Ag41 by solving  Re41Ae41 = —Y,;’_',_IkaH .

End do
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It is easy to see that for problem (EQ), if the exact second-order information
is used, the above algorithm can be viewed as a Newton’s method applied to the
nonlinear system (1.1) (see Goodman (1985)[10]). Hence, it shares the advantages
and the disadvantages of Newton’s method. From the good side of Newton’s method,
it is locally q-quadratically convergent. However, from the bad side of Newton’s
method, it is not a globally convergent method. It is guaranteed to converge only
if the starting point is close enough to the solution. This means that it may not
converge at all if the starting point is far away from the solution. More details can
be found in Tapia (1978)[21].

The next section deals with adding a trust-region modification to this method to
force convergence to a solution from any starting point without sacrificing fast local
convergence.

2. Trust-Region Globalization. The key idea of the trust-region method is to
restrict the trial step to a region where you trust your model. This can be done by
imposing the trust-region constraint [|s¢|| < Ay , where the trust-region radius A
is adjusted automatically from iteration to iteration. The intent is to reduce a merit
function ®(z) and the aim is to make the iterates zx4+1 = Ti + 5k ; k=1,23,..
acceptable points where si is obtained by solving some trust-region subproblems.
More details about the trust-region method can be found in Dennis and Schnabel
(1984)[4].

Byrd, Schnabel and Shultz (1987)[2] suggested computing the trial steps using
the following technique: Set sy = Yiuir + Zivr where Y and Zj are as in (1.2). The
two components u; and vk are computed by solving two subproblems. For computing
ug, they suggested solving the following linear system:

R{uk = —aihg,

where «y is a constant that satisfies some specified conditions. The tangential com-
ponent v is obtained by solving the following trust-region subproblem:

mir;imize (ZZ'ka + akzg'vglkquk)Tvk + %vaZkTvglkavk
ve N=—m
subject to ||ve||? < AZ — af|juxl?.

This approach suffers from the disadvantage that the step depends on the un-
known parameter o and there is no clear way for choosing this parameter.

An interesting way of using this approach to compute a trial step that does
not depend on the parameter ay was suggested by Byrd and Omojokun (1989)[15].
They calculated s; by solving two trust-region subproblems. For computing ug, they
suggested solving

minimize ||VhiT Yeur + he||?
ueER™
subject to ||Yeuk|| < TAE,

where 7 € (0,1) is a constant. The tangential component is obtained by solving the
following trust-region subproblem:

minimize (ZTV i + ZTV2LYiu)T vk + s0e T 2T Vi Zewr
ue ne—m

subject to ||lvx]|? < AZ — ||Yiu|).
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To force global convergence. Byrd, Schnabel and Shultz (1987)[2] and Byrd and
Omojokun (1989)[15] employed a non-differentiable merit function. This type of merit
function suffers from the Maratos effect which may disrupt fast local convergence. See
Maratos (1978)[12].

To avoid the Maratos effect, they suggested adding to the step what is called the
second-order correction, and is a step of the form w = -R;Thk + Wwhere ky is an
intermediate point. See also Coleman and Conn (1982)(3], Fletcher (1982)[7], and
Mayne and Polak (1982)[13]. However, this approach adds extra expense to the step
calculation since it requires an extra constraint evaluation to compute a trial step.

In this paper, we use an inexpensive way to compute the trial steps. We employ,
as a merit function, a differentiable penalty function. We will use, Fletcher’s exact
penalty function:

1) B(z,0i7) = £(2) + M) h(z) + rlla@)I%

where ) is the least-squares estimate of the multiplier and r is the penalty param-
eter. We introduce a new non-monotonic penalty parameter scheme. This penalty
parameter is very cheap to calculate.

We present a convergence theory for this algorithm. Our global convergence
theory is so general that it covers the algorithm of Byrd, Schnabel and Shultz (1987)[2)]
and the algorithm of Byrd and Omojokun (1989)(15) provided that (2.1) is used as
a merit function and Scheme 3.4 (see Section 3.3) is used for updating the penalty
parameter.

The remainder of this paper is organized as follows: In Section 3, we describe in
detail the trust-region subproblems that will be considered and the way of computing
the trial steps. A scheme for updating the radius of the trust region is presented
together with a discussion about the criteria for accepting or rejecting the trial steps.
Our new scheme for updating the penalty parameter will be presented in this section
as well as the algorithm. In Section 4, we state the global assumptions under which we
prove global convergence. In Section 5, we present our global convergence theory. We
start with presenting some needed intermediate results together with some lemmas
that analyze the behavior of the penalty parameter. We end this section by presenting
the main global convergence results of our algorithm. In Section 6, we present the
Jocal convergence analysis. Section 7 contains concluding remarks.

3. The Trust-Region Algorithm. The algorithm has four main ingredients.
The first one is computing the trial step. It is discussed in Section 3.1. The second
one is testing the step and updating the trust-region radius and is discussed in Section
3.2. The third one is updating the penalty parameter and is discussed in Section 3.3.
The fourth ingredient of our algorithm is how to update the matrix Bi. This will be
discussed at the end of Section 3.3.

3.1. Computing The Trial Steps. In our trust-region algorithm, at each it-
eration, two model subproblems are solved to obtain a trial step sg. Our way of
computing the trial step is similar to that of Byrd, Schnabel and Schultz (1987)[2]
with a simpler way of determining the parameter (see Section 2). We start by
solving for uj the following linear system of equations

(3.1) RTu = —he,
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then we control the size of this step by solving for a; the following one dimensional
minimization problem:

minimize ||k + ar VAT Yiug|
ar€ER
subject to ag||ux|] < TAk,

where 7 € (0, 1] is a fixed constant. This is equivalent to setting

{ 1 if |Jug| < TAk
ap =

(3.2) B if [|ugl] > AL

See Zhang and Zhu (1990)[24].
To get the tangential component, we solve for vy the following trust-region sub-
problem

minimize (Z;I'ka + akZEBkquk)T‘vk + %vaZZ Bir Zivg
(3.3) vER""™

(3.4) subject to ||v|| < Ak,

where B is the Hessian of the Lagrangian V2l or an approximation to it.

The trial step will then have the form s¢ = a;Yiur + Zrvi. This can be outlined
in the following scheme:

Scheme 3.1 Computing the trial steps
Given0< 7 < L.
At each iteration k, do

Solve (3.1) for u, then find «; using (3.2).

Solve (3.3) and (3.4) for v.

Set sy = apYiur + Zrvr and set Ty = Tg + Sk-

Find Ag41 by solving Ret1dk41 = —Y,Z,_Ika.,.l.

End do.

Byrd and Omojokun’s way of computing the normal component s; = Yiu is
more expensive since, to compute ug, it requires solving a trust-region subproblem
at each trial step. Our way requires computing uj only once per acceptable step.
Namely, when the algorithm moves to a new point after finding an acceptable step.
To compute uy, we solve (3.1) which is an upper triangular linear system. Y} and R
are obtained with no extra cost, since they are obtained from the QR factorization
that was performed to compute the multiplier of the last acceptable step.

3.2. Testing the Step and Updating the Trust-Region Radius. Let z¢4; =
£ + sy where sg is the step computed by the algorithm and Ax41 be the correspond-
ing Lagrange multiplier, we test whether the point (£x+1, Ak+1) is making a progress
towards a solution (Z,, Ax). In order to do this we use, as a merit function, Fletcher’s
exact penalty function (2.1). We test (zk+41,Ak+1) to determine whether it makes an
improvement in the merit function.

We define the actual reduction in the merit function in moving from (zx, Ax) to

(:L'k+1, /\k+1) to be
Aredi = ®(zk, Ae; k) — B(Th41, Ak+15TE),
which can be written as

A’I'edk = l(zk, /\Ic) - I(3k+l s /\k) - (’\k-l-l - /\k)Th}H.] + 1'1;[”’1):“2 - ||hk+1”2].
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The calculation of the step s is based on a quadratic approximation of the Lagrangian
function and a linear approximation to the constraints. Using these approximations
in a straightforward manner (see Maciel (1992)[11]), the predicted reduction will have
the form

PT’t‘.dk = —VIZ‘sk - %SkTBkSk - (/\k+1 - /\lc - V/\{sk)T[hk + Vh{sk]
+r[llhel|? = l|he + VAT 5|2 |

This form of Pred; has been used by Maciel (1992)[11]. An undesirable property
of using the above expression is that Pred; depends on VA which requires the
evaluation of the Hessians of the objective function and the constraints. In order to
avoid these calculations, the following form of predicted reduction can be used:

Predy = —Vl;rsk - %skTBksk = (Mkt1 — Ak)T[hk + Vh’,fsk]
+riefllhell? = [|he + VAT sel|).

This expression for Predj has been used by El-Alem (1988)[5] and (1991)[6]. Our
definition of the predicted reduction has the form:

Predy = -Vl;rsk - %skTBkavk — (Me41 — /\k)T[h;, + %Vh{sk]
+relllhell? = |k + VAL si|?).

The above expression for Pred; was also used by Powell and Yuan (1991)[19]. They
pointed out that the presence of the terms %5"{ By Z vy instead of %sZ'Bksk and the
term hy; + -;-Vh'{sk instead of hi + Vh{sk will allow for a Q-superlinear rate of
convergence. See Section 6 for more details about these terms and how they will
allow for Q-superlinear rate of convergence.

The normal predicted decrease and the tangential predicted decrease are also
considered. They are denoted by Npred; and Tpred; respectively. The Npred; is
the decrease at the k2 iteration in the linearized model of the constraints by the step
sp = aYiur and is defined by:

Npred; = ||hk||2 — ||k + athZqukllz.

It predicts the actual reduction in the constraints obtained by the normal component
sk,

The Tpred; is the decrease at the kit iteration in the quadratic model of the
Lagrangian by the step st = Zrvg. It predicts the actual reduction in the Lagrangian

function obtained by the tangential component s}. It is defined by:
‘ 1
Tpredy = —(ZF Vi + ZT Bis?)Tvg — inZZ' )T

The trust-region algorithm should produce steps that result in decrease in the
merit function ®. To guarantee this, the predicted reduction has to be greater than
zero and the actual reduction has to be greater than some fraction of the predicted
reduction. Therefore, at each iteration, the penalty parameter r is chosen such that
Pred; > 0 and the step is accepted if fﬁ%ﬁ > 11 > 0 where 7; € (0, 1) is a small fixed

constant. We reject the step if ﬁ:—:‘;i— < 1. In this case, we decrease the radius of the



AN ALGORITHM WITH A NON-MONOTONIC PENALTY PARAMETER T

trust region by picking Ax € [alllskll,agllskll], where 0 < a; < a2 < 71—:-:2- and then
go back and compute another trial step with new value of the trust-region radius.

If the step is accepted, then the trust-region radius is updated by comparing the
value of Ared; with Preds. Namely, if ;;m < %—:%‘}f < 1o where 12 € (m, 1), then
the radius of the trust region is updated by the rule: Ags1 = min[Ax, as||st||]] where
az > 7&5 However, if %ﬁ-‘ﬁ- > 12, then we increase the radius of the trust region
by setting Ax+1 = min[A., max(Ag, as||sk||)], where A, 1s a positive constant. This
can be summarized in the following scheme.

Scheme 3.2 Testing the Step and Updating the Trust-Region Radius
Given0<a1§a2<71-:-_7;<03,0<1)1<1)2<1andA..2A1 > 0.

At each iteration k, do

Aredy
If -P;g':' <m,

then set Ax € [a1]lsell, azllskll]-
goto Scheme 3.1 to find another trial step.
: Ared
Else, if ;1 < $reg- <2
then set Ti4+1 = Tk + Sk,
Agy1 = min[Ag, as||sell]-
Else, set zx41 = Tk + Sk,
Ak = min[A,, max(Ag, asl|sk|])]-
End if
End if.
End do
The index k is increased only if the step is accepted. We use the notation k7 to
denote the jth unacceptable trial step of iteration k.
It is worth noting that, under suitable assumptions, after a finite number of trial
steps an acceptable step will be found, i.e. the condition %:——*:i;’; > 1, will be satisfied

for some j. See Theorem 5.7.

3.3. Updating the Penalty Parameter. Now, we describe our strategy for
updating the penalty parameter r. The author in (1988)(5) and (1991)[6] has suggested
a scheme for updating the penalty parameter. The idea behind that scheme was to
keep the penalty parameter as small as possible subject to satisfying conditions needed
to prove global convergence. One of these conditions was that the sequence {re} of
penalty parameter must be nondecreasing. If that scheme were implemented in our
problem, the scheme would be as follows:

Scheme 3.3 El-Alem (1988) - .
Given a constant p > 0 and ro = 1:
At each iteration k, do
Set rp = Tk-1-
If Predy < Z52{|1hell? = l1he + vhT s||?],
then set

VT sy + LT BeZivk + (Aes1 — Ae)T [he + VAT si) Yap .
(1o ll? — e + VAT il P

rk=‘{

End if
End do.

Even though when this scheme was implemented, good performance was reported,
(see Williamson (1990)(23]), this way of updating the penalty parameter has the
disadvantage of producing a nondecreasing sequence of penalty parameters. This
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means if at one iteration the value of the penalty parameter is large, all the subsequent
penalty parameters will remain at least as large as this one. Hence, the problem of
obtaining feasibility has more weight than the problem of obtaining optimality. As a
consequence we may progress too fast toward nonlinear feasibility at the expense of
optimality. On the other hand, numerical experiments have suggested that efficient
performance of the algorithm is linked to keeping the penalty parameter as small as
possible (see Gill, Murray, Saunders, and Wright (1986)[8]). We propose a scheme
that allows (for the first time to the best of our knowledge) the penalty parameter to
be decreased whenever it is warranted.

Our convergence theory requires that the predicted reduction in the merit function
at each iteration be at least as much as a fraction of Cauchy decrease in the 2-norm
of the residual of the linearized constraints. (For more detail about the fraction of
Cauchy decrease condition see, for example, Powell (1975)[16]). Hence, we will ask
for this condition to be satisfied at each iteration.

Our convergence theory allows the sequence {r¢} to be non-monotonic, provided
that it is controlled by a sequence {p, }, which we introduce below, in the sense that
for all &, Pr S Tk

So, our strategy will be, at each iteration k, pick a number rx > p, .. Then test

for inequality (3.7) (see below) to be satisfied or update the penalty parameter using
(3.6) (see below) which enforces (3.7). This scheme can be stated as follows:
Scheme 3.4 Updating the Penalty Parameter

Given a constant p > 0 and an integer N >0 :

Set o =7r_1 = ... = T_N41 = |
At each iteration k, do
Find Ppy = min{rk—1, k=2, «cccreene \Tk=N},
Pr—1 = mMax{re—1,Tk=2, cccoeu. JTk=N}-
Set
(3.5) pe-1=min{ p,_ +p, Pr-1 }
Set 7y = pr-1.
If
Predy < ZEEL{|lhy[ = b + VAT sel?],
then set
(3 6) = 2{ Vlz'sk + %SZ‘BI:ZI:UI: + (Ak41 — /\k)T[/lk + %Vh’,fsk]} +
> B= el = [The + VAT sk||2 p
End if
End do.

The following are noteworthy;
1) The way of updating the penalty parameter ensures a predicted decrease in
the merit function given by:

(3.7) Predy > “E[||hgl|2 = e + VAT sell?].
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That is, the predicted decrease is at least as much as the decrease in the
linearized model of the constraints obtained by the normal component of s.
So, at each iteration k, we have:

(3.8) Pm@Z%Nwmh

2) If N = 1, then Scheme 3.4 will coincide with Scheme 3.3.

3) In the implementation, if we take N equal to the maximum number of itera-
tions allowed, then we will have a scheme for updating the penalty parameter
that has no requirement on i except that it satisfies inequality (3.7).

4) The sequence { p,}isa monotonically non-decreasing sequence. (See Section
5.2 for a proof). But the sequence {Pe} isa non-monotonic sequence and
only satisfies, for all k, p, < 7 < P,. This inequality shows that even though

the sequence {ri} is a hon-monotonic sequence, it is controlled by the two

sequences {p, }, {7:}

5) If at any iteration k we have %!;:ﬁfif < 1, then we reject the trial step and
also reject the value of the penalty parameter. i. e. the only change in the
problem by an unacceptable trial step is a decrease in the radius of the trust
region. Observe that the unacceptable trial iterations are not included in the
definition of p, and 7.

Finally, we discuss our strategy for updating the matrix B. If the exact Hessian
is used, then at each iteration k we compute V2 = Vi + V2hpAe. Otherwise,
update Bj by some updating formula that satisfies the Global Assumption 5 (see
Section 4) if we are interested in obtaining only global convergence regardless of the
rate of convergence, or, satisfies the (ilobal Assumption 5 and the Local Assumption
C (see Section 6.3) if we are interested in obtaining global convergence with a fast
local rate of convergence.

3.4. Statement of The Algorithm. The following is an outline of the algo-
rithm.
Choose zo € R, € > 0,and Bo € gpnxn,
Set k= 0.
At each iteration k, do
If |27 9 fill + Nkl < €, stop.
Compute Sk, Ak+1 according to Scheme 3.1.
Update the penalty parameter according to Scheme 3.4.
Test the step and update A according to Scheme 3.2.
Update B (see Section 3.3).
Set k:=k+1.
End do.

4. The Global Assumptions. In this section we state the assumptions under
which we prove global convergence.

Let the sequence of iterates generated by the algorithm be {z}, for such a se-
quence we assume,
For all k, z; and zx + si € 2 where Q € R is a convex set.
fand h; € c}(Q)i=1,..,m.
Vh(z) has full column rank for all z € Q.
f(z),h(z:),Vh(:n),Vf(z),sz(z), R(z)~! and each VZhi(z), for i = 1,..,m
are all uniformly bounded in norm in .
The sequence of matrices {Br},k=1,2,... is bounded.

P

(&)
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An immediate consequence of the global assumptions is that the matrices By,
Z,Z"Bka, and Z;r BY: have a uniform upper bound. i. e. there exists a constant
b > 0, such that, for all &,

(4.1) 1Bell < b, [12{ BiZell < b, and ||Z{ BiYl| < b.

Another immediate consequence of these assumptions is the existence of constants
bo > 0, by > 0, by > 0, and b3 > 0 such that, for all k,

(4.2) luell < bollkll,
(4.3) IAe+r = Aell < ballsell,
(4.4) lhesr — hell < baflsell,
and

(4.5) [|Vhe|l < bs.

If Q were a compact set, Assumption 4 would follow from the continuity assump-
tion.

The same assumptions as our global assumptions are used by Byrd, Schnabel, and
Shultz (1987)[2], El-Alem (1988)[5] and (1991)[6] and Powell and Yuan (1991)[19].

5. Global Convergence Analysis. In this section we present our global con-
vergence theory. In Section 5.1, we prove some intermediate lemmas needed for prov-
ing global convergence. The behavior of the penalty parameter is discussed in Section
5.2. Section 5.3 is devoted to proving our main global convergence results.

5.1. Sufficient Decrease in the Model. All the results in this section deal
with the decrease in the model obtained by the trial steps and their tangential and
normal components.

The following lemma shows how accurate our definition of predicted reduction in
the merit function is as an approximation to the actual reduction. It says that, if the
penalty parameter is bounded, it is accurate to within the square of the length of the
trial steps.

LEMMA 5.1. Let the global assumptions hold. Then, for any zi, ¢ + sk € Q, we
have :

(5.1) |Aredy — Predy| < bari||sk|)?,

where by is a posilive constant independent of k.

Proof. The proof is similar to the proof of Corollary 6.4 of El-Alem (1991)(6].
Note that in the proof inequalities (4.1), (4.2), and the fact that [|Zxvi|| < ||sk|| are
used. 0

The following lemma shows that, at any iteration k, the normal predicted re-
duction Npred; is at least equal to the decrease in the 2-norm of the linearized
constraints obtained by the Cauchy step. i. e. it satisfies the fraction of Cauchy
decrease condition.

LEMMA 5.2. At any iteration k, we have

. A
(5.2) Npredi > ||he|| min||k|l, Zbo—"] ,

where by is as in (4.2).
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Proof. From the definition of Npredi, we need to show that

. TA
llhill2 = ||k + e VAT Yeug|[? > [hi|] minf||hell, —=
b

]
0
When ||h|] = 0 the above inequality is true a fortiori. Let [lhx|| > 0 and consider

hell? = he + cx VAT Yiur||? = |hell? = he + cx R wel® = [1 = (1 — ) ][} hel®.

We consider two cases:
First, when ||uk|| < TAg. In this case oy = | and we obtain

1hell? = |he + @ VAT Yiue|)? = ||hell®.

Second, when ||ug|| > TAg, then ap = Tff—k’ﬁ and using 0 < a; < 1, we get
2 T 2 2 _ TOk 2
hell? = lJhe + ax VA Yiu||* > arllhell* = m”hk” .

Using (4.2), we obtain
TA
1hel|? = lhe + 0 VAT Yiug||? > —bg’inhkn.

Now, if we combine the two cases, we get the desired result. 0
If we substitute (5.2) in (3.8), we obtain

A
(5.3) Predy, > "7" (|| min]|e]], TTi] .
0
From the last lemma, using (1.2), we can write
. TA
(5.4) el = Ve + KT sull? 2 [el] min Qfell, 5=

The following lemma shows that the tangential predicted decrease is at least equal
to the decease in the quadratic model of the Lagrangian obtained by the Cauchy step.
i. e. it satisfies the fraction of Cauchy decrease condition.

LEMMA 5.3. For all k, the tangential predicted reduction satisfies:

NZTV fi + 27 Bks}:ll]
2b ’

where s is the normal component of the step sp and b is as in (4.1).
Proof. We first prove that

1 :
(5.5)  Tpredy > an{wk + ZT By s} ||min[Ag,

|ZT Y fi + Z Brsil|
20127 B Zi||

1 )
~(ZTV i + ZF Bes?)Toe > §||Z,Z'ka + Z7 Bis}|| min[Ag, ' ].

When ||ZEka + ZZ' Bis?|| = 0 the above inequality is valid a fortiori.
Let [|ZTV fi + ZF Bis?|| > 0. If ||vi|| < Ag, then from the way of computing v, we
have ZT By Zyvx + ZT V fi + ZT Brs} =0, and we can write

(ZTVfi + ZFBist)T v = —v] Z7 BrZiwr
= —(ZTV i+ ZF Bes})T (27 Be2k)* (Z V fi + Zi Bis}),
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where (Z,Z' By Zi)t is the generalized inverse of ZZ'B;,Z;,. We have

1

T T ni2
—||Z, Vft + Z .

(5.6) (ZTV i + ZF Besi) ok < —
On the other hand, if ||vg|| = A, then from the way of computing v, there exists a
constant g > 0 such that

(5.7) (ZT Be 21 + pI)vk + ZT V fx + Z{ Brsi = 0.

This equation implies that

ZIVfe + ZTBish)Twe = —v} (27 B Zi + pi I)vk
= —(ZTVfi + 2T Bes?)T (2T Bk Zk + e )Y (ZT V fi + Z Bisy),
which implies that

1
MZT BiZx) + 1e

(5.8) (ZTV fi + 21 Besp)Tve < 128V fi + Zi Besil?,

where X(Z{Bka) is the largest eigenvalue of Z{Bka. On the other hand, from
(5.7), we have

IMZT Bk Zk) + pelllvell < I1ZE V fi + Zi Besill,

where A(Z,Z' By Z}) is the smallest eigenvalue of Zf Bi Zi. The above inequality implies
that

IZEV fi + Z§ Bestl

A, — AM(2Z7 Bk Z).

(5.9) e <

By substituting (5.9) in (5.8), we obtain

WZLV fi + Z§ BesplI?Ax

ZTV fi + ZT Brsp)Tor < == ‘
(Zk Ve + Zg Besg) v < N(ZT B Zk) — M 2T BrZe )| Ak + || 2] V fi + Z{ Brsi|

Now, using the fact that X(ZZ'B,,Z;:)-A(ZZ'B;,Z,,) < 2||ZT Bk Z||, the above inequal-
ity becomes

|ZTV fi + Z{ Bisp > Ak
2127 BiZil|Ax + |27 V fi + Z{ Besi

(5.10) (ZTV i + ZT Bisp)Tve < —

So, from (5.6) and (5.10), we conclude that in both cases we can write

1ZEY fi + 2L Besgll,

1
—(ZTV e + ZT Bes?)Tve > =127V fi + ZT Bis?||min[Ax,
(ZTV fi + Z{ Brsp) v > 5112k V fx + Z); Besk||min[A 2(|1Z¥ B k||

The rest of the proof follows directly from the definition of T'predk, the fact that
(ZTV fi + Z7 Bes?)T v + vf ZT By Zxvi <0, and (4.1). o

LEMMA 5.4. Let si be the step generated by the algorithm at the Kk iteration,
then

Predy > Tpredy — b|sulllisl] + S Npreds,
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where bs is a positive constant independent of k.
Proof. From the definition of Predy, we have

Pred, = —(ZTVfi)Tv — 3s,, T Bi Zivr — (Mkgr = )T [he + Vh,c sk
+ri(llhel? = [1he + VAL si]1%].

This can be written as

Predk = —(ZZ‘ka + Z{BkSZ)TUk - %v{Z{Bkavk + TR UL Yk Bkav;,

2
1
—(Ak41 — /\k)’r[h;c + EVhZ'sk] + 7',c[||hk||2 = |lhx + Vh{sk“z]

v

Tpred — ||Ae+1 — Axllllhe + th skll = 1" Bi Ze||l|ve Il
+—§—Npredk.

Using (4.1), (4.2), (4.3), the fact that ||hx + VAT s¢|| < [|he||, and [lvg]| < [Ise]l, The
remainder of the proof follows immediately.

The following lemma proves that if ||hk|| is small enough, then the penalty pa-
rameter will not be updated using (3.6). i. e. inequality (3.7) will hold for rr = pr_;.
(See Scheme 3.4).

LEMMA 5.5. Let k be the index of an ileration at which the algorithm does not
terminate. If ||he|| < c1Ax where ¢; is a small constant that satisfies:

€ €
5.11 < min min(1, ,
(5-11) ° {3A* 3bboA,’ 24\/'b5A* Sy
then
(5.12) Pred; > %Tpred;c + %Npredk.
Proof. From Lemma 5.4 and Lemma 5.3, we can write
zZT ZT Bys?
Pred, > %Tpredk+-;-||Z,Z"ka+Z{Bksgumin[Ak, 12 Ve ;b k "sk”]

,
(5.13) —bs||sk||l1hxl + 7"Npred,¢.

£

Since ¢1 < i, then [|hk]| < § and because the algorithm does not terminate,
1ZTV fiell > &, and we obtain

NZTV fe + ZT Beskll > (12 Vfill - ||ZTBkYk|||luk|I,
2¢ € €
>  — — bbyl|! > = —.
3 ollhell > -3=3

Hence, using ||sk|| < v2Ak, we have

1 EAk
> > =
Pred, > 2Tpred;c + o

> -;—Tpredk+{ min(l,

. € r
min(l, 6bA*] —V2e1b5A7 + ,—"-Npredk,
6bA ——] = V2e1bsA}Ar + —2—Npred,¢.
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From (5.11), the quantity {fzm.i.n[l, s'th;T] — V2c1bsAL) is positive. Hence,

Prede > -;-Tpred;c + 1%‘-N;:vredk,

which is the desired result. n]

From the proof of the above lemma, we see that the fourth term in (5.13) did
not enter into the calculation. This implies that if we set 7x = pk-1 (see Scheme 3.4)
inequality (5.12) remains valid. So, when ||h|| £ c14k, the algorithm will not update
the penalty parameter using (3.6). In other words, inequality (3.7) will always be
satisfied.

LEMMA 5.6. If the algorithm does not terminale, then any iteration at which
[Ihell € 18, satisfies

(3.14) Predr > c2A

where ¢y is given by (5.11) end c2 15 a posilive constant independent of k.
Proof. When ||hg|| < c18k. where ¢ is given by (5.11), then from Lemma 5.3
and Lemma 3.5, we have

Ty T n
Predy 2> %Tprcdk > %IIZZka + 2T By s?|/min[As, 12 V i ;bzk Bksk”].

But, since ¢y < 35, then |lhx]] < § and because the algorithm does not terminate, we
have [[ZTV fi|| > Z£. Thus, as in Lemma 5.5, we conclude that [| 2TV fe+27 Bestll >
£. Hence :

3 k]

€ . €
Predy > _—zzmm[l, 6bA*]Ak'

The result now follows if we set ¢z = £ min{l, 77 O

The following theorem shows that the algorithm is well defined in the sense that
it will never loop ad infinitum swithout finding an acceptable step.

THEOREM 5.7. Let the global assumptions hold. At any iteration k al which the
penally parameter i is bounded, either the termination condition of the algorithm
will be met or an acceplable step will be found.

Proof. In the proof of this lemma we use the notation k/ to mean the j& unac-
ceptable trial step of iteration k. .

If the termination condition of the algorithm is satisfied, then there is nothing to
prove. Assume that the point (zk, Ax) does not satisfy the termination condition of
the algorithm.

Suppose that at iteration k the algorithm loops infinitely without finding an
acceptable step. Hence all the trial steps are rejected and we obtain, for all §

- Aredk,'
(3.15) 1- 1)-1) < lPrcdk,- - 1].

First, assume that ||| = 0. Therefore, for all j we have ||hgil| < c18ks, Where
¢; is as in (5.11). In this case the penalty parameter remains the same. So, we have
rii = r is bounded for all j.

On the other hand, from Lemmas 5.1 and 5.6, for any j such that Agi > 0, we have
_ IA?‘Cdkj - Prcdk,'l bqu

— 1l = < ]
1l Pred,; = ¢ A

lAredk,'
Predk,-
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As j goes to infinity, Ay; goes to zero and we get a contradiction with (5.15). So j
can not go to infinity. But this contradicts the supposition that the algorithm loops
infinitely without finding an acceptable step and means that, after finitely many
rejected trial steps, an acceptable one will be found.

Now assume that ||| > 0. From (3.7), (5.2), and Lemma 5.1, we can write

Aredy; |Aredy; — Predy;| 2b4A2;
g — U= Prod., < A
redes rets (Vs | min{[lhgsl), 2522}
Here ||hgs|| = ||he|| > 0 is fixed. Therefore, for sufficiently large j, we have,
A A
min{|| s, T3} = T
Hence,
Ared,,,- 2b4bo
STk < L2400
lPredk,' < 7||hel|

As j goes to infinity, A; goes to zero and we get a contradiction with (5.15). So j
can not go to infinity. Again this contradicts the supposition. Hence the supposition
is wrong and the theorem is proved. 0

Under the assumption that the algorithm does not terminate, the above theorem
is true at any iteration k at which r is bounded. In the following section we prove
that the penalty parameter is bounded for all k. This will imply that Theorem 5.7 is
true for all k.

5.2. The Behavior of the Penalty Parameter . In our analysis of the penalty
parameter, the sequences {p, } and {p;} are used. For their definitions see Scheme
3.4.

Our goal is to prove that there exists a constant r, and an integer k such that
re = ry for all k > k. To this end, we will prove the following. First we will prove
that {5, } is bounded. This of course will imply that {rx} and {p } are bounded.
Second we will show that {p, } is a non-decreasing sequence. We wrf 1l also discuss the
amount of increase in the sequence {p }. Finally we will show that the sequences
{p.}s {rx}, {Pi} will attain the same value after finitely many iterations. We start
w1th the following lemma which we will use to conclude that r; is bounded.

LEMMA 5.8. Under the global assumptions, the sequence {p,} is bounded.

Proof. If the algorithm terminates, {p; } is finite and trivially bounded. So, con-
sider the case when the algorithm does not terminate. The proof is by contradiction.
Suppose that the sequence {5 } is not bounded. Then there exists an infinite sequence
of indices {k;}, such that

V/2b,(2b1 + bob + 2pb3) _ }
min(7, ¢1 o) ALl

for all k € {k;}. Suppose that m is the first index such that (5.16) holds. It is clear,
using inequality (5.16), that m > 2.

The only possibility that 5,, > p,,_; is when rp, > §,,_; and this can only ha.ppen
when 7, is updated by (3.6). This implies that

roalllBmll? = hm + VAL smll?] = 225V fm)T vm + 55, Bm Zmvm
1
+2(Am41 = Am)T (hm + §vn,Tns,,.)
+p Ihmll* = lhm + Vhlsmll?].

(5.16) P > max{
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Using (5.4) and the fact that 2(ZLV fm + ZT Brns™ )T vm + 9% 2T B Zmvm < 0, we
can write

. TAm . 1
rm“"m”mm[_bo—: lamlll < 2[Amt1 = Amlllam + §Vhﬁsmll
HIYE B Zon ll[uml[vmll = 20 BT, VA sm.
Using (4.1), (4.2), (4.3), (4.5) and the fact that || + JVAT se|| < ||hk||, we can write

rmllhmllmm[ = hmll] < (261 + bbo + 2pb3) || amm | 5m]l-

If we use the above inequality together with the fact that ri is updated by (3.6) only
when ||hk|| > c1Ak, we obtain

< V/2bo(2b1 + bbo + 2pb3)
m . .
= min(, ¢1bo)

This result together with the fact that 5,,,_; does not satisfy (5.16) imply that Pmdoes
not satlsfy (5.16). This contradicts the supposition that m is the first index such that
(5.16) is satisfied and means that there is no such m. Hence the sequence p; is
bounded. 0

From the definition of {;} and the last lemma, it follows directly that the se-
quences {r;} and {p,} are bounded.

LEMMA 5.9. The sequence {p, } is monotonically nondecreasing.

Proof. From the way of updatlng the penalty parameter r we always have, for all
k, P STk and since P = min{7¢, ’k—1, ..., Tk=N+1}, then we must have p Pr_y <p,
which means that the sequence {p } is monotonically non-decreasing. ]

Now we argue that {p } w1ll increase in a finite number of iterations until it

reaches its upper bound. In other words, there exists an integer k such that Py = P

for all k > k.
First of all, we study the possible increase in ri over p, ,. In other words, if there is
an increase in 1 over Py how much is this increase?. If ry is increased over Pr_y»
it will increase through one of the following three possibilities:
1) It will be increased by at least p if it is increased according to (3.6) regardless
of the result in equation (3.5) of Scheme 3.4.
2) It will be increased by at least p if p, | +p < Pr—1 regardless of the result
in the “if” statement of Scheme 3.4.
3) It will be increased by at least (B_; —p,_,) if p,_; < Pr-1 but p,_, +p>

Pr—1-
Notice that the amount (5, _; — ,) can be very small so that, if at each iteration

the penalty parameter increases by thls amount, it seems that the algorithm may take
infinitely many iterations without {p, } reaching its upper bound. Later on we will
show that this situation can not happen

Also, we notice that, for p, | < Py_; we always have p, | <% which means a
possible increase in p, | to Bk

Finally, we notice tha.t the only possibility that rx = p, | is when p, _ 1 ﬁ
and p, _, satisfies (3.7). In this case p, | =% = P which will imply p, = ¢ =

Define the following three sets of indices:
I={k:p_,+pP<Pr1}

7>
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J={k:p,_ <Peoabutp,_ +p>p_;}
K={k:p,_ =Pk}
The following propositions can be easily verified.
Proposition 1.
If k+ 1€ 1 then Leyn 2B TP
Proposition 2.
If k€ K then either k+1€ K,ork+1,..,k+ N-1€ 1.
Proposition 3.
If k€ J then either k+1€J,ork+1€ K,ork+1,..,.k+N—-1€l.
Proposition 4.
Kkk+1l,.,.k+N—-1€J,thenk+NeK,ork+N,..,.k+2N-2¢€l.

It is easy to see that (in the worst case) every 2N — 1 consecutive iterations at
which the sequence {p, } increases, it will increase by at least p. Thus, because {p.}
is bounded, the sequence {Bk} will take only a finite number of iterations to attain
its upper bound.

LEMMA 5.10. If the algorithm does not terminate, then there exists a positive
integer ky and a constant r, > 0 such that, for allk > ky, T = rs.

Proof. We notice that, because of Lemma 5.8, after finite number of iterations
ky inequality (3.7) will be satisfied for all k£ > k;. This implies that there exists an
integer k2 > ki such that p, =P, for all k > k;. However, from the way of updating
rg, this will imply that P, =Tk = P for all k& > k. This implies r = r, for all

5.3. The Main Global Results. We show that the algorithm always termi-
nates. This is shown in two steps : First, it is shown that if the algorithm would not
terminate, then limg_o||/he|| = 0. Second, it is shown that if the algorithm would
not terminate, then liminfy—co ||Z7 V fx|| = 0. Thus for each € > 0 there exists ko
such that ||heol| + [|1 27, V froll < €.

The following lemma is crucial in proving that the algorithm will converge to a
feasible point. Intuitively speaking, it shows that the trust region will not collapse to
a point as long as ||hx|| is bounded away from zero.

LEMMA 5.11. Let the global assumptions hold. If the sequence of iterates gen-
erated by the algorithm is bounded away from the feasible region, i.e. ||hx|| > €o, for
some fized positive constant g9 and and all k, then there ezists a constant c3 > 0,

such that, for all k
(5.17) Ak > c3.

Proof. The proof is by contradiction. Suppose that {Aj} is not bounded away
from zero, then there exists a sequence of indices {k;} such that

(5.18) Ag < &b}'—‘(l - ),

M 7'25
for all k € {k;}, where oy = min{eo, m—%—‘m, m}
Let m be the first integer such that (5.18) holds. It is clear from the definition of oy
that oy < ;—l—bﬁ‘%ﬁm which implies that m > 2.
Using (5.18) and the way of updating A, we can write

sms-ill o hsmimall  TAm

5.19
(5-19) V2 T bo = aibo

<ai(l —1n2) £ o1 L €0y
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where s,,;_1 is the last rejected step, just before finding an acceptable one and moving
to the point (Tm, Am). Here spi_y = sm-1 if there is no rejected ones between sm—_1
and s,. We obtain from (5.3), that

Tmi-1€0

Ami-1 } > Tm:‘-1€07'||smi-1“.

bo 2v/2bo

(5.20)  Predpi_, > min{eo, —

On the other hand, from (5.1),
IArede'-l - Predmi—ll < rmi—lb4'|smj-1“2'
From (5.19), (5.20), and the above inequality, we have

|Aredmj_1 - Predmj_ll 2\/’2-b4b0 2\/;2-641730'1(1 - 7]2)
< ”'Smf-»l” <
Pred,,i_ TEQ T2g0

< (1 =m2).

The above inequality implies that the step sp,; -1 was an acceptable step. i. e sppi_1 =
sm—1. It also implies that Ap;_; < Apm and means that Apyi_, satisfies (5.18).
This contradicts the supposition that m is the first integer such that (5.18) holds.
Therefore, there is no integer k such that (5.18) holds. Hence the lemma is proved.
0

The following theorem proves that under the global assumptions, either the algo-
rithm satisfies its termination condition, or it converges to a feasible point.

THEOREM 5.12. Let the global assumptions hold. If all members of the sequence
of iterates generated by the algorithm fail to satisfy the termination condition, then

klinoxo [|hel] = 0.

Proof. We prove the theorem in two steps: First, we show that lim inf .0 [|hell =
0, then we use this result to prove the theorem.
Assume there is an £; > 0 such that ||hg|| > €1, for all k. For any k, we have

(5.21) & — P41 = Aredr > 11 Pred > %”hk“min[%:k, 1Axll]-

Since {®} is bounded below, ®;4; < ¥, for all k > ka, where k, is as in Lemma
5.10 and ||hk|| > €1 for all &, it follows that

liminfAg = 0.
k=00

On the other hand, because ||hg|| > €1 for all k, Lemma 5.11 implies the existence
of a constant &3, such that Ay > & for all k¥ which is a contradiction with the above
limit.

Therefore, the assumption ||hx|| > €1 for all k has led to a contradiction. Hence

(5.22) lim inf ||t || = 0.
k—o0

This result shows that at least one subsequence of {z;} will converge to a feasible
point.

Now we will show that every subsequence will converge to a feasible point. Sup-
pose that there exists a subsequence {k}} of indices such that ||h,,;,|| > €;. Because
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of this and (5.22) we may select two subsequences {k;} and {l;} as follows: Let
{kj} C {k}} and for each j we select an l;, such that

l; = max{l € [kj, kj+1) : ||hil| >l y ki < i<}, and [Jhy4| < ?

From (5.21), for all iterates ! such that k; <1< {;,j=1,2,..., we have

)151 [TAk €1

5

‘I)I ¢I+1 >
From the above inequality, it follows that

l.
MeL ~ . TA €
Pr; = Piy41 = E (@1 = D141) > —— h - mln[#,zl]-
I=k; I=k;

This implies Zf;ki Ay — 0. But

S
EA Z I 12“ =3 slzk; = @41l

I=k; I=k;

So, as j — o0, ||€k; — @1;41||] — 0. This implies that there exists an integer k3
sufficiently large such that ||zx; — i;41|| < 5%, where ¥ = max(b,,1). Now, using
(4.4), we have

27’

el < Wb, = brall + ) < 228+ 5 <
for all k; sufficiently large which is a contradiction.
So the supposition that ||hk;l| > £ has led to a contradiction. Hence, the supposition
is wrong and the theorem is proved. ]

The following lemma is needed in the proof of Theorem 5.14. It proves that un-
der the assumption that the algorithm does not terminate, if {||Z7 V f¢||} is bounded
away from zero, then the trust-region radius will be bounded away from zero.

LEMMA 5.13. Let the global assumptions hold. If all members of the sequence of
ilerates generated by the algorithm fail to salisfy the termination condition and satisfy
|ZFV fi|| > €2, for some fized constant €5 > 0, then

(5.23) Ar>cq

where c4 1s a positive constant independent on k.
Proof. Since the algorithm does not terminate, then from Theorem 5.12, ||| —
0. Hence there exists k4 sufficiently large, such that, for all £ > k4, we have

(5.24) 1Ak ll <m1n{ min(1, °2 1}.

€2
'be 16+/2b5

Now, using (5.24), we can write

€
I1ZEV fe + Z¥ Bestll 2 1 2LV fell = bbollell > 5
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From Lemma 5.3, Lemma 5.4, and the above inequality, we can write

1 €2 . €2 6
Predy > 5Tpreds + { 16mm[1, 4bA*] — V2bs||hi ||} Ak

Again, by using (5.24), we obtain

128V fi + ZEBkSZII]
2b )

Predy > ;;—Tpredk > %IIZZka + ZT By s} ||min[Ag,

Hence, for all k£ > k4, we have

(5.25) Predy > %min[Ak,
The rest of the proof is by contradicting (5.23). Suppose that {Ag} is not bounded

away from zero. Then there exists a sequence of indices {k;} such that

€2
ik

(5.26) Ag < a102(1 = n2),

for all k € {k;}, where

oy = min{e—2 2: Ak, }-
4b’ 16+/2r,bs’ a1(1 —m2)

Let m be the first integer such that (5.26) holds. It is clear that m > k4 + 1. Using
(5.26), then from the way of updating Ak, we can write

Isms 1]l

V2

where si, — 1 is the last rejected step, just before finding an acceptable one and
moving to the point (m,Am). Observe that si, — 1 = sy if there is no rejected
ones between sm_; and s,,. We obtain from (5.25) and (5.27), that

(5.27)

A €
< Ismi-1ll £ —t;l"—' <oy(l=m2) Lo2< 4—2,

€2
5.28 Predpi_1 > ——= i
( ) re i-12Z 16\/§"st 1”
From (5.1), we have
|Aredp,i_y — Predmi_1| < T*b4||3mj_1”2

By using the above inequality and (5.28), we obtain

16V2ribsoa(1 — 12)
<(l- .
€2 . - (1 7]2)

|Aredpmiy = Predms_1| _ 16v/2r.bs
<

j <
Pred,;_, Ismi-1ll <

The above inequality implies that the step s,,;_; was an acceptable one. i. € sm;_1 =
sm_1. It also implies that A,,;_; < A, and means that m — 1 satisfies (5.26).
This contradicts the supposition that m is the first integer such that (5.26) holds.
Therefore, there is no integer k such that (5.26) holds. Hence the lemma is proved.
0

The following theorem proves that under the global assumptions, if each member
of the sequence of iterates generated by the algorithm does not satisfy the termination
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condition of the algorithm, then there exists a subsequence {z,} of these iterates for
which {||ZT \% kaII} converges to zero.

THEOREM 5.14. Let the global assumptions hold. If all members of the sequence
of ilerates generated by the algorithm fail to satisfy the termination condition , then

liminf||ZT V f¢|| = 0.
k—o00

Proof. The proof is by contradiction. Suppose that there exists an €3 > 0 such
that ||Z,Z',V fe|l > €3 for all k. As in Lemma 5.13, there exists k4 sufficiently large such
that for all & > k4, we have

>
Pred; 16mm[A;c, b]
On the other hand, for all k£ > k2, rr = r«. Hence, for k¥ > max{ks, k2}, we have

(5.29) & — ®r41 = Aredr > m1 Predy > 6 253 min n[Ag,

b]

Since ®. is bounded below and ®;41 < ®y, for all £ > max{ks, k2}, we have

I

liminf Ag = 0.
k—o00

On the other hand, because of the assumption that the algorithm does not terminate
and that ||ZT V fi|| > €3, for all k, Lemma 5.13 implies the existence of a constant
¢4, such that Ax > &4 for all k. This contradicts the above limit. Therefore, the
supposition ||ZT V fi|| > €3, for all k has led to a contradiction. Hence the supposition
is wrong and the lemma is proved. ]

The above two theorems imply that under the global assumptions and the as-
sumption that the algorithm does not terminate, the algorithm produces an infinite
sequence of iterates {zy} that satisfies

(5.30) liminf (]l + 127V felll = 0.

This result contradicts the assumption that the algorithm does not terminate and
means that the termination condition of the algorithm will be met after finitely many
iterations.

Satisfying the termination condition by itself means that the point at which the
algorithm terminates lies in a ball of radius ¢ and center at a stationary point (Zx, Ax).

In practice there is no difference between liminfr—oo [ [Jhkll + 12TV fell 1 =0
and limg oo [ ||hkll + |27 V fell ] = 0. Both mean that the algorithm will terminate
after finitely many iterations.

If the point (z4, A«) is not an isolated local minimizer that satisfies the second
order sufficiency condition, then our analysis is stopped here. On the other hand, if
the algorithm avoids the neighborhoods of stationary points that do not satisfy the
second order sufficiency condition, then we remove the termination condition from
the algorithm and proceed, in the following section, with the local analysis.

6. The Local Analysis. In this section, in addition to the global assumptions,
we add the following assumption:
Local Assumption A:
We assume that the problem has a finite number of isolated local minimizers and each
one satisfies the second order sufficiency condition.



22 MAHMOUD EL-ALEM

We remove the termination condition from the algorithm and proceed with the
analysis. Because there is no termination condition, Lemma 5.10 and theorems 5.12
and 5.14 are no longer valid. However, the global analysis still imply that given any
€ > 0 there exists a ball B¢(Z,)) of radius € and center (2,)), where (Z,}) is a
stationary point of the problem, such that the sequence of iterates generated by the
algorithm is not bounded away from this ball. i. e. for some k sufficiently large, we
have (zg, \i) € Be(Z, ).

The local analysis of our algorithm is presented in three sections. In Section 6.1 we
study the behavior of the penalty parameter after removing the termination condition
from the algorithm. In Section 6.2, we prove that the sequence of iterates {(zk, M)}
converges to a local minimizer (z,, Ax). Section 6.3 is devoted to studying the local
rate of convergence of our algorithm. We show that our globalization strategy will
not disrupt the fast local rate of convergence.

If the point (24, M) satisfies the second order sufficiency condition (see Section 1),
then by the continuity assumption, there exists a neighborhood N(Zx, M) Of (T4, Ax)
such that Z(z)TV2I(z,A)Z(z) > 0, for all (z,)) € N(zx, M)

6.1. The Local Behavior of The Penalty Parameter. In this section, we
prove technical lemmas needed to study the local behavior of the penalty parame-
ter. At the end of this section we prove that, under the Global Assumptions and
Assumption A, the penalty parameter is bounded.

The point (4, Ax) is used in this section to mean a stationary point of the problem
that satisfies the second order sufficiency condition and N(z., As) is used to mean a
neighborhood of (z., A¢) such that Z(z)TVZl(z,A)Z(z) > 0, for all z € N (2, Ax)-

LEMMA 6.1. If (zk, \k) € N(Zx, As), there ezists a positive constant ey, such that

|28V fi + Z{ Bisill 2 enllvell.

Proof. Since (zk,Ak) € N(z«,As) then ZT Br 2y is positive definite. Hence,
there exists a positive constant e; such that, for all k sufficiently large er||vel? <
vaZ"Bkavk. Now, since

oI ZT Be Zive < —(ZFV fi + 27 Bisp) v,
we can write
(6.1) erllvell < 128 V fi + Z Bi sl
This completes the proof. 0

LEMMA 6.2. If (zk, \e) € N (24, M) is such that ||hi|| < eal|sk|| where 0 < ez <
1 : ; )
557 and bo is as in (4.2), then

127V fi + 27 Bustll 2 Sllsell
Proof. Since ||uk|| + ||vk|| > ||skl|, then by using (4.2) and (6.1), we obtain
erbollhell + |27 V fi + Z{ Beskll 2 exllsell-
When ||hi||2 < e2||sk||2, we have

1ZTV fi + ZT Besillz > e1(1 — ezbo)llsl-
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Using ez < 2170’ we obtain the desired result. 0
LEMMA 6.3. If (zk,Ak) € N (2, Ax) is such that ||hg|| < es||sk|| where e3 is a
positive constant that satisfies:

eymin(4b, v/2e;)
64+/2bbs

where b is as in (4.1), bs is as in Lemma 5.4, e; is as in Lemma 6.1, and ez is as in
Lemma 6.2, then

(6.2) e3 < minfez,

],

(6.3) Predy > %Tpred;c + %Npredk.

Proof. From Lemma 5.3 and Lemma 5.4, we have

1 T T n
Pred, > ETpred;c + %”Z,Z‘ka + ZT Bis}||min[Ay, 12, Ve ;bZk Bksk“]
T
(6.4) —bs||sklll k]l + -25Npred,,.

Now, since ||hg|| < es||sk|| and e3 < ez then by using Lemma 6.2 we have NZFV fi +
ZT Bis?|| > % ||sell, and using (6.2), we obtain

|2V fi + Z{ Best |l
2

ep. ..1 e
> {fgminl—s, 1= bsesHlsell? 2 0.

1 .
gIZEVfe + Z{ Bestll min [Ay, 1= bsllsllll2el

The remainder of the proof follows immediately. 0

From the proof of the above lemma we see that, if ||i¢|| < es||sk||, then the second
term in (6.4) will cancel the third term and the fourth term need never enter into the
calculation. This implies that if we set 7¢ = pr—1, (see Scheme 3.4), inequality
(6.3) remains valid. In this case the algorithm will not update r; using (3.6) because
inequality (3.7) will be satisfied.

LEMMA 6.4. If for all k, (zk,Ae) € N(zs,A), then rp < 7%, where 7™* is a
positive constant that does not depend on k.

Proof. First we follow a proof similar to the proof of Lemma 5.8. We demonstrate
the boundedness of the sequence {5;}. The rest of the proof follows because, for all
k’, Tk S ﬁk‘ a

LEMMA 6.5. Under the global and the local assumptions, the sequence ri 1is
bounded.

Proof. Because we have a finite number, p say, of local minimizers that satisfies
the second order sufficiency condition (see Assumption A), we can find a radius §,
such that Bi(zi, &) C N¥(zh, M), for i = 1,2,...,p.

Now consider the set Br = |/, Bi(zi, A\L). If any iterate k is such that (z¢, Ax) €
B: then from the global analysis, there exists a constant 7, such that, rp < 7. Observe
that 7, depends on £. Here £ is fixed. On the other hand, if (zk, At) € Br then from
Lemma 6.4, there exists a constant 7, such that r, < 7. Now take 7 = max(Fs, ),
we can see that the sequence {rt} is bounded by 7. 0

Now we follow the argument that comes immediately after the proof of Lemma
5.9, and then follow the proof of Lemma 5.10, we conclude that there exists an integer
% such that for all k£ > % the sequence of penalty parameters reaches its upper bound.
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In the following section we study the sequence of points {(z, A)} generated by
the algorithm after the penalty parameter reaches its upper bound.

Without loss of generality we may assume that the sequence of penalty parameters
is independent of k.

6.2. First Order Convergence. From the global analysis, there exists a sub-
sequence of points {(zk;s Ae;)} generated by the algorithm, such that (zk, Ax) €
N(ZwyAs), for all k € {k;}-

Consider the level sets L = {(z, ) : ®(z, A1) < &(zk, Mk, 7)}. There exists an
integer E sufficiently large, such that £; C N(Zg, As)- )

The following lemma proves that there exists an index k such that all the subse-
quent iterates generated by the algorithm will never leave the level set L;.

LEMMA 6.6. Under the global and the local assumplions, there ezists an indez k
sufficiently large, such that (zk, M) € Lg, for all k> k.

Proof. From the global analysis and the local assumption A, there exists an index
E such that Lz C Be.

The proof now is by contradiction. Suppose that some iterates leave the set L.
Let m + | be the first iterate that leaves the set. Therefore, (Zm,Am) € L£f and
(Zm+1, Am1) & Lg. Since sm is an acceptable step, then we have

&y — Omyy = Aredm > mPredm 2 0.

Then ®m > ®m+1- This implies that (Zm+1,Am41) € Lg. This gives a contradiction.
Hence the lemma is proved. 0

THEOREM 6.7. Under the global and the local assumptions, the algorithm will
generate points that salisfy

lim ||hel] = 0.
k=00

Proof. The proof is similar to the proof of Theorem 5.12. 0
THEOREM 6.8. Under the global and the local assumptions, we have

lim ||Z7 Vfill = 0.
k=00

Proof. First we follow a proof similar to the proof of theorem 5.14. We demon-
strate

(6.5) liminf ||ZT V fell = 0.
k=00

The rest of the proof will follow by contradiction. Suppose there exists a subse-
quence of indices {k;} such that k; > k, where k is as in Lemma 6.6, and 12TV fill >
oy for all k € {k;}, where oy > 0.

Take an iterate k' € {k;} sufficiently large such that for all k > k', we have

. 28] o1 . 01
6.6 )} < —_— ——— —1}.
( ) " zk“ = mln{ 2660, 16\/§b5 mm[l, 4bA*]}

For some 3 > o and any = € Q, we have

1ZE@)TVFEN = 12DV full - 112(x)T V(=) = ZLV full
> 1259 firll = Bliz — zell-
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This implies that || Z(z)TVf(z)|| > I1ZLV fe|l > % holds for every z € Q that
satisfies
\ZE fell

-zl <
|z = zp|| < 23

Therefore, take o2 = LA f"'" and consider the ball Uy, = {z : ||z — zx:|| < 02}. For

all k£ > k' such that z; E U,,, we have || ZT Vfi|| > 4. As in Lemma 5.13 (because
of (6.6)), we have, for all k > ¥’

12TV fe+ 28 Busill > 5
and

T n
Pred; > %”Z{ka + Zkasgllmin{A ”ZTka -;bZ Bksk“}

This implies that for any iterate & > k' that lies inside the ball, we have

5]

Predy > — 8b]'

2 mm[Ak,
Because of (6.5), the iterates, for all £ > k', can not stay in this ball. Let {+ 1 be the
first integer greater than k’ such that the point zi+; does not lie inside the ball i,,.
Hence,

-

i

Pp — b4 = Z(‘I’k - ®pyr) 2 Z m Predy
k=k’ k=k!
1
moy . 231
> ) 55 minfde gl
k=k’
Therefore,
oy O
67) - By — Bryy > BL [\/2- St

Since ®; is bounded below and is a decreasing sequence, {®x} converges to some limit
®,. Taking the limit as ! goes to infinity in inequality (6.7), we obtain

G — B, > ‘”1 [\/"_ 4.
If we now take the limit as k' goes to infinity, we obtain
gz 01
>
02 55 minl7p g

which contradicts the fact that o3 > 0 and o5 > 0. Hence there is no such sequence
and the lemma is proved. ]
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6.3. The Local Rate of Convergence. In this section we prove Lemma 6.9
which is needed in our analysis. Then we prove Lemma 6.10 which proves that under
the global and the local assumptions, for k sufficiently large, all the trial steps will be
accepted and the trust region will not be decreased. In Theorems 6.11 and 6.12, we
study the local rate of convergence of our algorithm. We show that asymptotically
the trust region will be inactive and hence the fast local rate of convergence will be
maintained.

LEMMA 6.9. Under the global and the local assumptions, there ezists a positive
constant e4 independent of k such that

Predy, > eq||se||.
Proof. If ||h|| < es||sk||, where e3 is as in (6.2), then using Lemmas 6.3 and 5.3

lsell 12X V i + ZEBkszn]
V2 2b :

Predy, > %Tpredk > %nz,’{v fe + ZT Bis?||min[
But, since ||ZF V fi + ZT Besi|l > %|Isll, then

er . 1 e 2

dy > — —_—, = .

Predy > lﬁmm[\/‘f’ 4b]||.<>',;,||

On the other hand, when ||h|| > es||sk||, from (5.3) and the fact that r > p; =1, we
have

r . TAg es .. T 2
Predr > =||/ — lhell]l > = - )
redy > Zellmin{ 2, hel]] 2 Sminl =, eallsl

If we take eq = min{mmin[%, V2e1], VoI min{r, v2boes]}, we obtain the desired
result. n|
We add to our local assumptions the following set of assumptions:
Local Assumption B:
V2l is Lipschitz continuous in a neighborhood of the solution z,.
Local Assumption C:
If an approximation to the exact Hessian is used, then for all k, B satisfies:

_ U2
(6.8) lim 1Z6(Bx = Velorll _ g,
keco llsll

The above assumption is the Boggs-Tolle-Wang characterization of g-superlinear
convergence of {zi} to z,. It is proved by Boggs, Tolle, and Wang (1982)[1] and
Powell (1983)[17] that under the local assumptions, Algorithm 1.1 converges to z, q-
superlinearly. On the other hand, if the exact Hessian is used, the local convergence
rate is q-quadratic. (See Goodman (1985)[10]).

The following Lemma shows that, for all k large enough, the trust-region radius
A, will not be decreased. i.e. the sequence {A;}, for k large enough, will form a
non-decreasing sequence.

LEMMA 6.10. Under the global and the local assumptions, there exists an inleger
ks sufficiently large, such that for all k > ks, we have

Aredy
—_— 1.
Pred, — 2
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Proof. We have, using (2.1),

®(zk + s, M1, 7) = B(zk, Arg1,7) + Ve B(z, Mes1,7)T sk

425200k, Mgty )T sk + ol

= &(zk, A&, 7) + VO(Tk, Ak, ) s + %s{Vi@(zzk, Ak, 1) sk

+(AXe)T hi + (AX)T VAT st + %sf (AXe)T V2 hisi + of||sell®)-

From the above equation, using the definition of Aredy, we obtain
Aredy = =V (z&. A;,)Tsk - %stﬁl(zk,,\k)sk
—(AM)T (ki + VAT i) = rlllhe + VAT sl|* = |1hell’]

—;lz-sfvzh;.A/\@sk — rsTV2hihesk — o(llskll?)-

If we use the definition of Pred; and the above inequality, we obtain

Ared, > Predy — o(llsell?) = rlsTVhehs| - %s{ [V2l, — By)Zeve

1 s 1
—-i-.s{ (V21 — V2L,)sk — %S{VZI*quk - §(A,\k)TVhIs,,.

We show first that the last two terms are o(||sell?) + o(llskllllhll). By dif-
ferentiating the normal equation Y (z)T[VA(z,M(z))] = 0 at z = z,, we obtain
YT V2L, + Vh,VAT] =0, or equivalently R.VAT = =YT V2L, Therefore,

LMV = =SET AR s+ ollsl)
= _5‘2-"-5'{ [VAeRT = VART Jug — ‘TT"S’,{ VAR ui + o(l|sell)
= =T UARTue + olllsnl) + olllslll)
Hence,
~ ST VI Yiw - -;—(Az\k)TVhIsk = ST VILIY: - Vilu + olllsel®)

+o([lskllla&lD),
= ofllsell*) + o(llselllAell)-

Using Lemma 6.4, for k large enough, we have

Ared; 1— .l_ o(“sk.uz) O(”Sk””hk") + 'I'ls{vzhkhkskl
Predy ~ es |lsell® lIskll? lIskll?
|sT[V2L = BelZevi| | |sE[VEh — Vil*]Skll ,
2||skll? 2||sell '

Using the local assumptions, Theorem 6.7, Theorem 6.8, Lemma 6.1 and inequality
(4.2), we conclude that there exists an integer ks sufficiently large such that, for all
k > ks, we have

Aredy >,

Predy — 12:
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Hence, the theorem is proved. ]

In our definition of Pred; we used %s{Bkavk instead of %sZ’Bksk and used
hy + %Vh{sk instead of hy + Vh{sk. This way of defining Predi allows us, when
comparing with the second order approximation of the terms of Aredy, to have two
extra terms, namely, %s’,{ B Yirur and -;-Vh{s,,. These two terms are very important in
our local analysis because they allow us, using the Local Assumption C, to prove that
Predy approximates Aredy to within terms that are of order o(||s||?) or o(l|sk|ll|hxll)-

Now as k — 0, ||ht|| — 0 and ||Z7 V fi|| — 0 and hence ||sk|| — 0. This implies
that %:—gf — 1, which means that for k sufficiently large all the steps produced by our
algorithm are acceptable. This also means that for k sufficiently large the sequence
of trust region radii {Ax} is a non—decreasing sequence.

The following two theorems show that the fast local rate of convergence will be
maintained.

THEOREM 6.11. Under the global and the local assumptions, if the ezact Hessian
is used, then for k sufficiently large, zr — . g¢-quadraticly.

Proof. From Lemma 6.10, the trust region radius Ay for k > ks is updated
according to the rule Agy; = min{A,, max[Ag, as||sk(|]}. Hence, Ar > A, for all
k > ks. However, for all k, A; < A,

First, we show that the trust region will be inactive, for sufficiently large k.
Suppose there exists an integer ks > ks such that the full normal and tangential
components of the step are not taken for all k > ke. This implies that, for all
k > ke, [|[REThill = llull > Ax > A, and ||(Z] BeZe)~ (Z] Vik + Z] Bes})|| >
lokll = Ak > Ag,. But, using (4.2) and Lemma 6.1, this will contradict the fact that
|kl = 0 and ||ZT V fi|l — 0. Therefore, there exists a subsequence of indices {k;}
such that ||s} || < Ak, and [|s. || < Ak, where all of kj > ke.

Let m € {k;} be the smallest integer greater than ke such that s8] < Ak, lIshll £
Ag,, and such that the local method, i.e. Algorithm 1.1, generates steps that are
g-quadratic, i.e. satisfies

lsk+all < Bullsell,

where B; is a constant. But since the local method converges r-quadratic in the
components st and s?. This implies the existence of an integer k7 > m, such that for
all k > k7, we have

IRFT hell < B2(7E)*
and
(2T BeZe) Y (ZF Vi + Z] Bisp)ll < Ba(13)*",

where 2, 83,71, and 72 are constants and 71,72 € (0, 1).

This means that if we choose k7 sufficiently large such that max{@2(7})%, Bs(¥3)*7} <
Ay, then we have, | RgT hg,|| < Aky, (2T, By Zi,) ™ (28, Viks + Zi, B st )| < Air,
and for all k£ > k7, we have

IRET hill < Ao,
and

(2T BeZe) ™" (ZT Vi + Z{ Besp)|| < Ak,-
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But since, for k > ks, we have Ay < A4, and all the steps are acceptable, then
-T
| Rprr Bkrtrll £ Dby £ Agrtrs
and

T -
(2T, 41 Brrt1Zkr41) ™ (2L, 41 Vikrs1 + 21 41 Bir 15t 4|l < Aky < Akpir

The above two inequalities and the fact that for all & > ks all the steps are
acceptable imply that the full step will be taken at iteration k7 + 1. By induction, for
all k£ > k7, the trust region will be inactive and the full step will be accepted.

This means that the sequence z,k > k7 generated by the algorithm is the se-
quence of iterates generated by Algorithm 1.1 and consequently the local rate of
convergence is g-quadratic. 0

THEOREM 6.12. Under the global and the local assumptions, if an approrimation
to the Hessian of the Lagrangian that satisfies (6.8) is used, then for k sufficiently
large, T — =, g-superlinearly.

Proof. From the above theorem, we have for all k£ > k7, the trust region will be
inactive and the full step will be accepted, where k7 is some sufficiently large integer.
This means that the sequence {z¢}, k > k7 generated by the algorithm is purely the
sequence of iterates that is generated by Algorithm 1.1.

Second, it is proved by Boggs, Tolle and Wang (1982)(1] that if we use a scheme
for approximating By in Algorithm 1.1, then zy — z, g-superlinear if and only if
assumption (6.1) is satisfied.

Now as a consequence of the local assumptions and the above two parts of the
proof, if kg is taken sufficiently large such that the local method, i.e. Algorithm 1.1,
generates steps that are g-superlinear, we conclude that the local rate of convergence
is g-superlinear. 0

7. Concluding Remarks. We have presented an algorithm for solving the equal-
ity constrained optimization problem. This algorithm has many desirable features. In
this algorithm, we use Fletcher’s differentiable penalty function as a merit function.

In computing the trial step, after factorizing Vh; using QR factorization, two
unexpensive subproblems has to be solved. One of them is an upper triangular linear
system. The second one is a subproblem of smaller dimension m x m similar to the
one we obtain when solving unconstrained optimization problems using a trust-region
method.

In our algorithm, to obtain the matrix By, the exact Hessian of the Lagrangian
can be used. On the other hand, an approximation to the Hessian matrix can also
be used. For example, setting Bi to a fixed matrix for all k£ is valid. However,
if By is obtained by quasi-Newton updates, the uniform boundedness assumption
on By, condition (4.1), causes some difficulties. For an analysis of this problem for
trust-region algorithms for unconstrained problems see e. g. Powell (1984)[18], and
for minimization problems with convex constraints, see e.g. Toint (1988){22]. The
question of how to use a secant approximation to the Hessian of the Lagrangian is a
research topic. We believe that Tapia (1988)[20] will be of considerable value here.

One of the main advantages of this algorithm is the way of updating the penalty
parameter. It is updated in such way to ensure that the merit function is decreased
at each iteration by at least a fraction of Cauchy decrease in the quadratic model
of the linearized constraints and at the same time can be decreased whenever it is
warranted.
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We have presented a convergence theory for this algorithm. We showed that the
algorithm is well defined and is globally convergent. To the best of our knowledge
this is the first time a global convergence theory is proved for an algorithm with a
pon-monotonic penalty parameter updating scheme. This updating scheme should
avoid the numerical difficulties that may occur if the penalty parameter is increased

at each iteration. We have also proved that, the algorithm will terminate at a point
that is not bounded away from a stationary point.

We also presented a local analysis for this algorithm. In our local analysis we
proved that our globalization strategy will not disrupt the fast local rate of conver-
gence. :
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