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Abstract

Data race detection strategies based on software run-
time monitoring are notorious for dramatically inflating
ezecution times of shared-memory parallel programs.
Without significant reductions in the exzecution overhead
incurred when using these techniques, there is little hope
that they will be widely used. A promising approach to
this problem is to apply compile-time analysis to iden-
tify variable references that need not be monitored at
run time because they will never be involved in a data
race. In this paper we describe ERASER, a data race
instrumentation tool that uses aggressive program anal-
ysis to prune the number of references to be monitored.
To quantify the effectiveness of our analysis techniques,
we compare the overhead of race detection with three
levels of compile-time analysis ranging from little anal-
ysis-to aggressive interprocedural analysis for a suite of
test programs. For the programs tested, using interpro-
cedural analysis and dependence analysis dramatically
reduced the data race instrumentation added by ERASER,
resulting in a corresponding reduction of run-time mon-
itoring overhead.

1 Introduction

In an execution of a shared-memory parallel pro-
gram, a data race is said to exist when there are
two or more accesses to the same shared variable,
at least one access is a write, and the temporal
order of the accesses is not guaranteed by the se-
quential program flow or program synchronization.
In the presence of a data race, the program’s execu-
tion behavior may depend on the temporal order of
the accesses participating in the race. The result is
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that the program may exhibit erroneous behavior
in some, but not necessarily all, executions.

Detecting data races in shared-memory parallel
programs is a difficult problem. Strategies for de-
tecting such race conditions can be generally clas-
sified as (1) static analysis — analysis of a pro-
gram’s text to determine when two references may
refer to the same shared variable [1, 3, 4, 24],
(2) post-mortem analysis — collection of a log
of events that occur during a program’s execu-
tion and post-processing the log to isolate data
races [2, 8, 17, 19, 20], or (3) on-the-fly analy-
sis — augmentation of a program to detect and
report data races as they occur during its execu-
tion [11, 12, 15, 16, 21, 22, 23].

Static analysis techniques rely on classical pro-
gram dependence analysis and an analysis of a pro-
gram’s concurrency structure to determine when
two references may potentially be involved in a data
race. Static techniques are inherently conservative,
which often leads to reports of data races that could
never occur during execution. Experience with
static analysis tools has shown that the number
of false positives reported using these techniques
is too high for programmers to rely exclusively on
static methods for isolating data races. Combining
static analysis with symbolic execution offers hope
for reducing reports of infeasible races [26].

Post-mortem techniques for detecting data races
have the advantage that they can limit reports to
feasible races. However, to guarantee that only fea-
sible races are reported, exhaustive execution trace
logs are necessary. The size of such execution logs
can be a serious drawback for these methods; com-
plete logs can be enormous for parallel programs
that execute for more than a trivial amount of
time. Several approaches to post-mortem analysis
that use smaller trace logs are promising. Netzer
has studied the capabilities and limitations of post-
mortem analysis based on partial information [17].



A promising alternative to pure post-mortem anal-
ysis is a hybrid approach that uses abbreviated
logs containing only synchronization information to
compute guaranteed orderings [18]. Such orderings
can be used in conjunction with subsequent static
analysis or on-the-fly monitoring to report race con-
ditions.

On-the-fly techniques maintain additional state
information during a program’s execution to de-
termine when unordered, conflicting accesses to a
shared variable have occurred. Like post-mortem
techniques, on-the-fly techniques can limit their re-
ports to feasible races. The principal drawback
of on-the-fly techniques is that for parallel pro-
grams with complex patterns of synchronization,
the worst-case space and time overhead of detecting
races during a program’s execution includes a term
proportional VT, where Vis the number of shared
variables and T'is the maximum logical concurrency
in the program execution [11]. However, when the
structure of logical concurrency is restricted to that
achievable with closed, nested fork-join constructs
(e.g., nested parallel loops), the worst-case asymp-
totic space overhead can be reduced to O(VN),
where N is the maximum dynamic nesting depth
of parallel constructs, and the asymptotic time for
testing if a particular access participates in a data
race can be reduced to O(N) [15]. These tighter
.bounds offer the promise of efficient on-the-fly de-
tection of data races for this restricted class of pro-
grams.

Both on-the-fly and post-mortem techniques rely
on monitoring all potentially conflicting accesses to
shared variables during a program’s execution. The
run-time monitoring associated with both of these
classes of schemes is notorious for dramatically in-
flating execution times of shared-memory parallel
programs. Without significant reductions in the
execution overhead incurred when using these tech-
niques, there is little hope that they will be widely
used. To reduce the dynamic monitoring overhead
incurred when using either class of techniques, it is
important to minimize the number of accesses that
are monitored at run time.

This paper focuses on using compile-time analy-
sis to identify variable references that need not be
monitored at run time because they will never be
involved in a data race. We describe ERASER, a
data race instrumentation tool implemented as a
component of the Rice University’s ParaScope sys-
tem, that uses several levels of static program anal-
ysis, ranging from little analysis to aggressive in-
terprocedural analysis, to prune the number of ref-
erences instrumented for run-time monitoring. To

quantify the effectiveness of each style of analysis,
we compare the instrumentation overhead result-
ing from each style of analysis for a suite of test
programs. Overall, for the programs tested, using
interprocedural analysis and dependence analysis
dramatically reduced the data race instrumentation
added by ERASER, resulting in a corresponding re-
duction of run-time monitoring overhead.

Section 2 briefly describes ParaScope and pro-
vides context for the implementation of ERASER.
Sections 3.1-3.3 describe three approaches to
data race instrumentation that rely on increasing
amounts of program analysis to reduce the num-
ber of access checks added to a program. Section 4
describes some experimental results that compare
the effectiveness of using different levels of analy-
sis when performing instrumentation for run-time
monitoring. Finally, section 5 briefly outlines how
the analysis used by ERASER could be enhanced to
further reduce the number of references that would
be instrumented for run-time monitoring.

2 ParaScope

Most visibly, ParaScope is a suite of tools that
support scientific programming in Fortran. Un-
derneath, ParaScope provides an infrastructure for
management, analysis, and transformation of pro-
grams written in a Fortran dialect with extensions
for shared-memory parallelism. This infrastruc-
ture includes facilities that support a rich collection
of program analyses including dependence analy-
sis, control flow graph analysis, computation of
static single assignment form, global value num-
bering, and a variety of interprocedural analyses.
The ParaScope infrastructure has served as a plat-
form for research on aggressive optimization of sci-
entific codes for both scalar and shared-memory
machines [7].

A key function of ParaScope is to support whole-
program (interprocedural) analysis and optimiza-
tion. To a large extent, support for whole-program
analysis in ParaScope preserves the benefits of sep-
arate compilation of procedures by minimizing the
number of times a procedure is examined. In
general, interprocedural analysis and transforma-
tion in ParaScope uses the following 3-phase ap-
proach [7, 9, 13]:

1. Local Analysis. At the end of an editing ses-
sion with one of the editors in the ParaScope
toolset, summary information concerning all
local interprocedural effects for each procedure
in the edited module is calculated and stored.



This information includes details on call sites,
formal parameters, scalar and array section
uses and definitions, local constants, symbol-
ics, loops and index variables. Since the ini-
"tial summary information for each module does
not depend on interprocedural effects, it only
needs to be collected once when the module
changes even if the module is used as part of
several programs. (If a module is updated by
something other than one of the editors in the
ParaScope toolset, local analysis information
is collected and saved the first time interpro-
_cedural analysis is requested after the module
has changed.)

2. Interprocedural Propagation. The inter-
procedural analysis system gathers local sum-
mary information collected for each procedure
and uses it to build a call graph. The analyzer
then uses other components of the local sum-
mary information as the basis for computing

_solutions to interprocedural dataflow problems
on the call graph.

3. Code Generation. ParaScope tools that
consume interprocedural information perform
transformations of procedures based on the re-
sults of interprocedural analysis.

In order to efficiently support whole-program anal-
sis and transformation, it is important to mini-
mize the cost of program changes. In an interpro-
cedural system, even modules that have not been
edited may require updates if they are indirectly af-
fected by changes to some other module. ParaScope
has served as a testbed for recompilation analysis
which identifies modules that have not been af-
fected by program changes and do not need to be
updated [5, 10].

Currently, ParaScope computes interprocedural
REF, MOD, and ALIAS; implementations are under-
way to incorporate computation of interprocedural
CONSTANTS and a number of other important in-
terprocedural problems, including interprocedural
symbolic and regular section analysis of arrays.

3 Data Race Instrumentation

Internally, ParaScope represents program modules
in the form of abstract syntax trees annotated with
semantic information. A program transformation
subsystem supports arbitrary transformation and
augmentation of Fortran ASTs. This system serves

as the framework for ERASER, our data race in-
strumentation tool. ERASER uses the transforma-
tion subsystem to augment Fortran ASTs by adding
calls to run-time support routines that monitor syn-
chronization events and variable references. As it

~ is currently implemented, ERASER is intended to be

used in conjunction with a run-time library that
supports on-the-fly monitoring and reporting of
data races in program executions. For this reason,
ERASER also augments programs with definitions
of auxiliary storage used to maintain access histo-
ries for shared variables potentially involved in data
races. With relatively minor modifications, ERASER
could be adjusted to omit these access history dec-
larations to generate instrumented programs more
suitable for use with a run-time library that col-
lects reference and synchronization traces for post-
mortem analysis.

ERASER and it’s companion run-time library were
designed to efficiently support detection of data
races that arise in programs with closed, nested
fork-join parallelism [15]. ERASER’s implementa-
tion focuses on instrumentation of of programs with
concurrency specified in the form of nested par-
allel loops. Support for heterogeneous parallelism
that arises from Fortran parallel section constructs
(analogous to the more familiar cobegin-coend con-
struct of other parallel languages) could readily be
added to ERASER if full support for heterogeneous
parallelism was present in ParaScope’s analysis in-
frastructure. Whereever the lack of support for het-
erogeneous parallelism is important, the term par-
allel loop will be used in place of the term parallel
construct in order to remain faithful to the actual
implementation.

To prepare a program for data race instrumen-
tation, ERASER applies the following sequence of
transformations to put the code in a canonical form:

e Transform logical IF statements into block
IF statements so that instrumentation can be
readily be added to the consequent as neces-
sary.

e Transform each ELSEIF construct into an IF-
THEN construct nested inside an ELSE con-
struct. If any access in the ELSEIF guard
needs instrumentation, the system must have
a place to insert the instrumentation so that
the access check gets executed iff the guard
will be executed.

o Hoist all function invocations out of subscript
expressions. Since subscript expressions will
be duplicated into access check code, subscript
expressions must be side-effect free.



e Move each statement label to a CONTINUE
that precedes the statement. Since the sys-
tem will insert data race instrumentation for a
statement immediately before the statement,
"the system must ensure that it is impossible to
reach a statement without executing its corre-
sponding access check instrumentation.

Once the code is in a canonical form, the data
race instrumentation can proceed. The data race
instrumentation process consists of adding several
different types of statements:

e.concurrency bookkeeping — calls to race de-
tection run-time library routines to indicate
the creation or termination of a logical thread®,

e access checks — calls to the race de-
tection run-time library READCHECK or
WRITECHECK operations that test if an ac-
cess participates in a data race,

e access history declarations — each variable
"that may be involved in a data race is allo-
cated storage for an access history in which
information is stored about the threads that
have accessed the variable, and

e access history initialization and finalization —
access histories for all local variables must be
initialized upon procedure entry and finalized
before the procedure returns or halts.

The next three sections describe data race instru-
mentation strategies that rely on increasing levels
of program analysis.

3.1 Basic Strategy

Without any sophisticated analysis, data race in-
strumentation must be very conservative. Each
procedure must assume that it is called in the scope
of a parallel construct. Therefore, inside a proce-
dure references to its formal parameters (which are
passed by reference in Fortran) and global variables
must be instrumented since they could conflict with
other accesses made in the context of an enclosing
parallel construct. The system must also add access
checks for any references to the procedure’s local
variables that occur inside the scope of a parallel
construct in the procedure. This is necessary since
without further analysis one cannot be certain that
these references do not cause data races within the
scope of some enclosing parallel construct.

1We use the term thread to denote the basic unit of con-
currency (e.g., an interation of a parallel loop body).

Even if a procedure contains no parallel con-
structs, all local variables of the procedure are
passed as actual arguments to user-defined proce-
dures must have access history storage allocated in
the scope in which the variables are declared and
references to that storage must be passed to.each
called procedure since any called procedure could
contain a parallel construct inside of which it ref-
erences its arguments. Local variables not passed
to called procedures need not be instrumented nor
have access history storage allocated if no parallel
constructs are present in the procedure in which
the variables are declared.

Variable references passed to intrinsic functions
require special handling. Intrinsic functions in For-
tran read, but never modify their arguments. Since
the bodies of instrinsic functions are not instru-
mented by ERASER, in some cases the system must
add instrumentation at the point of call to reflect
that the intrinsic reads its arguments. In particu-
lar, a READCHECK for a variable reference passed
to an intrinsic must be added at the point of call if
either of the following conditions are satisfied

e the variable is a formal parameter or a global
variable, or

e the variable is a local to the procedure calling
the intrinsic and the call to the instrinsic is
made inside the scope of a parallel construct
inside the procedure.

For each statement, the instrumentation system
accumulates the set of variable references that need
data race instrumentation. If multiple array el-
ement references in the same statement have the
same sequence of subscript expressions, only one
access check is needed for all of the references. This
is true even if the references are a mix of reads and
writes — in this case, a single WRITECHECK will suf-
fice since any access that conflicts with a read will
certainly conflict with a write.

3.2 Intraprocedural Strategy

To detect all data races, not all references to
shared .variables inside parallel loops need be in-
strumented. In particular, variable references to
memory locations that are not accessed by more
than one thread of control do not need data race
instrumentation.

Data dependence analysis is a deep compile-time
analysis of program variables and their subscripts
to determine when two variable references may refer
to the same memory location. Compile-time depen-
dence analysis computes a conservative superset of



the dependences that may occur during a program’s
execution. In ParaScope, a dependence graph con-
tains an edge for each data dependence, where each
node in the graph represents a variable reference.
A dependence edge between references R; and R»
is carried by a loop if the access through R, in loop
iteration ¢ can potentially access the same memory
location as the access through R; in loop iteration
j, i # j. Dependences that are not carried by loops
are said to be loop independent.

Three types of carried data dependences are im-
portant for data race instrumentation. A true de-
pendence (also known as flow dependence) signifies
that a memory location written during some loop
iteration may be read in a later iteration. An anti
dependence signifies that a memory location read
during some loop iteration may be overwritten in a
later iteration. Finally, an output dependence signi-
fies that a memory location may be written during
more than one loop iteration. When one of these
types of data dependences is carried by a paral-
lel loop, at run time two different loop iterations
may perform concurrent, conflicting accesses to the
same memory location resulting in a data race.

In the absence of procedure calls, all variable ac-
cesses that may be involved in a data race must
be the endpoint of some data dependence that is
carried by a parallel construct. In this case, it suf-
fices to add access checks only for variable refer-
ences that are endpoints of data dependences.?

When procedure calls are present, but no in-
terprocedural information is available, conservative
assumptions are necessary to ensure correctness.
When building a dependence graph, conservative
assumptions must be made about the side effects
of each procedure call. In particular, the depen-
dence analyzer must assume that each procedure
call modifies each of its actual parameters (in fact,
the analyzer must assume that any time a reference
to an array element is passed to a procedure, the
procedure modifies the whole array) and all global
variables. To make sure data races involving ac-
cesses in different procedures will be detected un-
der these circumstances, we fall back on the basic
instrumentation strategy presented in the previous
section. Each procedure must conservatively as-
sume that it is invoked from inside a parallel con-
struct; this requires access checks for references to
global variables and the procedure’s formal param-
eters in addition to access checks at dependence
endpoints carried by parallel constructs within the

2ParaScope does not compute data dependences carried
by parallel section constructs; thus, ERASER’s instrumenta-
tion supports only parallel loops.

procedure itself.

In comparison with the basic strategy presented
in the previous section, the intraprocedural strat-
egy has the potential for reducing instrumentation
in programs by eliminating access checks for all ref-
erences to each procedure’s local variables other
that those that are endpoints of data dependences
carried by a parallel construct.

3.3 Interprocedural Strategy

In the instrumentation strategies presented thus
far, conservative assumptions are made in the pres-
ence of procedures. At each call site, the system
must assume that the called procedure modifies
each of its actual parameters and all global vari-
ables. Furthermore, the system must assume that
each procedure may be invoked from within a par-
allel construct.

These two assumptions lead the system to insert
instrumentation conservatively. Interprocedural in-
formation can help the instrumentation system re-
duce the amount of data race instrumentation and
its run-time overhead in two simple ways:

o If the system knows that a procedure is never
called from within a parallel construct, no ac-
cess checks for references to the procedure’s
formal parameters are necessary in the proce-
dure except where a reference to a formal pa-
rameter is an endpoint of a data dependence
carried by a parallel construct within the pro-
cedure.

o If the dependence analyzer has interprocedu-
ral summary information about the side-effects
(MoD and REF with ALIAS information incor-
porated) of procedure calls in parallel con-
structs, it will not have to make the conser-
vative assumption that all variables accessible
to the procedure are modified. This can reduce
the number of dependence endpoints, thus re-
ducing instrumentation.

Additional improvements can be obtained in more
subtle cases using the interprocedural analysis
strategy described below. The description of the
implementation strategy is presented for each of the
three analysis phases in the ERASER corresponding
to the framework described in section 2: local anal-
ysis, interprocedural propagation, and code instru-
mentation.



parallel loop i =1, n
call f(afaindex[il], b[il, x[i])
end loop

parallel loop i =i, n
call g(d[i], eleindex[i]], y[il)
end loop

subroutine f(f1, £2, £3)
call h(f1, f£2, £3)
end

subroutine g(gl, g2, g3)
call h(gl, g2, g3)
end

Figure 1: Different contexts have different instru-
menation requirements.

Local Phase

As described in section 2, when a module is
changed, initial information about a module is
recorded for use during interprocedural propaga-
tion. Before support for data race instrumenta-
tion was envisioned in ParaScope, initial informa-
tion recorded included a descriptor for each pro-
cedure specifying the names and types of formal
parameters, initial MOD and REF information for
formal parameters and common variables, call site
descriptors including name of the invoked proce-
dure (or procedure variable) and the actual argu-
ments. To support data race instrumentation, this
information was reorganized so that it is not sum-
marized at the procedure level, but rather collected
at the loop level. Also, the information was aug-
mented to contain a description of the loop nesting
structure and an indication of which loops are par-
allel. Loop-level information is important for data
race instrumentation so that interprocedural anal-
ysis. can determine which procedures are (possibly
transitively) invoked from within the context of a
parallel loop.

Interprocedural Phase

As was the case before support for data race in-
strumentation was envisioned as part of ParaScope,
a call graph is constructed and interprocedural
ALIAS, MOD, and REF summary information is com-
puted for each procedure using the initial informa-
tion collected during the local phase.

At this point, the interprocedural analyzer also
computes a solution for the AFORMAL problem
which offers a very crude approximation to array

section analysis (which is not yet available in Para-
Scope). The AFORMAL set for a procedure indicates
for each formal parameter of the procedure if it is
ever referenced using array subscripting operations
by the procedure or any of its decendants in the call
graph. The solution of this interprocedural prob-
lem is useful for sharpening dependence analysis in-
volving a procedure’s side-effects. In particular, if
an array element reference passed to a procedure is
bound to a parameter not in the procedure’s AFOR-
MAL set, then the dependence analyzer knows that
any MoD or REF side effect of the called procedure
affects only the array element passed as an argu-
ment; thus, the dependence analyzer need not as-
sume that the whole array had been modified or
referenced by the procedure.

Next, a null data race instrumentation set is
created for each procedure. After interprocedural
analysis is complete, the data race instrumentation
set for a procedure will indicate which formal pa-
rameters and global variables require access checks
for references to them inside the procedure body.

The interprocedural analysis driver then invokes
the dependence analyzer for each procedure us-
ing the interprocedural solutions for MOD, REF and
AFORMAL to increase the precision of dependence
information involving call site side effects. Using
these interprocedural solutions, the dependence an-
alyzer identifies when a data dependence involves
side-effects of a call site. Such dependences indi-
cate accesses made by the called procedure (or its
descendants in the callgraph) that may be involved
in data races; instrumentation will be needed for
any access to that variable in the called procedure
(or its descendants).

For each dependence endpoint at a call site (re-
ferring to an actual or global accessed as a side-
effect of the call), the data race instrumentation
set for the procedure is augmented to indicate that
some context in which the procedure is called re-
quires instrumentation for references to a particu-
lar formal parameter or global. When all of the
call sites inside parallel loops in the program has
been processed, the instrumentation sets are ready
for dataflow propagation through the edges in the
callgraph. Final values for the instrumentation sets
result from forward dataflow propagation of all of
the data race instrumentation sets along call site
edges in the callgraph. At each call site, instru-
mentation requirements for the formals and globals
of the callee are augmented so that they subsume
any instrumentation requirements that the caller
has for globals and variables passed as actuals at
the call site. More precisely, during dataflow prop-



agation, the instrumentation requirements flowing
to a procedure node from each of its incoming call
site edges are unioned to achieve the final version
of the data race instrumentation set for that pro-
cedure.

A brief, contrived example shown in figure 1 illus-
trates how context can impose different instrumen-
tation requirements on a procedure’s formal param-
eters. Assume that subroutine h accesses each of its
formal parameters only as scalars and that it mod-
ifies its first two formal parameters, but only reads
the third. Interprocedural MOD and AFORMAL sets
will indicate that subroutines £ and g modify their
first two arguments (via their call to h). In the con-
text of the first loop, the ParaScope dependence an-
alyzer cannot prove that accesses to alaindex[il]
are independent (the dependence analyzer does not
track the values of indirection arrays, so it must
conservatively assume that there are repeated val-
ues and report a loop-carried data dependence), but
can prove that modifications to b[i] are indepen-
dent (no carried dependence on the side-effect to
b[il). Since the third parameter to f is not in £’s
MOD set, there is no loop-carried dependence in-
volving this parameter. The context of this loop
thus requires instrumentation inside £ and h only
for references to the routines’ first formal param-
eter. In the second loop, the situation is reversed
for the call to g: only accesses to its second formal
parameter require instrumentation. After interpro-
cedural dataflow propagation of the instrumenta-
tion sets, inside h references to its first and second
formal parameters require instrumentation, but ref-
erences to the third parameter do not.

For each procedure, its final data race instrumen-
tation set describes which formal parameters and
global variables require access checks inside the pro-
cedure body. However, with only the information
computed thus far, each caller must conservatively
assume that each actual argument that it passes
to a called procedure requires access history stor-
age. In the example shown in figure 1, there is no
way for the loop calling £ to know that the second
parameter to £ requires access history storage but
that the third does not since these requirements are
dictated from below by h.

Which variables require access histories allocated
can be computed in a single backward dataflow
pass over the callgraph. The initial value of the
storage allocation set for each procedure is a copy
of the procedure’s final data race instrumentation
set. During a backward dataflow pass, the stor-
age allocation sets flow to each procedure from all
the procedures it calls (along an edge for each call

site inside the procedure). For each call site, only
the variables known to the caller are propagated
through the call site up to the caller. The sets
propagated to a procedure node from each of its
outgoing call site edges are unioned to achieve the
final version of the storage allocation set for the
procedure.

After applying this analysis to the program frag-
ment shown in figure 1, the call sites for £ and g will
know that no access history storage is needed for x
and y respectively. Furthermore, the call interface
for each of the procedures needs to be expanded to
include references to access history variables only
for the parameters that actually require access his-
tory storage instead of for all variables (as would be
the case in the basic and intraprocedural strategy).

After the storage allocation set is computed for
each procedure, only the top-level program is aware
of all of the common variables that must be ex-
panded. A forward interprocedural dataflow pass
is necessary to guarantee that each procedure has
a consistent definition of which variables in each
common block need to be augmented with access
history storage. This third pass creates a common
allocation set for each procedure.

Code Instrumentation

After all of the interprocedural analysis is com-
plete, the data race instrumenter uses the infor-
mation collected to instrument the Fortran AST
for the program. Each reference that is an end-
point of a dependence carried by a parallel loop
has a corresponding access check added. Also, each
reference to a variable in a procedure’s data race
instrumentation has a corresponding access check
added. For each local variable in the procedure’s
storage allocation set, access history storage is al-
located, and calls to run-time support routines are
added to initialize and finalize the locally-allocated
access history storage upon entry and exit of the
procedure, respectively. Common block definitions
are expanded with access history storage added for
each variable in the procedure’s common alloca-
tion set. Actual argument lists are expanded at
call sites to pass access history storage only for pa-
rameters in the callee’s data race instrumentation
set. Calls to concurrency bookkeeping routines are
added only for parallel constructs that carry a data
dependence. Thus, if a data race can never occur in
the context of a parallel construct, no concurrency
bookkeeping is performed at run time.



static measures dynamic measures
source | access checks access checks execution
lines | read | write read write time
uninstrumented 569 0 0 0 0 36.8
basic 1073 70 17 || 111498737 | 15270102 598.3
intraprocedural 1065 68 17 || 100749809 | 15270102 548.8
interprocedural 697 4 7 23368976 | 15269825 251.4

Table 1: Data race instrumentation statistics for the search program.

static measures dynamic measures
source | instrumented | access checks access checks execution
lines loop nests read | write read write time
uninstrumented 1930 0 0 0 0 0 22.5
basic 3582 7| 234 63 || 70085036 | 7295204 341.1
intraprocedural 3582 7| 234 63 || 70085036 | 7295204 336.8
interprocedural 2251 3 20 24 || 17234673 | 4819904 103.9

Table 2: Data race instrumentation statistics for the buck program.

4 Experimental Results

In order to test the efficacy of the compile-time
analysis strategies described in the previous section
it is important to apply the analysis to some real
programs. To date, we have carefully studied re-
sults with three shared-memory parallel programs.

The first program, search, implements a multi-
directional direct search method for finding a local
minimizer of an unconstrained minimization prob-
lem [25]. Search contains four parallel loop nests
(each of which contain a call to the same evalu-
ator function) surrounded by an outer serial loop
that tests for convergence. The second program,
buck, tests the adjointness of a routine that com-
putes a one-dimensional seismic inversion (used for
oil exploration) with its associated adjoint code.
The code contains seven parallel loop nests, four of
which contain calls to substantial procedures. The
third program, erlebacher is a benchmark written
by Thomas Eidson at NASA ICASE. It performs
three dimensional tri-diagonal solves using alter-
nating implicit direction integration. The version of
erlebacher used for this study was was parallelized
by Kathryn McKinley as part of her dissertation
research at Rice; this version of erlebacher contains
eighteen parallel loops, none of which contain pro-
cedure calls other than to intrinsics.

Table 1 contrasts static and dynamic statistics
for the search program. The table shows mea-
sures for both the uninstrumented code and for
code automatically instrumented by ERASER using
the three different data race instrumentation strate-
gies. The first column in the table shows source

lines comparing the size of the original uninstru-
mented program versus the size with each style
of data race instrumentation. The dramatic in-
crease in source line count reflects the addition of
access checks, concurrency bookkeeping calls, dec-
larations for access history variables, calls to initial-
ize and finalize each locally declared access history,
as well as declarations and data statements that
contain information that enables ERASER’s associ-
ated data race run-time support library to pinpoint
the location in the source code of each reference in-
volved in a data race. The next two columns re-
spectively indicate how many READCHECK and
WRITECHECK calls were added to the program
using each instrumentation strategy. Compared to
the basic strategy, the interprocedural approach re-
duces the combined number of access checks added
to the code by 87%. Since the remaining access
checks are all in the computational kernel, the ef-
fective reduction of the dynamic access checks is
not nearly as dramatic. In comparison to the basic
strategy, the interprocedural strategy reduced the
combined number of dynamic checks by 70%.

Access checks remaining in search after interpro-
cedural analysis and data dependence analysis re-
sult from use of index arrays. As mentioned ear-
lier, since the dependence analyzer does not track
the values of array variables, it conservatively as-
sumes that index arrays may contain replicated val-
ues which would imply a data dependence. Inter-
estingly, search contains a pair of call sites that
provide different contexts for a call to the same
procedure. This concept was illustrated earlier in



static measures dynamic measures
source | access checks access checks execution
lines | read | write read write time
uninstrumented 1234 0 0 0 0 21.9
basic 3265 | 281 80 || 14853692 | 3799360 104.5
intraprocedural 2996 | 240 71 [ 13229914 | 3798784 95.8
interprocedural 1285 0 0 0 0 21.6

Table 3: Data race instrumentation statistics for the erlebacher program.

figure 1. By constructing a specialized version of
the procedure for use in the different contexts (this
process is known in the literature as procedure
cloning), access checks to an array parameter only
referenced by the called procedure could be elimi-
nated for the clone invoked in the context in which
there is no data dependence carried by the REF side
effect of the parameter. This cloning would offer lit-
tle run-time benefit however since the context that
permits the clone without instrumentation is only
executed during problem initialization.

Table 2 contrasts the same measures for the buck
program. Dependence analysis alone was able to
determine that there are no dependences carried
by three parallel loops, each encapsulated in its
own procedure. However, since each of the loops
contains accesses to the arguments of the enclos-
ing procedure, access checks are still necessary in-
side the parallel loops since nothing is known about
the contexts in which the procedures containing the
loops are called, and whether accesses to the argu-
ments could cause data races. With interprocedural
information, the instrumentation system is able to
determine that none of the procedures containing a
parallel loop is called from within another parallel
loop; therefore, all instrumentation can be omit-
ted from the aforementioned three parallel loops
immediately. For a fourth parallel loop that con-
tains a call to a procedure, all instrumentation also
was eliminated because the analysis was able to de-
termine that the side effects of the procedure did
not result in any carried dependences. (No instru-
mentation was needed inside the procedure called
from within the fourth parallel loop either.) The
interprocedural approach reduces the the combined
number of static access checks by 85% over both the
basic and intraprocedural strategies. The interpro-
cedural strategy reduced the number of dynamic
checks 71% in comparision to the other approaches.

For buck, the remaining access checks are caused
by the lack of array section analysis in ParaScope’s
dependence analyzer. The buck program is writ-
ten in a modular style. For each of the parallel

loops with procedure calls, with interprocedural ar-
ray section side effect analysis it could be deter-
mined that the called procedures only modify a col-
umn of the arrays passed as parameters. With this
information, the dependence analyzer could deter-
mine that the array columns passed to the called
procedures are independent and data race instru-
mentation could be avoided.

Table 3 presents the measurements for the er-
lebacher program. Using dependence analysis
alone, ERASER was able to determine that there
were no intraprocedural dependences carried on
any of the parallel loops. However, this resulted
in the elimination of only a few of the access checks
since each procedure must still assume it could be
called from within a parallel loop and thus all pro-
cedures still required checks for accesses to their for-
mals and globals. The combination of dependence
analysis and interprocedural analysis was able to
determine that no accesses would be involved in
data races at run time and thus it was possible
to eliminate access checking instrumentation. The
careful reader will notice that the number of lines
in the code processed by ERASER using interpro-
cedural analysis differs from that of the original
source even though no access checking instrumen-
tation was added. This difference in source code
lines is due to the code normalization process. The
original program had many nested loops terminated
with the same continue. During the code normal-
ization phase of ERASER, each loop received its own
continue statement.

All execution times reported in the last column
of tables 1-3 are from sequential executions of the
instrumented programs on a Sun® 4/490. Timings
for the program executions correspond to the user
time reported by the csh time command for each
execution. While timings obtained in this manner
will vary somewhat (some jitter can clearly be seen
by comparing the timings reported), these times
are accurate enough for the qualitative compar-
isons we want to draw here. Elsewhere we have

3Sun is a trademark of Sun Microsystems



shown that sequential executions suffice for detect-
ing data races in programs with loop-based paral-
lelism [15]. All programs were compiled with the
Sun f77 compiler using -O optimization. Com-
paring raw execution times of the uninstrumented
and.instrumented code varieties shows the run-time
overhead for on-the-fly monitoring to be relatively
high. These numbers offer a conservative picture
of the overhead of on-the-fly monitoring since the
ParaScope data race run-time library is written in a
modular style of C++ and has not been tuned for
performance; for instance, the concurrency book-
keeping routines invoke “malloc” for dynamic mem-
ory allocation of each thread label rather than a
tuned special-purpose allocator. For the search pro-
gram, the execution overhead (computed as (instru-
mented execution time - uninstrumented execution
time)/uninstrumented execution time) of the basic
strategy was a factor of 15.5 whereas the interproce-
dural approach reduced this to a factor of 5.8. For
the buck program, the execution overhead was a
factor of 14 for the basic and intraprocedural strate-
gies. The interprocedural strategy reduced the run-
time overhead for race instrumentation of buck to
a factor of 3.6. For erlebacher, the execution over-
head using the basic instrumentation strategy was
a factor of 3.8, while the interprocedural strategy
eliminated the overhead entirely.

An interesting yardstick for putting some per-
spective on the overhead measured for data race de-
tection when using the interprocedural instrumen-
tation strategy is to compare the execution times
of the resulting executables with times for unin-
strumented executables compiled with the -g com-
piler flag. For the search program, the -g execution
time was 138.7 seconds; using the interprocedural
instrumentation strategy compiled with -O, data
race detection costs only 78% more than the -g ex-
ecution. For the buck program, the cost of a -g ex-
ecution was 60.8 seconds; here the overhead of data
race detection using the interprocedural instrumen-
tation strategy compiled with -O is 198% more than
the -g execution. For erlebacher, the comparison is
pointless since the interprocedural instrumentation
strategy eliminated all of the instrumentation.

5 Conclusions

Using dependence analysis and interprocedural
analysis of scalar side effects as a basis for data race
instrumentation, ERASER was able to reduce the dy-
namic counts of instrumentation operations moni-
toring for the presence of data races by 70-100%

for the three programs tested. Construction of the
ERASER prototype shows that such compile-time
analysis for this purpose is practical and profitable.
Further reductions in overhead are possible by in-
creasing the sophistication of the analysis. In par-
ticular, with interprocedural array section analysis
of procedure side effects, all instrumentation could
be eliminated for the buck program. One must bear
in mind though that the cases for which run-time
monitoring is important are those in which compile-
time analysis cannot prove the absence of data races
in a program, as with the search program.

Other enhancements to ERASER’s analysis that
could provide reductions in instrumentation for
programs other than those tested are forms of inter-
statement analysis that could remove redundant ac-
cess check operations within a procedure. (Cur-
rently, ERASER performs no inter-statement analy-
sis.) Inter-statement analysis strategies that could
reduce instrumentation requirements include using
global value numbering, control flow graph domina-
tion, and analysis developed for recognizing reuse
of array variables [6] to eliminate redundant access
check operations.

Even with the impressive reductions in dynamic
counts of monitoring operations that ERASER was
able to achieve, monitoring overhead for automatic
detection of data races ran as high as a factor of 5.8.
Likely, a factor of two or more further reduction in
the overhead could be obtained by carefully tuning
the run-time library support routines. Compared
to the alternative of tracking down data races by
hand in program executions, the overhead of dy-
namic monitoring strategies such as the on-the-fly
strategy supported by the run-time library tested
here would likely seem to be acceptable for use in
a testing phase by a frustrated user trying to track
down the causes of indeterminate behavior of a pro-
gram.
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