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ADIFOR Working Note #3:
ADIFOR Exception Handling

by

Christian Bischof, George Corliss, and Andreas Griewank

Abstract

Automatic differentiation uses recurrence relations based on the rules of calculus. Consequently,
the results are guaranteed to be correct only if the relevant mathematical assumptions are satisfied at
least in a neighborhood of the current argument. Computer programs may violate these conditions
by branching or by calling intrinsic functions such as abs, max, sqrt, and asin at points where
their derivative is undefined or infinite. The resulting dependence between the program’s input
and output variables may still be differentiable, because branch values fit together smoothly or
nondifferentiabilities cancel each other out.

We have two objectives. First, we would like to assure the user that the function being eval-
uated is indeed locally differentiable because all intrinsics are evaluated at smooth arguments and
none of the branching tests are critical. Second, the derivative program should run even when the
assumptions of the chain rule are not strictly satisfied. In this case, the numerical results represent
at least generalized derivatives under reasonable (but usually unverifiable) regularity assumptions.
To achieve these two goals, we must take into account the effects of finite-precision arithmetic.

This paper addresses the detection and handling of exceptions. It is an exception in the ADIFOR-
generated code to evaluate a function at a point at which the function may not be mathematically
differentiable. When an exception is detected by tests written into the ADIFOR-generated code,
an error handler is called. The error handler prints an error message (optionally), halts execution
(optionally), and returns a value that allows the user’s client program to detect that a requested
derivative is not available. :

Code is included for all of the necessary Fortran intrinsic functions and for the error handler.

1 Introduction

Automatic differentiation is based on the application of the chain rule. It gives the correct answer,
provided that all operators and functions are applied at arguments interior to their domains, so that
the operators and functions are smooth in a neighborhood of the point of application. If the relevant
mathematical assumptions are not satisfied, the results computed by the ADIFOR-generated code
cannot be guaranteed. That is, the code generated by ADIFOR computes the correct values of the
derivatives almost all of the time. This paper discusses what happens in the remaining rare events.

The purpose of this paper is to make explicit the issues and alternatives associated with exception
handling in ADIFOR. We assume that the reader is familiar with ADIFOR [1,2]. The intended
audience of this paper is the user of ADIFOR who wishes to better understand the error handling
provided by ADIFOR and the rationale behind it.

We address three questions:

1. What is an “error?”
9. How can we detect that an error has occurred or is about to occur?

3. What action should we take when an error is detected?



We attempt to explicitly state reasonable alternatives.
The error-handling mechanisms must be powerful, flexible, portable, efficient, and easy to use.
In the end, the effectiveness of the error handling is 2 major factor in the reliability of ADIFOR.

2 Definition of an Error

The (unreachable) goal of the error handling of ADIFOR is to provide a measure of reliability
whenever the derivatives computed by the ADIFOR-generated code cannot be guaranteed to be
correct. Hence, we consider it an “error” if we cannot assure the user that ADIFOR has computed
the correct values for the derivatives. Unfortunately, it is too expensive to detect all errors in this
broad class. We view it as our responsibility to detect and handle in a sensible manner attempts to
evaluate derivatives at points of mathematical nondifferentiability. We do not attempt to handle all

overflow errors.
If

o all arithmetic operations and intrinsic functions are differentiable on some neighborhood of
the current argument,

e the sequence of these elementary functions (the flow of control) is the same at nearby points,
and

e computations are performed in exact arithmetic,

then the overall function is locally differentiable, and ADIFOR computes the correct value of the
derivatives.

If the elementary functions and their derivatives are evaluated to working accuracy, and no
overflow or underflow occurs, then the Jacobian columns obtained in the forward mode represent
the corresponding exact first derivatives for a function defined by the same sequence of elementary
functions, but with their values and derivatives perturbed by a multipliers of the form (1 + ¢€)3,
where ¢ is bounded by the relative machine precision.

If these assumptions are not satisfied, then the derivatives computed by ADIFOR may be correct,
or they may be wrong. It is the function of the exception-handling mechanism to detect when these
assumptions are violated, and to take “appropriate” action.

We discuss four classes of “error”:

1. User function is not defined, for example, due to a division by 0. This is not our problem.

9. Differentiable functions — overflows, for example, exp (large number). Detecting this class of
error is too expensive.

3. Nondifferentiable functions — lim f’ = o0, for example, the derivative of ASIN at 1. We
return some special, user-defined value.

4. Nonsmooth functions — lim f’ does not exist, for example, the derivative of ABS at 0. We
return some special, user-defined value.

We discuss each of these classes of error in Sections 5 through 8. Error classes 3 and 4 constitute
the core of this paper. In Sections 3 and 4, we discuss options for how we detect an error and what
actions we take when one occurs.

Several conflicting principles were considered in designing the ADIFOR exception-handling mech- .
anism:

Generalized Gradient: Many algorithms for optimizing nonsmooth functions use generalized gra-
dient values. A generalized gradient is any value in the convex hull of derivative values in the
neighborhood of the point of nondifferentiability. For univariant functions, one may obtain



any value in the interval [liminf f’,limsup f’]. For example, a generalized gradient for |z| at
0 is any number in [—1, 1]. The values we choose to return as “derivative” values at points of
nondifferentiability are generalized gradient values, provided that the chain rule for generalized
gradients holds as a set inequality, rather than as an inclusion (3].

Continuity of Catastrophe: The value at the point of nondifferentiability should in some sense
be the limit of what happens in a neighborhood. For example, the derivative of asin (z) at 1
should be INFINITY. For some functions, the mathematical limit may be different from the
computational limit, as a result of finite precision or denormalized numbers.

Extreme Point: A necessary condition for the existence of an extreme point is f' = 0. A point of
nondifferentiability is usually at least a local extreme point, so returning a value of 0 as the
derivative may signal an optimization algorithm that an extreme point has been found.

Scaling: It is critical to scale many applications appropriately before applying an optimization
or ODE-solving algorithm. For example, one might scale by | something |, maximum, or
minimum. The derivative is locally not defined, but the entire computation is globally differ-
entiable. We have attempted to return derivative values that make sense in connection with
commonly used scaling techniques.

Evaluation of Undefined Functions: In some computing environments, execution may continue
after an attempt to evaluate a function at a point outside its domain (perhaps with a value of
NaN). If the program has not crashed while evaluating v/=2.0 (in real arithmetic), then our
derivative evaluation should not crash, either.

These principles clearly conflict with one another. We made trade-off choices that we think can be
justified.

The idea of scaling is common in scientific computation. For example, suppose that some nu-
merical routine evaluates a function y = f(z) that is homogeneous, namely, f(cz) = cf(z) for any
scalar multiplier c. Then one might prefer to compute numerically y = ||z||f(z/||=[[), where || - ||
could denote any vector norm including the nonsmooth ones mentioned above. Now, we find that
analytically

v = |zl f(/llzl) + =1l - V£=/ M=) - (/=) = = - =11/ =11%).-
The first and the last term cancel because f(z) = Vf(z) - = for homogeneous functions, where *
denotes the dot product. However, this is true only if the two derivative (vectors) ||z’ coincide,
that is, are defined consistently. Even then, they will be multiplied by the difference of two numbers,
which are theoretically identical but will cancel only up to round-off in finite precision. Therefore,
we gain by setting the undefined values for the derivatives of abs and min or max to zero.
3 Detection of an Exception
We see the following alternatives for the detection of exceptions (in order of increasingly defensive

posture):
Options:

I. Rely on the computing environment.

II. Provide tests and special handling for nondifferentiable functions.

III. Compute a measure of “relative safety” from undefined derivatives.

IV. Compute a measure of “relative safety” from undefined derivatives and overflows.



V. Compute a “trust region” in terms of the independent variables.
V1. Fully guard derivative computations against undefined derivatives.
VII. Fully guard derivative computations against undefined derivatives and overflows.

“Errors” may arise either from functions that are not differentiable or from effects of finite computer
arithmetic. In this paper, we address Options I and II, which cover the handling of exceptional
events. Options III-VII are concerned with quantifying how close an argument is to the boundary
of the domain of differentiability. We shall address those issues in a later paper.

Issues related to error detection are discussed in this section. Issues related to the handling of
the errors once they are detected are discussed in the next section.

An advantage of the Fortran-to-Fortran source translation nature of the ADIFOR tool is that
the user has the Fortran source code and can edit it, if necessary to handle special situations.

3.1 Reliance on the Computing Environment

Arithmetic errors that occur in the evaluation of derivatives should be treated in exactly the
same way as similar errors that arise in the evaluation of the user’s original code. Depending on the
host computing environment, the user may choose to set traps, test for IEEE arithmetic flags, or
take other defensive measures against overflows, divisions by zero, or similar errors caused either by
the user’s function not being mathematically defined in exact arithmetic or else by effects of finite-
precision arithmetic. Error detection of this type for the user’s function is clearly the responsibility
of the user. As a by-product, the same detection applies to operations performed in evaluating the
derivatives.

This option is easy to implement, and it is a part of the error-handling strategy of ADIFOR.
However, it is not portable, since the same program behaves differently in different computing
environments. Worse, it ignores nondifferentiability caused by branches in the program or by non-
differentiable functions such as abs.

The use of IEEE arithmetic fits into this class of error detection. If the host computing envi-
ronment uses IEEE arithmetic and an error occurs in the evaluation of derivative values, then the
IEEE arithmetic provides several different mechanisms for informing the user of that fact.

3.2 Teésts and Special Handling for Nondifferentiable Functions

The Fortran intrinsic functions abs, sign, aint, max, min, and dim have points at which they
are nondifferentiable. It is a simple matter for ADIFOR to detect calls to these functions and to
generate special code to handle the points of nondifferentiability.

4 Exception-Handling Module

In the preceding section, we described options for detecting the presence of an error in the
derivative evaluation. In this section, we describe a mechanism for taking action and what actions
should be taken. In Sections 5-8, we specify that whenever an error is detected, we should call the
exception-handling module described here. Fortran code for a simple implementation is given in
Appendix A.

The error handler can

e initialize error handler (optional),
e print an error message (if desired),

e either STOP execution, or else return a value to let execution continue. On a machine with
IEEE arithmetic, either NaN or INFINITY are logical choices. Then, the user’s client program
could detect that a requested derivative is not meaningful and take an appropriate action.



e report on the number of errors of each class (optional).

The user can control

ClassN: Class of error to which the error belongs

MsgTxt: Content of the message text

PrintF: Printing of the message

ErrFil: Logical unit number to which the error messages should be printed.
HaltFg: Halting execution

InfVal: Value returned if derivative limit is infinite

NoLmV1: Value returned if derivative has no limit

TieVal: Partial derivative of max(z, y) or min(z,y) with rwpe.ct toz whenz =y

If the user has complicated exception-handling requirements, we supply the code for g$error so
that it can be customized as necessary.
We generate augmented code of the form

r$0 = funct (t)
if (t .ne. BAD_POINTS) then
g3r$0 = result of derivative calculations
else
g3r$0 = gSerror (n, ’Derivative of funct does not exist’)
end if
y = r$0

The function g$error has the form

function g$error (Class_Number, Message_Text)
common / g$error_block / Print_Flag, Halt_Flag, Error_File,
Infinite_Value, No_Limit_Value, Tie_Value
if (Print_Flag)
vrite (Error_File) Message_Text
if (Halt_Flag)
stop
if (Class_Number .1lt. 10) then
gderror = Infinite_Value
elseif (Class_Number .1lt. 15) then
gderror = Tie_Value
return
end

The variables Print Flag, Halt Flag, Error File, Infinite Value, No_Limit_Value, and Tie_Value
belong to a common block g$error block. Appropriate default values are provided.

Variable Default Value
Print_Flag TRUE
Halt_Flag FALSE
Error_File 6

Infinite_Value 0
No_Limit_Value 0
Tie_Value 1/2




Several conflicting principles listed in Section 2 were considered in selecting these default values.
We made choices for these default values that we think can be justified. The rationale is included
with the discussions in the following sections where the values are used. A knowledgeable user may
change the values directly or calling the routine we supply:

subroutine g$Init_Error (Print_F, Halt_F, Err_F, Infin, No_Linm, Max_V)

boolean Print_F, Halt_F, Err_F

real Infin, No_Lim

common / g$error_block / Print_Flag, Halt_Flag, Error_File,
Infinite_Value, No_Limit_Value, Tie_Value

Print_Flag = Print_F

Halt_Flag = Halt_F

Error_File = Err_F

Infinite_Value = Infin

No_Limit_Value = No_Lim

Tie_Value = Max_ V

return

end

The user who wishes even more control can write his own function g$error to handle errors
in any way he sees fit.

A subroutine g$ReptEr (LUnitN).is provided to optionally report the cumulative number of
errors of each class.

5 Error Class 1: Undefined User Function
5.1 Definition of an Error

According to the definition of a derivative, a function must have a finite real value in order to have
a derivative. The first class of errors we consider is the case where the original program ADIFOR
receives from the user cannot be evaluated at certain arguments. This may happen either because
the mathematical function the user has described is undefined (e.g., Detecting z/0) or because
the mathematical function is well defined, but it cannot be evaluated accurately in finite-precision
arithmetic according to the algorithm the user has programmed (e.g., z/e?). Currently, ADIFOR
can only handle real arithmetic. Hence, the square root is considered to be undefined at negative
values.

5.2 Detection of an Error
Options:
I. Let the user’s program crash.
II. Augment the user’s program with tests to detect a prior: erroneous conditions such as division
by zero. ADIFOR would generate tests similar to that shown in the code fragment below.

5.3 Possible Actions

Recommendation: Let the user’s program crash.
Rationale: We should not alter the workings of the original code supplied by the user.

However, the user’s original code may have error-detection and error-handling features built in.
If so, those features are carried over to the augmented code. If the user does not guard operations,
those operations will not be guarded in the augmented code either. For example, the original code

IF (X .NE. 0.0) THEN
Y=A/X



ELSE

CALL ERROR (’Please do not divide by zero.?’)
END IF

produces the generated code

if (x .ne. 0.0) then
c y=a/x
r$0 = a / x
xbar = -r$0 / x .
do 99936 g$i$ = 1, g¥p$
g3y (g$is$) = xbar * g3x(g$is)
99936 continue
y = r$0
else
call g$error$0(gsp$, ’Please do not divide by zero.’)
endif

On the other hand, the original code
Y=A/X
produces the generated code

c y=a/x
r$0 = a / x
xbar = -r$0 / x
do 99935 g$i$ = 1, g3$p$
g3y (g3is) = xbar = g$x(g3i3)
99935 continue
y = r$0

If the original code crashes, the augmented code crashes in exactly the same way. In either case, the
original code and the augmented code behave the same way with respect to the erroneous condition
x = 0.

The issue with respect to errors in the user’s code is that the behavior of the original code is
retained. In this class of error, we are not concerned that the evaluation of the derivative values
may overflow. We are making no statements about what sort of test the user may determine to
be appropriate. In particular, we are not objecting at this point in the discussion to the test for
equality in this example. That objection comes later. ’

For the most part, the code generated by ADIFOR behaves exactly the same as the user’s origi-
nal code with respect to the values computed or with respect to errors that might occur. ADIFOR
retains the parallelizability or vectorizability of the original code. It does not reorder statements.
However, ADIFOR does assign some previously anonymous intermediate results to temporary stor-
age locations. Assigning the results of intermediate computations may cause some compilers to
compute answers that differ by one or two units in the last place. It is also possible that code rely-
ing on side effects and on a specific order of evaluation within an expression could produce a different
value. Otherwise, the function values computed by ADIFOR’s code agree with those computed by
the user’s original code.

6 Error Class 2: Differentiable Functions — Overflows

Many of the operators and intrinsic functions of Fortran (+, -, * sin, cos, atan, sinh, cosh, exp)
are everywhere differentiable. Some other operators and intrinsic functions (/, tan, log, log10, tanh)
fail to be differentiable only at points where they fail to be defined. We refer to operators and



functions in either set as differentiable because they are mathematically differentiable at each point
in their domains.

If the user’s original program evaluates differentiable functions without crashing, then we may
also evaluate their derivatives. Hence, error handling for these operators and functions is completely
within the domain of the user’s original program, and we have no further error handling to do.

Properly speaking, the statement in the preceding paragraph is true only if no overflow occurs.
For functions involving /, tan, log, logl0, or tanh, the values of derivatives may be larger than the
values of functions. Hence, the computations for derivatives may overflow, even when the evaluation
of the function does not. If f(t) = In(t) or tan(t), for example, then |f'(t)| >> |f(t)| as t — 0%, or
7 /2, respectively.

6.1 Definition of an Error

An error belongs to this class if
o the function f is differentiable,
e the function f can be evaluated by the original user’s program,

o the code generated by ADIFOR suffers overflow or underflow while computing the derivative,
and hence

o the generated code crashes or computes the wrong values for the derivatives.

The “error” here is that finite-precision arithmetic cannot compute the value that is mathematically
defined.

6.2 Detection of an Error

We settle for possibly detecting the occurrence of under/overflow in the derivative computations.
It might be that the correct derivative values can be computed even in the presence of under/overflow,
but we have no hope of recognizing that. Hence, we may “detect” under/overflow events that do
not really belong to this class of error.

The detection of errors in this class requires careful definitions of the domains in which each
operation and elementary function can be evaluated without under/overflow, and tests of each argu-
ment before each derivative is computed. Alternatively, on a machine supporting IEEE arithmetic,
NaNs and INFINITYs generated during derivative computations signal overflow.

The cost of detecting this class of error in software is so high that we rely on the host computing
environment.

6.3 Possible Actions

If we have some way of knowing that the generated code is running on a machine with IEEE
arithmetic, we should take advantage of its capabilities.

As an example to illustrate the high cost of detecting and handling this class of error, consider
the assignment statement

Y=A/ X+ TAN (X) + LOG (X) + LOG10 (X) + TANH (X)
where A is a passive variable and X and Y are active. ADIFOR generates the code

c y = a/ x + tan(x) + log(x) + logl0(x) + tanh(x)
r$0 = a / x
r$9 = cosh(x)
xbar = 1.0 / (r$9 = r$9)
xbar = xbar + 1.0 / (x * 10g(10.0))



xbar = xbar + 1.0 / x
r$10 = cos(x)
xbar = xbar + 1.0 / (r$10 = r$10)
xbar = xbar + (-r$0 / (x))
do 99932 g$i$ = 1, g¥p$
g3y (g$is) = xbar * g¥x(g$is)
99932  continue .
y = r$0 + tan(x) + log(x) + logi0(x) + tanh(x)

which has many possible sources of overflow, depending on the value of X. We might define

REAL LOGBIG, LOGSMALL, HALFBIG

LOGBIG = LOG (Max_Real) - epsilon

LOGSMALL = LOG (Min_Positive_Real) + epsilon
= - LOGBIG

HALFBIG = Max_Real / 2 - epsilon

and generate annotated code like this to detect and prevent overflow errors. The following code imple-
ments Option VII: Fully guard derivative computations against undefined derivatives and overflows.
We give the generated code in full detail in order to communicate by example what code must be
generated. We conclude that this option is too expensive at run time.

c y = a / x + tan(x) + log(x) + logl0(x) + tanh(x)
r$0 = a / x
r$9 = cosh(x)
TMP = 2 = LOG (ABS (r$9))
IF (TMP .GE. LOGBIG) THEN
XBAR = GSERROR (OVERFLOW_FLAG, ’tanh’)
ELSE IF (TMP .LE. LOGSMALL) THEN
XBAR = G$ERROR (OVERFLOW_FLAG, ’tanh’)
ELSE
xbar = 1.0 / (r$9 = r$9)
END IF

o o o

do 99932 g$is$ = 1, g3p$
TMP = LOG (ABS (XBAR)) + LOG (ABS (g$x(g$is$)))
IF ((TMP .LE. LOGSMALL) .OR. (TMP .GE. LOGBIG)) THEN
g3y(g$i$) = GSERROR (OVERFLOW_FLAG, ’assignment’)
ELSE
g3y (g3is) = xbar = g¥x(g$is)
END IF
99932 continue
y = r$0 + tan(x) + log(x) + logl0(x) + tanh(x)

It is more efficient in Fortran 77 to test the values rather than their logarithms. However, the
in Fortran 90, it is as efficient to use the built-in functions to return the exponent of a number (to
replace the calls to LOG) as it is to test the values themselves.

7 Error Class 3: Nondifferentiable Functions — Lim f' = oo

This section and the next form the core of this paper. Together, they describe how ADIFOR
deals with Fortran intrinsic functions that are not globally differentiable.

Not all operators and intrinsic functions are differentiable. We call a function nondifferentiable
if there are points in its domain for which its derivative does not exist. We are not concerned with
points outside the domain of the functions because the augmented program will already behave the



same way as the user’s original program at such points. Our only concern is with points at which
the function can be evaluated by using finite-precision arithmetic, but the derivative cannot.

There are only a few such points with which we must be concerned. The following table is an
exhaustive listing.

Function Points of nondifferentiability

sqrt (z) z=0

asin (z) z ==l

acos (z) z=:=%1

z**y Depends on implementation
z<0

abs (z) z=0

sign (z, v) z=0,0ory=0

aint (z) z=%1,£2,...

max (z,y) | z=y¥

min (z, y) z=y

dim(z,y) | z=y

We have divided these functions into two classes (by the horizontal line). For sqrt, asin, and acos,
the derivatives approach oo as ¢t — point of nondifferentiability. These functions will be treated in
this section. The power operator (**) is a special case. ADIFOR currently computes the derivative
from t**u = exp (u In (t)). For a more sophisticated implementation, the power operator is not
defined if ¢ < 0 and u is fractional.

The second class of function (below the horizontal line) are nonsmooth as functions and will be
treated in the next section.

7.1 Definition of an Error

An error belongs to this class if
e the function f is differentiable,
o the function f can be evaluated by the original user’s program, and

e the function involves elementary functions sqrt, asin, acos, and **, evaluated at (or near) the
point of nondifferentiability.

An error can belong to this class even when the mathematical function is well behaved, but inter-
mediate results produce this error. For example (from H. Fischer [4]), let

f(z,2) =zt + 24,

where = and z are both active variables. The function f is differentiable at the point (z,z) = (0,0).
However, a step-wise evaluation of f' forms u(z,z) = z* + z* first, then forms f = /u. Since
u(0,0) = 0, the derivative of f is undefined and produces an error in this class when evaluating
f = +/u. To avoid this problem, one would have to examine the interaction between successive
applications of elementary functions and operations. Such “symbolic” analysis is beyond the scope
of ADIFOR and of automatic differentiation in general.

10



7.2 Possible Actions

For each function in this class, we generate augmented code of the form

r$0 = funct (t)
if (t is not near BAD_POINTS) then

g3r$0 = result of derivative calculations
else

g3r$0 = glerror (1, ’Derivative of funct does not exist’)
end if
y = r$0

The function g$error is described in Section 4.

For the reverse mode accumulation of adjoints within expressions, this class of error is handled
in exactly the same manner as the previous class.

In the rest of this section, we discuss each of the functions sqrt, asin, acos, and **. Whenever
a call to one of the first three functions appears in the original code, ADIFOR generates a call
to a function g$sqrt, g$asin, or gdacos; ** is handled specially by in-line code as described in
Section 7.5. Elementary functions described in this section that require error handling are treated
by ADIFOR in the same manner as elementary functions like sin and cos which do not require error
handling. The codes for each function are in Appendix A.

7.3 Sqrt

* The function g$sqrt returns the derivative value for SQRT: d(v/z)/dz. The function g$sqrt is
used like this in the code generated by ADIFOR:

c Z = SQRT (X)
r$1 = sqrt (x)
temp = g¥sqrt (x, r$1)
do 99990 g$i$ = 1, g$ps$
g3z(g3is) = temp *» g$x(g$is)
99990 continue

or

xbar = xbar + zbar * g$sqrt (x, r$1)

Let y := /|z|. Then, the value returned by g$sqrt is

1/(2y) for z > 0,
g$sqrt(z) := { InfVal from g$error for z =0, and
-1/(2y) for z < 0.

Rationale: At the point of nondifferentiability z = 0, the default for InfVal = 0 is a generalized
gradient value if we assume that SQRT (z) := SQRT (ABS (z)). Further, it makes expressions like
SQRT (X*X*X*X + Y*Y*Y*Y) have the correct derivative. However, it violates the principle of
continuity of catastrophe. Alternatively, the value of InfVal = INFINITY makes the one-sided limit
correct.

Denormalized: If z is a denormalized number, then y is well into the range of normalized numbers.
Hence, 1/(2y) cannot overflow. The computed value of y is zero if and only if z is zero.

7.4 Asin and acos

The functions g$asin and g$acos return the derivative values for ASIN: d(asin(z))/dz and for
ACOS: d(acos(z))/dz, respectively. The functions g$asin and g$acos are used in the code generated
by ADIFOR in the same manner as g$sqrt.
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The values returned by g$asin and g$acos are

1/V1-1z? for |z] < 1,
InfVal from g$error for |z| =1, and
InfVal from g$error for |z|> 1.

-1//1=22 for |z| < 1,
g$acos(z) := ¢ InfVal from g$error for |z| =1, and
InfVal from g$error for |z| > 1.

g$asin(z) :

Rationale: At the points of nondifferentiability z = +1, the default for InfVal = 0 indicates an
extreme point. However, it violates the principle of continuity of catastrophe. Alternatively, the
value of InfVal = INFINITY makes the one-sided limit correct. If |z| > 1, usually the user’s original
code will have already crashed while evaluating ASIN (z). If it has continued execution (perhaps
with value NaN), we should continue execution also. No value is reasonable since the function is
not defined, so we choose to return the same value at at z = +1. Alternatively, we could return
whatever was assigned to the value of ASIN (2)-

Denormalized: No matter how close z is to £1, neither 1 — z nor 1+ z can be very small relative
to the machine epsilon. Hence, the derivative evaluated at a machine-representable number cannot
overflow.

7.5 Power: **

The power operator is treated differently from the other elementary functions. For z¥ = z**y,
we must be prepared to handle separate cases for either or both z and y being active variables. We
must be able to compute derivatives with respect to either or both of them.

Following the general philosophy of the other exception-handling routines, we try to catch the
situations where the function value itself is at least mathematically defined, but the derivatives are
not. In contrast to the other intrinsic functions, we prefer to generate the necessary code in-line,
except for a call to g$error in the exceptional cases. “In-line” here means that we branch directly
on the bar quantity assignments.

Depending on whether we wish to differentiate z¥ with respect to z or with respect to y, we
should consider it as a “power” or as an “exponential.” Correspondingly, the error classification
number should be 5 or 10, respectively, in the call to g$error. When both z and y are active reals,
we consider z¥ simultaneously as a power and as an exponential.

We assume that zV¥ has a well-defined valueif z > 0 or y is an integer with 0° = 1. On particular
systems, the values may be defined differently if z = 0 or y = 0, and there will be overflow when
y < 1 and z is sufficiently small. We will do nothing about this because we would otherwise also
have to safeguard simple divisions.

For fixed y, the derivative of z¥ with respect to z is mathematically defined except when z =0,
and 0 < y < 1. This case is a generalization of the square root situation. Therefore, we set the
derivative to InfVal. When y = 0, we set the derivative with respect to z to zero and do not call
g$error, even if z = 0.

For fixed z, the derivative of z¥ with respect to y is mathematically defined except when z < 0,
and the value of y is an integer. When z is negative, z¥ is not defined for any fractional y. Therefore,
we set the value of the derivative to NoLmVl] at integral values of y. When z = 0, the derivative is
zero for all y > 0. For y = 0, we may again use NoLmVL.

Note that ybar remains unchanged if z = 0 and y > 0.

When y is not active, there is no ybar, and the second part of the calculation can be omitted. If
y is of type integer, the first part can be reduced to the single statement

if (x .ne. 0.0) xbar = xbar + y * zbar =* r$o / x

12



If z is passive, there is no xbar, and the first part can be omitted. Finally, if either a or y are

constants that can be evaluated at compile time, further simplifications are possible.
ADIFOR should generate code like this:

C Z = X%y
r$0 = x*»y
zbar = 1.0
xbar = 0.0
ybar = 0.0
c .
c First, do the derivative with respect to x.
c
if (x .ne. 0.0) then
xbar = xbar + y * zbar * r$0/x
else
if ((y .gt. 0.0) .and. (y .1t. 1.0)) then
xbar = xbar + zbar
+ * glerror (S, 'Fractional pover of zero’)
end if
end if
C Second, do the derivative with respect to y.

it (x.gt.0.0) then
ybar = ybar + zbar * r$0+log(x)
else
if ((x .1t. 0.0) .or. (y .eq. 0.0)) then
ybar = ybar + zbar
+ » gSerror (10, ’Negative basis or 0##0’)
end if
end if
z = r$0
do 99990 g$i$ = 1, gdp$
g3z(g$i) = xbar+g$x(g$i) + ybar=gly(gsi)
99990 continue

8 Error Class 4: Nonsmooth Functions — Lim f’ does not exist

The functions abs (z), sign (z, y), aint (z), max (z, y), min (z, y), and dim (z, y) are not smooth.
Although the user’s original program can evaluate the functions, they are not differentiable at certain
points. As for functions whose derivatives have infinite limits, we have the same alternatives as
before, but now it is less clear what value should be returned.

8.1 Definition of an Error

It is an error in this class to evaluate one of the functions abs (z), sign (=, y), aint (z), max (z,
y), min (z, y), or dim (z, y) at a point of nondifferentiability.

8.2 Possible Actions

In many calculations, variable vectors are scaled by their L; norm or Lo norm (i.e., the sum or
maximum of the component moduli). Later on, this scaling is undone so that the overall calculation
is mathematically smooth, even when some of the components are zero or their absolute values are
tied at the maximum. Then the automatic differentiation should go through and yield the right
results.
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For the rest of this section, we give the code to be generated for each of the functions in this
class.

8.3 Abs

The function g$abs returns the derivative value for ABS: d(|z|)/dz. The function g$abs is used
like this in the code generated by ADIFOR:

C Z = ABS (X)
r$1 = abs (x)
temp = g$abs (x, r$1)
do 99990 g$i$ = 1, g3p$
g3z (g$is$) = temp * g3x(g$is)
99990 continue

or

xbar = xbar + zbar * g$abs (x, r$1)

Then, the value returned by g$abs is

-1 for z <0,
g$abs(z) := { NoLmVI from g$error forz =0, and
1 for z > 0.

Rationale: At the point of nondifferentiability z = 0, the default for NoLmV1 = 0 is a generalized
gradient value that indicates an extreme point.

8.4 Sign

The function g$sign returns the derivative value for SIGN: d(SIGN (z,y)/dz. It is not necessary
to differentiate with respect to y because d(SIGN (z,y)/dy = 0. Fortran’s SIGN (z, y) := |z] -
signum (y). The function g$sign is used by ADIFOR in the same way as g$abs. The value returned
by g$sign depends on the signs of both z and y:

z/y - 0 +

- 1 NoLmVl -1

0 NoLmV!l NoLmVIl NoLmVl
+ -1 NoLmVl 1

Rationale: At the point of nondifferentiability z = 0, the default for NoLmV1 = 0 is a generalized
gradient value equal to the average of the two limits from each side.

8.5 Aint and anint

The functions g$aint and g$anint return the derivative values for AINT and ANINT, respec-
tively. Fortran’s AINT (z) truncates toward 0, so it is not differentiable at z = +1, +2, .... ANINT
rounds to the nearest integer, so it is not differentiable at z = odd multiples of 1/2. The func-
tions g$aint and g$anint return InfVal at the points of nondifferentiability, and 0 elsewhere. An
alternative choice is NoLmVI = 0, the limit from each side.

8.6 Mod

The function g$mod returns the derivative value for MOD. Fortran’s MOD (z, y) = z—aint (z/y)-
y, so it is not differentiable at z = multiples of y. The function g$mod returns InfVal at the points
of nondifferentiability, and 1 elsewhere. An alternative choice is NoLmV1 = 0 to signal an extreme
value, or 1, the limit from both sides.
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8.7 Dim

The function g$dim returns the derivative value for DIM: d(DIM (z,y))/dz. It is sufficient to
compute the derivative with respect to z because d(DIM (z,y))/dz = d(DIM (z,y))/dy. Fortran’s
DIM (z, y) = max (z — y, 0), so it is not differentiable at z = y. The function g$dim returns

1 : fory<z,
g$dim(z,y) := ¢ NoLmVl from g$error for y ==z, and
0 for y > z.

Rationale: At the points of nondifferentiability z = y, the default for NoLmV1 = 0 is a generalized
gradient. An alternative choice is 1/2, the average of the limits from both sides.

8.8 Max and Min

The functions g$max and g$min return the derivative values for MAX and MIN, respectively.
MAX and MIN are not necessarily differentiable at points where their arguments are equal. In that
case, we return the average of the two derivatives. At the points of nondifferentiability, the default
for TieVal = 1/2 is a generalized gradient. It is sufficient to compute d(MAX (z,y))/dz because
d(MAX (z,y))/dy = 1 — d(MAX(z,y))/dz, and similarly for MIN. Hence, the values returned by
the functions g$max and g$min are

1 forz >y,
gémax(z,y) := { TieVal from g$error for z =y, and

0 forz<y.

1 for z < y,
g$min(z,y) := { TieVal from g$error for z =y, and

0 forz > y.

Fortran’s MAX and MIN functions accept more than two arguments. If ADIFOR encounters such
calls, it translates them into a sequence of binary calls to MAX or MIN and applies the exception
handling described here to each binary call. This procedure has the unfortunate consequence that
if many arguments are equal, their slopes are weighted 1/2, 1/4, 1/8, .... Hence, we are considering
more sophisticated ways to handle MAX and MIN.

In some applications, especially to univariate functions, one might prefer a different formulation.
If f := max(z,y), we might define

z’ forz >y,

v forz <y,

f (z'+y)/2 ifz=yandz' xy >0
0 ifz=yandz’ xy <0.

This definition is attractive because the derivative value of zero is taken by many optimization codes
as a signal for a local optimum. This definition has the disadvantage, however, that its value is not
always appropriate in the context of multidimensional optimization. If this interpretation of the
derivatives of max and min is desired, calls to MAX and MIN can be replaced by calls to my_max and
my_min, respectively, and the user can supply subroutines g$my.max and g$my-min which implement
the alternative definition.

9 Future Directions

So far in this paper, we have described the ADIFOR exception-handling mechanism. We are
continuing to work on several related issues which we outline briefly in this section.
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9.1 Quantifying Distance to Danger

In Section 3, we listed options based in relative safety or trust region approaches to indicate when
the function is being evaluated at or near a point of nondifferentiability. The relative safety measure
is inexpensive, but hard to interpret. The trust region is easy to interpret in terms of the original
independent variables, but it is expensive to compute. We are exploring the nature of that cost and
ways to economize by combining the relative safety measure with the trust region approach. The
results will appear in a later paper.

9.2 Branching

The user’s original program may contain IF statements which have the effect of defining functions
that are not differentiable or are not even continuous. The augmented code executes the appropriate
branches in the manner described by Kedem [5). However, the value of the derivatives computed at
points at which equality holds are suspect. The derivatives computed are those that would result
from taking limits of points for which inequality holds. The result may appear to be a derivative
value at a point for which the mathematical derivative does not exist. The following example of
possible user’s code to compute the absolute value illustrates some of the dangers.

Suppose that the user’s original code includes the following code to compute an absolute value:

if (t .ge. 0.0) then
abs = ¢

else
abs = -t

end if

Then, we would conclude that
re 1 ift>0
abs (‘)‘{ -1 ift<0.

An equally reasonable programmer might write

if (t .gt. 0.0) then
abs = t

else
abs = -t

end if

or

if (¢t .gt. 0.0) then
abs = ¢t

else if (¢t .1lt. 0.0) then
abs = -t

else
abs = 0.0

end if

The three different equivalent programs for abs give values for the derivative at 0 as +1, —1, and 0,
respectively.

Another unintended consequence of an IF statement is illustrated by another example from
Fischer [4]. If the function f(z) := z? is programmed as

if (x .eq. 1.0) then
f=1.0

else
f=x2*x

end if
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then automatic differentiation of this program would incorrectly compute f'(1) = 0. While few
programmers would implement z> in this manner, we have encountered similar formulations in
production codes. It is a reasonable way to program when function values are known explicitly for
special points and evaluation of the formula is expensive.

The “fault” in the abs and z2 examples is not with automatic differentiation; the results are
unavoidable consequences of the style of the original program supplied by the user. ADIFOR cur-
rently handles programs with IF statements. The flow of control in the derivative code is the same
as the flow of control in the original code. If tests do not occur at equality, the point of evaluation
is interior to the domain of differentiability, and ADIFOR computes the correct derivative values.
If tests at equality do occur, the results are usually appropriate for some one-sided limit, but they
can be incorrect.

The user of ADIFOR should be aware of the possibility that IF statements can be used to
compute derivative values for nondifferentiable functions. Relative safety or trust region techniques
will allow us to alert the user to danger.

9.3 Mathematical Pitfalls

Automatic programming is no substitute for mathematical insight. Automatic differentiation is
no exception. The following examples are from Fischer [4].

Example 1: Let fo(z) := z-exp(—z2) and fi(z) = fe-1(z)-exp(f2(z)). Forz = 1, limg—~oo f¢(0) =
1, while f/(0) = 0.

Example 2: Let fa(z) := 557 - sin(2"7z), for n = 1,2,.... Then the sequence of function values
{fn} converges everywhere pointwise to f =0, but the sequence of derivative values {f,} converges
to 1 for infinitely many values of z.

The “problem” here is that differentiation and limits are not interchangeable. The use of AD-
IFOR to perform the differentiation does not change that mathematical fact. Automatic differen-
tiation correctly computes the requested derivative, but it remains the responsibility of the user to
interpret the derivative correctly.
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Appendix A. Exception-Handing Code

In Section 4, we described the functionality of the error-handling module. Here we give the
Fortran code for a simple implementation.

C Purpose: Simple error handler for ADIFOR
C Authors: George F. Corliss and Andreas Grievank

C Description:
Initialize error handler (optional).
When an error occurs:
Conditionally print an error message
Conditionally STOP executionm,
or else return a value to let execution continue.
Report the number of errors in each class (optional).

The user can control:

ClassN Class of error to which the error belongs

MsgTxt Content of the message text

PrintF Printing of the message

ErrFil Logical unit number to which the error messages
should be printed.

HaltFg Halting execution

InfVal Value returned if derivative limit is infinite

NolmVl Value returned if derivative has no limit

TieVal Partial derivative of Max (x, y) or Min (x, y)
with respect to x vhen x =y

gSerror Source code can be customized, if necessary

c

c

c

c

c

c

c

C

c

c

c

c

c

c

c

c

C

C

C

C

C Contents:

c block data

c function gderror (ClassN, MsgTxt)
c subroutine g$InitEr (PFlag, HFlag, ErrF, Infin, Nolinm, MaxV)
c subroutine g$ReptEr (LUnitN)
c real function g$sqrt (x, y)
c real function g$asin (x)

c real function g$acos (x)

c real function g$aint (x, y)
c real function g$anint (x, y)
c real function gdmod (x, y, 2)
c real function g$abs (x)

c real function g$sign (x, y)
c real function g$dim (x, y)

c real function g$max (x, y)

c real function g$min (x, y)

C

c

C

c

c

c

c

c

C

c

C

Usage:
Initialize error handler
Optional. These happen to be the default parameters.
call g$InitEr (.True., .False., 6, 0.0, 0.0, 0.5)

if (All is fine) then

Ansver = Normal processing
else

Answer = g$error (1, ’'Something is wrong!’)
end if
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Optional. If you vant to know hov many errors of each type.
call g$ReptEr (6)

Reference:
Christian Bischof, Alan Carle, George Corliss, Andreas Grievank,
Paul Hovand, Generating Derivative Codes from Fortran Programs,
Preprint No. MCS--P263--0991, Mathematics and Computer Science
Division, Argonne National Laboratory, 1991. Also appeared as
Technical Report No. 91185, Center for Research in Parallel
Computation, Rice University, Houston, TX., 1991.

block data

Purpose: Initialize default values for error handling.
PrintF Print Flag
0 No printing
1 Print error message
Default: Print
HaltFg Halt Flag
0 Continue execution
1 Halt execution
Default: Continue
ErrFil Error File
Logical unit number to vhich error messages
(if any) should be written.
Default: Standard output
InfVal Infinite Value
In case HaltFg = 0 so that execution continues,
this is the value returned in cases like sqrt (0)
for vhich the function is defined, but the
derivative has an infinite limit. On a
machine with IEEE arithmetic, INFINITY or NaN
would be good choices.
Default: 0.0
NolLmVl No Limit Value
In case HaltFg = 0 so that execution continues,
this is the value returned in cases like abs (0)
for vhich the function is defined, but the
derivative has no limit.
Default: 0.0
TieVal Value returned for Max (x, x) or Min (x, Xx)
In case HaltFg = 0 so that execution continues,
this is the value returned for Max (x, x) or
Min (x, x). The average is a generalized gradient.
Default: 0.5

common / g$ErrBlk / PrintF, HaltFg, ErrFil, InfVal, NolmVl,
+ TieVal, KtErr

logical PrintF, HaltFg

integer ErrFil, KtErr(20)

real InfVal, NoLmVl, TieVal

data PrintF / 1 /,
+ HaltFg / 0 /,
+ ErrFil / 6 /,
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+ InfVal / 0.0 /,

+ NolmV1l / 0.0 /,

+ TieVal / 0.5 /,

+ KtExrr / 20 = 0 /
end

function g$error (ClassN, MsgTxt)

C Purpose: Conditionally print message, conditionally STOP.
C Input parameters:
ClassN Class Number
Derivative limit is infinite
1 sqrt (0)
asin (+-1), acos (+-1)
Fractional power of zero
Negative basis or 0**0
aint (integer)
6 mod (n*y, y)
Derivative limit does not exist
11 abs (0)
12 sign (0, x) or sign (x, 0)
13 dim (x, x)
15 Max, Min
20 Values hit equality in IF tests
MsgTxt  Message Text

[ A V)

e R R R I R G s s K I I T B 2 I 2 )

integer ClassN

character*40 MsgTxt

common / g$ErrBlk / PrintF, HaltFg, ErrFil, InfVal, NolLmVl,
+ TieVal, KtErr

logical PrintF, HaltFg

integer ErrFil, KtErr(20)

real InfVal, NoLmVl, TieVal

C Increment error counter.
KtErr(ClassN) = KtErr(ClassN) + 1
C Conditionally print an error message.
if (PrintF) then
vrite (ErrFil, 1010) MsgTxt
1010 format (/ ’ERROR: ’, A40 /)
end if
C Conditionally halt execution.
if (HaltFg) then

clIlllllllilllll!!lllllll!ll!!lllllllIIIIlIl'IOlIl STOP

.................................................

STOP

c!llllIllllllll'l'llllllllllllllllllllllllllllllll S TOP

end if
C What value should we return?
if (ClassN .le. 9) then
gderror = InfVal
else if (ClassN .le. 14) then
gSerror = NoLmVl
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else
gSerror = TieVal
end if
return
end

subroutine g$InitEr (PFlag, HFlag, ErrF, Infin, NoLim, MaxV)

C Purpose: Optionally called to override error handler defaults
C Input parameters:

PFlag Print Flag

HFlag Halt Flag

Err_F Error File

Infin Infinite Value

No_Lim No Limit Value

TieVal Maximum/Minimum value

aaoaoaaan

logical PFlag, HFlag

integer ExrF

real Infin, NoLim, MaxV

common / g3ErrBlk / PrintF, HaltFg, ErrFil, InfVal, NoLmV1,
+ TieVal, KtErr

logical PrintF, HaltFg

integer ErrFil, KtErr(20)

real InfVal, NoLmVl, TieVal

PrintF = PFlag
HaltFg = HFlag
ErrFil = ErrF
InfVal = Infin
NoLmV1l = NolLim
TieVal = MaxV
do 10i =1, 20
KtErr(i) = 0
10 continue
return
end

subroutine g$ReptEr (LUnitN)

C Purpose: Optionally report the cumulative number of errors

C of each class.

C Input parameter:

c LUnitN Logical Unit Number to which the report should be written.
C OQutput: Report on LUnitN

integer LUnitN

common / g$ErrBlk / PrintF, HaltFg, ErrFil, InfVal, NolLmVl,
+ TieVal, KtErr

logical PrintF, HaltFg

integer ErrFil, KtErr(20)

real InfVal, NolmVl, TieVal
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write (LUnitN, 1010) KtErr(1), KtErr(2), KtErr(3), KtErr(4),
+ KtErr(5), KtErr(6), KtErr(11), KtErr(12), KtErr(13),
+ KtErr(15)

1010 format (// ’'How many errors did the ADIFOR-generated code ’,

T R

'detect?’,
/ ’'Error: Function is defined,’,
/ but not differentiable in exact arithmetic.’
// ’ Class Number Number of errors’,
/"’ Derivative limit is infinite: ',
/? 1 sqrt (0) ', i4,
/? 2 asin (+-1), acos (+-1) ', i4,
/" 3 Fractional power of zero ', i4,
/" 4 Negative basis or 0*=0 ', i4,
/"’ 5 aint (integer) ', i4,
/" 6 mod (n*y, y) ', ia4,
/"’ Derivative limit does not exist: ’,
/? 11 abs (0) ', i4,
/" 12 sign (0, x) or sign (x, 0) ’, i4,
/? 13 dim (x, x) ', i4,
/"’ 15 Max (x, x) or Min (x, x) 1, 14 //)
return
end :

real function g$sqrt (x, y)

Purpose: Return the derivative value for SQRT.

d (SQRT (x)) / d x.

Input parameter:

x  Argument to SQRT
y  Result of SQRT (x)
Instead, we could compute y = SQRT (x) locally.

Returned value:

if x <0 g¥sqrt = -1/ (2y)
Usually will have previously crashed while
evaluating SQRT (x). If it did not crash,
we assume SQRT (x) := SQRT (ABS (x)).

if x = 0 g$sqrt = InfVal from gSerror

if x>0 gdsqrt= 1/ (2=y)

Rationale: At the point of nondifferentiability, the default

for InfVal = 0 is a generalized gradient value if we assume
SQRT (x) := SQRT (ABS (x)). Further, it makes expressions

like SQRT (X*XsX*X + Y+YsYsY) have the correct derivative.
However, it violates the principle of continuity of catastrophe.
Alternatively, the value of InfVal = INFINITY makes the
one-sided limit correct.

Denormalized: If x is a denormalized number, then y is vell into

the range of normalized numbers. Hence, 1 / (2 y) cannot
overflog. The value of y is zero if and only if x is zero.

Usage in ADIFOR-generated code:

C

Z = SQRT (X)

r$1 = sqrt (x)

temp = g¥sqrt (x, r$1)

do 99990 g3$i$ = 1, g$p$
g$z(g$is) = temp » g3x(g$is)
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C 99990 continue

C or

c

0OOOOOQQQQOQOOOOOOOOOOOQOQO

Purpose:

Returned value:

xbar = xbar + zbar * g$sqrt (x, r$1)

real x, y

if (x .gt.

0.0) then

gdsqrt = 1.0 / (2.0 = y)
else if (x .1t. 0.0) then
gssqrt = -1.0 / (2.0 * y)

else

gdsqrt = g$error (1,

+

end if
return
end

'Computed the derivative of SQRT (0)’)

.

real function g$asin (x)

Return the derivative value for ASIN.

d (ASIN (x)) / d x.
Input parameter:
x  Argument to ASIN

if Ixl < 1
if Ix] =1
if Ixl > 1

Rationale: At
for InfVal = 0 indicates an extreme point.
Hovever, it violates the principle of continuity of catastrophe.
Alternatively, the value of InfVal = INFINITY makes the
one-sided limit correct.
Denormalized:
nor 1 + x can be very small. Hence, the derivative evaluated
at a machine-representable number cannot overflow.
Usage in ADIFOR-generated code:
Z = ASIN (X)
r31 = asin (x)
temp = g$asin (x)
do 99990 g$i$ = 1, g$p$

g3z(g3is) = temp * gSx(g$id)

c

g$asin = 1 / sqrt (1 - x=x)

gSasin = InfVal from gSerror

gd$asin = InfVal from g$error

Usually will have previously crashed while
evaluating ASIN (x).
the points of nondifferentiability, the default

No matter hovw close x is to +- 1, neither 1 - x

99990 continue
or

xbar = xbar + zbar * g3asin (x)

real x

if (abs (x)

.1t. 1.0) then

gdasin = 1.0 / sqrt ((1.0 - x) *= (1.0 + x))

else

gdasin = g$error (2,

"Computed the derivative of ASIN (1)’)
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end if
return
end

real function g$acos (x)

Purpose: Return the derivative value for ACOS.
d (acOs (x)) / d x.
Input parameter:
x  Argument to ACOS

Returned value:
if Ix] < 1 gSacos = -1 / sqrt (1 - x*x)
if Ixl = 1 g$acos = InfVal from g$error
if |x] > 1 g$acos = InfVal from g$error

Usually vill have previously crashed while
evaluating ACOS (x).

Rationale: At the points of nondifferentiability, the default
for InfVal = 0 indicates an extreme point.

Hovever, it violates the principle of continuity of catastrophe.
Alternatively, the value of InfVal = INFINITY makes the
one-sided limit correct.

Denormalized: No matter how close x is to + 1, neither 1 - x
nor 1 + x can be very small. Hence, the derivative evaluated
at a machine-representable number cannot overflow.

Usage in ADIFOR-generated code:

C Z = ACOS (X)

r31 = acos (x)
temp = gdacos (x)
do 99990 g$is$ = 1, g3p$
g3z (g$is) = temp * g3x(g$is)
99990 continue
or

xbar = xbar + zbar = g$acos (x)
real x

if (abs (x) .1lt. 1.0) then
gdacos = -1.0 / sqrt ((1.0 - x) * (1.0 + x))

else
gdacos = gSerror (2,
+ 'Computed the derivative of ACOS (1)’)
end if
return
end

real function g3abs (x)

Purpose: Return the derivative value for ABS.
d (aBS (x)) / d x.
Input parameter:
x Argument to ABS
Returned value:
if x < 0 g3abs = -1
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if x = 0 g3abs = NoLmVl from g$error
if x>0 g%abs = 1
Rationale: At the point of nondifferentiability, the default
for NolLmVl = 0 is a generalized gradient value equal to the
average of the two limits from each side. It satisfies the
principle of continuity of catastrophe, and indicates an
extreme point.
Usage in ADIFOR-generated code:
Z = ABS (X)
r$1 = abs (x)
temp = g$abs (x)
do 99990 g$i$ = 1, g¥p$
g3z (g3is$) = temp * g3x(g$is)
99990 continue

or
xbar = xbar + zbar * g$abs (x)
real x
if (x .gt. 0.0) then
gSabs = 1.0
else if (x .1t. 0.0) then
gSabs = ~-1.0
else
gdabs = g$error (11,
+ 'Computed the derivative of ABS (0)’)
end if
return
end

real function g$sign (x, y)

Purpose: Return the derivative value for SIGN (x, y).
d (SIGN (x, y)) / d x.
d (SIGN (x, y)) / dy=0.
Input parameter:
x, Y Arguments to SIGN

SIGN (x, y) := ABS (x) * signum (y). sign (0) := +1.

y ' - Y +
- -x = (-1) -x =1 -x * 1
x? -x? =-=> 0 -x’
0 0 = (-1) 0 =1 0=*1
NE --> 0 NE --> 0 NE --> 0
+ x = (-1) x * 1 x =1
-x’ x> =-=->0 x’

Returned value:

g$sign =
x\ vy - 0 +
- : 1 NoLmV1 -1
0 NoLmVl NoLmVl NoLmVl
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+ -1 NoLmV1 1

Rationale: At the point of nondifferentiability, the default
for NolmVl = 0 is a generalized gradient value equal to the
average of the two limits from each side.

Usage in ADIFOR-generated code:

Z = SIGN (X, Y)

r$1 = sign (x, y)

temp = g$sign (x, y)

do 99990 g$is$ = 1, g3p$

g3x(g$is) = temp * g$x(g3$is)

99990 continue
or

xbar = xbar + zbar * g$sign (x, y)

real x, y

if ((x .eq. 0.0) .or. (y .eq. 0.0)) then
gSsign = g$error (12,
+ 'Computed the derivative of SIGN (0, or 0)’)
else if (x .gt. 0.0) then
if (y .gt. 0.0) then

gé gn= 1.0
else

gdsign = -1.0
end if

else
if (y .gt. 0.0) then
gdsign = -1.0
else
gdsign = 1.0
end if
end if
return
end

real function g$aint (x, y)

Purpose: Return the derivative value for AINT.
d (AINT (x)) / d x.
Input parameter: -
x  Argument to AINT
y  Result of AINT (x)
Instead, we could compute y = AINT (x) locally.
Returned value:
AINT truncates tovard zero.
if x = +=-1, +-2, ... g3aint = InfVal from g$error
otherwise g$aint = 0
Rationale: At the points of nondifferentiability, the limit
of the derivative is infinite. An alternmative choice is
NoLmVl = 0, the limit from each side.
Usage in ADIFOR-generated code:
Z = AINT (X)
r$1 = aint (x)
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temp = g$aint (x, r$1)
do 99990 g$i$ = 1, g3p$
g3z (g$i$) = temp * gdx(g$is)
99990 continue
or
xbar = xbar + zbar * g$aint (x, r$1)

real x, y

if ((y .eq. 0) .or. (y .ne. x)) then
gdaint = 0.0

else
gSaint = g$error (5,
+ 'Computed the derivative of AINT (integer)’)
end if
return
end

real function g$anint (x, y)

Purpose: Return the derivative value for ANINT.
d (ANINT (x)) / d x.
Input parameter:
x  Argument to ANINT
y Result of ANINT (x)
Instead, ve could compute y = ANINT (x) locally.
Returned value:
ANINT rounds to the nearest vhole number.
if x = +-1/2, +-3/2, ... g$anint = InfVal from g$error
othervise g$anint = 0
Rationale: At the points of nondifferentiability, the limit
of the derivative is infinite. An alternative choice is
NoLmVl = 0, the limit from each side. Determination of
the points of nondifferentiability is problematic.
Usage in ADIFOR-generated code:
Z = ANINT (X)
r$1 = anint (x)
temp = g$anint (x, r$1)
do 99990 g$is$ = 1, g$p$
g3z (g3$is) = temp * g¥x(g$is)
99990 continue
or
xbar = xbar + zbar * g$anint (x, r$1)

real x, y

if ((x .eq. y - 0.5) .or. (x .eq. y + 0.5)) then
g3anint = g$error (5,

+ 'Computed the derivative of ANINT (integer)’)
else '
gdanint = 0.0
end if
return
end
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real function g$mod (x, y, 2)

Purpose: Return the derivative value for MOD.
d (MOD (x, y)) / d x.
d (MOD (x, y)) / dy=0.
Input parameters:
x, ¥ Arguments to MOD
z Result of MOD (x, y)
Instead, we could compute z = MOD (x, y) locally.
Returned value:
MOD (x, y) :=x-int (x/ y) =y
if x =n * y gdmod = - InfVal from gderror
othervise g$mod =1
Rationale: At the points of nondifferentiability, the limit of
the derivative is - infinity. Alternate choices would be
NoLaVl = 0 to signal an extreme value, or 1, the limit from
both sides.
Usage in ADIFOR-generated code:
Z = MOD (X, Y)
r31 = mod (x, y)
temp = g$mod (x, y, r$1)
do 99990 g$i$ = 1, g3p$
g3z(g3is) = temp » g3x(g$i$) - temp * gy (gsis)
99990 continue

or
temp = g$mod (x, y, r$1)
xbar = xbar + zbar * temp
ybar = ybar - zbar * temp

real x, y, 2

if (z .eq. 0) then

gdmod = - gSerror (6,
+ 'Computed the derivative of MOD (n*y, y)’)
else
gSmod = 1.0
end if
return
end

real function g$dim (x, y)

Purpose: Return the derivative value for DIM.
d (DIM (x, y)) / d x.
d (DIM (x, y)) /dy=-d (DIM (x, y)) / d x.
Input parameters:
x, y Arguments to DIM
Returned value:
DIM (x, y) := max (x -y, 0)
=x-y if xgey
=0 otherwise
d. /dx= 1 if x gt y, 0 if x 1t y, else NoLmVl from gSerror
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d. /dy = -1 if x gt y, 0 if x 1t y, else NoLmVl from gSerror
Rationale: At the points of nondifferentiability, the default
for NoLmVl = 0 is a generalized gradient. An altermate choice
would be 1/2, the average of the limits from both sides.
Usage in ADIFOR-generated code:

Z=DIM (X, V)

r$1 = dim (x, y)

temp = gddim (x, y)

do 99990 g3$i$ = 1, g$p$

g3z (g$is) = temp * g¥x(g$is$) - temp » gy (gsis)

99990 continue
or

temp = gddim (x, y, r$1)
xbar = xbar + zbar * temp
ybar = ybar - zbar * temp

real x, y

if (x .gt. y) then
gddim = 1.0
else if (x .1t. y) then
g$dim = 0.0
else
gddim = gSerror (13,
+ ’Computed the derivative of DIM (x, x)’)
end if
return
end

real function g$max (x, y)

Purpose: Return the derivative value for MAX.
d (MAX (x, y)) / d x.
d (MAX (x, y)) /dy=1-d (MAX (x, y)) / d x.
Input parameters:
X, ¥ Arguments to MAX
Returned value:
gdmax = 1 if x gty
0 if x 1t y
Tieval if x =y
Rationale: At the points of nondifferentiability, the default
for TieVal = 1/2 is a generalized gradient.
Usage in ADIFOR-generated code:
Z=MAX (X, V)
r$1 = max (x, y)
temp = gdmax (x, y)
do 99990 g$is$ = 1, g3p$
g3z (g$is) = temp = g$x(g$i$) + (1.0 - temp) » g3y(g3is)
99990 continue
or
temp = g¥max (x, y, r$1)
xbar = xbar + zbar * temp
ybar = ybar + zbar * (1.0 - temp)
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real x, y

if (x .gt. y) then

gSmax = 1.0
else if = .1t. y) then
gdmax = 0.0
else
gdmax = g$error (15,
+ *Computed the derivative of MAX (x, x)’)
end if
return
end

real function gémin (x, y)

Purpose: Return the derivative value for MIN.
d (MIN (x, y)) / d x.
d (MIN (x, y)) /dy=1-d (MIN (x, y)) / d x.
Input parameters:
x, y Arguments to MIN
Returned value:
gdmin = 1 if x 1t y
o] ifxgty
TieVal if x =y
Rationale: At the points of nondifferentiability, the default
for TieVal = 1/2 is a generalized gradient.
Usage in ADIFOR-generated code:
Z=MIN (X, V)
r$1 = min (x, y)
temp = g$min (x, y)
do 99990 g$i$ = 1, g3p$
g3z (g$i$) = temp = gSx(g$i$) + (1.0 - temp) * gdy(gSis)
99990 continue
or
temp = g$min (x, y, r$1)
xbar = xbar + zbar * temp
ybar = ybar + zbar * (1.0 - temp)

real x, y

if (x .1t. y) then

gSmin = 1.0
else if (x .gt. y) then
gSmin = 0.0
else
g3min = g3error (15,
+ "Computed the derivative of MIN (x, x)’)
end if
return
end
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Purpose: Error Handling for the *#* operator
Author: A. Griewank Oct. 24

Approach:

We try to catch the situations where the function

value itself is at least mathematically defined but the
derivatives are not. In contrast to the other intrinsics,
ve prefer to do everything in-line, except for a call to
gSerror in the exceptional cases. In line here means that
ve branch directly to the bar quantity assignments.

Depending on whether we wish to differentiate x**y with respect
to x or vith respect to y, ve should consider it as a ’pover’

or as an ’exponential’, respectively. Correspondingly, the error
classification number should be 5 or 10, respectively, in the
call to gSerror. When both x and y are active reals, we consider
x**y simultaneously as a pover and as an exponential.

We assume that x»*y has a wvell-defined value if x >= 0 or y is
an integer with 0#+0 = 0. On particular systems, the values may
be defined differently if x = 0 or y = 0, and there will be
overflow when y < 1 and x is sufficiently small. We will do
nothing about this because we would othervise also have to
safeguard simple divisions.

For fixed y, the derivative of x**y with respect to x is
mathematically defined except when x = 0, and 0 < y < 1. This
case is a generalization of the square root situation.
Therefore, we set the derivative to InfVal. When y = 0, we set
the derivative with respect to x to zero and do not call gSerror,
even if x = 0.

For fixed x, the derivative of x#**y with respect to y is
mathematically defined except when x <= 0, and the value of y

is an integer. When x is negative, x**y is not defined for

any fractional y. Therefore, ve set the value of the derivative
to NoLmVl at integral values of y. When x = 0, the derivative
is zero for all y > 0. For y = 0, we may again use NoLmVl.

Note that ybar remains unchanged if x = 0 and y > 0.

When y is not active, there is no ybar, and the second part
of the calculation can be omitted. If y is of type integer, then
the first part can be reduced to the single statement

if(x .ne. 0.0d0) xbar = xbar + y * zbar * r$0/x

If x is passive, there is no xbar, and the first part can

be omitted. Finally, if either a or y are constants that can
be evaluated at compile time, further simplifications are
possible.

c*t**tt“tt#*tt‘t*t#!!‘#‘t#tt#t*#!!##‘#‘#“#t“'t*"t‘t‘t‘#“t‘#*#‘
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Original code segment:

real x,y,z
x=..
y=..

Z = X**y

ARREERAXERREERER KRR RRERRRREEE xEEEE xRRkEE

Processed code with x, y, and thus z active:

program main
real y

call test(0.1,3.0)

call test(-0.1,3.0)
call test(-0.1,4.0)
call test(-0.1,5.0)
call test(-0.1,-1.0)
call test(-0.1,-2.0)
call test(0.0,0.3)

end

subroutine test(x,y)
integer g$pmax, g$p$, gdi
parameter (g$pmax = 50)

real x,y,z

real g$x(g$pmax)
real g$y(g$pmax)
real g$z(g$pmax)
real dummy,xbar,ybar,r$0

dummy = 0.1
géps =3

do 10 g3i%$ = 1, g$p$
g3x(gs$i) = dummy
g3y (gsi) = dummy

continue
z = X“y
r$0 = x=**y
zbar = 1.0
xbar = 0.0
ybar = 0.0

First, do the derivative with respect to x.

if (x .ne. 0.0) then
= xbar + y * zbar * r30/x

else

if ((y .1t. 1.0) .and. (y .gt. 0.0)) then
xbar = xbar + zbar

end if

» g$error (5, 'Fractional pover of zero?’)
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end if
Note that xbar remains unchanged if x = 0 and y >= 1
Second, do the derivative with respect to y.

if (x.gt.0.0) then
ybar = ybar + zbar * r$0*log(x)
else
if ((x .1lt. 0.0) .or. (y .eq. 0.0)) then
ybar = ybar + zbar

+ * g8error (10, ’'Negative basis or 0**0’)

end if
end if
z = r$0
write(6,*) z, xbar, ybar
do 20 g$i$ = 1, g3p$
g3z(gs$i) = xbarsg$x(g$i) + ybar=g$y(g$i)
continue
return
end
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Appendix C. Code to Test ADIFOR Error Handling

¢ File: WHAT_ERR1.f 16-0CT-1991

0

Author: George Corliss
Purpose: Look at generated code to consider vhat error detection
c tests are required.

(3]

program what
real x, y

x =0.0

call all (x, y)
stop

end

SUBROUTINE ALL (X, Y)

REAL X, Y, Z, A, B, €, D(2,2), F(2), R(2)
REAL wc, ¥, gammar, one,gammai, zero, di, d2
REAL tgdir, tgdli, tgd2r, tgd2i

INTEGER I, J, K

c IT IS NOT INTENDED THAT THIS ROUTINE EXECUTE MEANINGFULLY!
A=3.0
B = 10.0#*=50

D(1,1) = X
R(1) =X

¢ Error Class 1: User Function Is not Defined.

¢ Example 1-1. User guards error.
IF (X .NE. 0.0) THEN
Y=A/X
ELSE
CALL ERROR (’Please do not divide by zero.’)
END IF

¢ Example 1-2. Error is unguarded.
Y=A/X
Y = asin (A = X)

¢ Example 1-3. Error is overflow.

Y=X/B

¢ Error Class 2: Differentiable Functions -- Overflows.

¢ Example 2-1. Derivative evaluation can overflow.
Y = A/ X+ TAN (X) + LOG (X) + LOG10 (X) + TANH (X)
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Error Class 3: Nondifferentiable Functions -- lim £’ = \pm \infty.

Example 3-1. At points of nondifferentiability.
X

Z=
Z=1.0
Y = SQRT (1.0 = Z) + ASIN (Z) + ACOS (Z) + Z »* X

Example 3-2. Near points of nondifferentiability.
X

Z =
Z = 0.999999
Y = SQRT (1.0 - 2) + ASIN (Z) + ACOS (Z) + Z »= X

Example 3-3. Fischer’s root problem. Function is differentiable,
but intermediate results are not.
Y = SQRT (X*X*X*X + Z*Z»Z*Z)

Error Class 4: Nonsmooth Functions -- lim f’ does not exist.

Example 4-1. At points of nondifferentiability.
Z2=20.0
Y = ABS (Z) + SIGN (X, Z) + AINT (2) + MAX (Z, X) + MIN (Z, X)
+ + DIM (X, X)

Example 4-2. Near points of nondifferentiability.
Can ve detect how near we are?
10.0==(-30)
= ABS (Z) + SIGN (X, Z) + AINT (Z) + MAX (Z, X) + MIN (Z, X)
+ + DIM (X, X)

< N

Error Class §: Problems of Domains -- Branchings.

Example S-1. ABS using if statements.
IF (X .GE. 0.0) THEN
Y=X
ELSE
Y=-X
END IF

IF (X .GT. 0.0) THEN
Y=X

ELSE
Y=-X

END IF

IF (X .GT. 0.0) THEN
Y=X



ELSE IF (X .LT. 0.0) THEN

Y=-X
ELSE

Y=0.0
END IF

c Example 5-2. Fischer’s branch
IF (X .EQ. 1.0) THEN
Y=1
ELSE
Y = X=X
END IF

¢ Example 5-3. Fischer’s 2 by 2 Gaussian elimination

IF (D(1,1) .EQ. 0.0) THEN

F(2) = R(1) / D(1,2)

F(1) = (R(2) - D(2,2) = F(2)) / D(2,1)
ELSE

¢ = D(2,1) / D(1,1)

D(2,2) = D(2,2) - C = D(1,2)

R(2) = R(2) - C = R(1)

F(2) = R(2) / D(2,2)

F(1) = (R(1) - D(1,2) = F(2)) / D(1,1)
END IF
Y = F(1) = F(2)

c Example 5-4. Janet Rogers -- Interplay of IF and ABS
if (vc.le.w) then
gammar = sqrt (abs((one-(vc/w)**2)))*v/c
gammai = zero
tgdir = sin(gammar*di)/cos(gammars*d1)
tgdli = zero
tgd2r = sin(gammar*d2)/cos(gammar+d2)
tgd2i = zero
else
gammar = zero
gammai = sqrt(abs((one-(wc/w)**2)))sw/c
tgdir = zero
tgdli = - (exp(-gammai*d1)-exp(gammaixdl1)) /
+ (exp(-gammai*dl)+exp(gammaixdl))
tgd2r = zero
tgd2i - = - (exp(-gammai»d2)-exp(gammaixd2)) /
+ (exp(-gammai=d2)+exp(gammaixd2))
end if

Error Class 6: Mathematical Pitfalls.

n

¢ List of all elementary functions

c Example 7-1. As simple assignments.
Y = ABS (X)
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ACOS (X)
AINT (X)

LOoG (X)

ALOG (X)
L0610 (X)
AL0G10(X)
M X, 2)
MIN (X, 2)
ATAN (X)
ATAN2 (X, 2)
cos (X)

COSH (X)

EXP (X)

MOD (X, 2)
SIGN (X, 2)
SIN (X)
SINH (X)
SQRT (X)

TAN (X)

TANH (X)

T e R e e I e A e e

c Example 7-2. In complicated assignments.
Y = ABS(X) + ACOS(X) + AINT(X) + ALOG(X) + ALDG10(X)

Y = ASIN (X) + ATAN (X) + ATAN2 (X, 2)

Y=0c0S (X)+ COSH (X) +EXP (X) +MAX (X, 2)

Y = MIN (X, 2) + SIGN (X, 2)

Y = SIN (X) + SINH (X) + SQRT (X) + TAN (X) + TANH (X)
RETURN

END

SUBROUTINE ERROR (MSG)
CHARACTER#*1 MSG
RETURN

END
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