A Portable Run-Time
System for PCN

Ian T. Foster
Steven Tuecke
Stephen Taylor

CRPC-TR91242
July 1991

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, IL 60439

ANL/MCS-TM-137

A Portable Run-Time System for PCN
by

Ian Foster, Steve Tuecke, and Stephen Taylor®

Mathematics and Computer Science Division
Technical Memorandum No. 137

July 1991

* Address: Department of Computer Science, Califoria Institute of Technology, Pasadena, CA 91125.

This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

Contents

Abstract
1 Introduction
11 CorePCN
1.2 The Program Composition Machine
1.3 Instruction Set
1.4 Foreign Interface
1.5 Performance Tools
2 Data Structures
2.1 Control Structures
2.2 PCN DataTypes
23 Registers.
3 Abstract Instruction Set
3.1 Control Instructions
3.2 Build Instructions
3.3 Put Instructions
3.4 Test Instructions
3.5 Term Manipulation Instructions
3.6 Foreign Instructions
4 The Communication Component
41 Terms
4.2 Message Processing
5 Garbage Collection
5.1 Global Collection
5.2 Local Collection
5.3 Garbage Collection Failure. . .
5.4 Deficiencies
6 System Bootstrap
7 Asynchronous Keyboard Input
References

......................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

ooooooooooooooooooooooooo

A Abstract Instruction Set and Encoding

B Coding Examples

B.1 Partition: Array Version
B.2 Parti‘tion: Definitional Version I
B.3 Partition: Definitional Version II

.........................

........................

iii

11
13
16
17
18
20
23

24
24
25

27
28
31
33
33
34
34

35

A Portable Run-Time System for PCN
by

Ian Foster, Steve Tuecke, and Stephen Taylor

Abstract

This report describes a run-time system to support Program Composition Nota-
tion (PCN), a high-level concurrent programming notation. The run-time system is
described in terms of an abstract machine. We specify an abstract architecture that
represents the state of a PCN computation and executes abstract machine instruc-
tions that encode tests on or modifications to the computation state. Programs to
be executed on the abstract machine are encoded as sequences of abstract machine
instructions. The abstract machine may be implemented by an emulator written in
a low-level language. Alternatively, sequences of abstract machine instructions may
be further compiled to machine code. The run-time system is designed to run on
uniprocessors, multiprocessors, and multicomputers.

1 Introduction

This report describes a run-time system to support Program Composition Notation (PCN),
a high-level concurrent programming notation [1]. The run-time system is described in
terms of an abstract machine. An abstract machine for a programming notation imple-
ments its computational model. It provides an abstract architecture that represents the
state of a computation in the chosen model and executes abstract machine instructions
that encode tests on or modifications to the computation state. Programs to be executed
on the abstract machine are encoded as sequences of abstract machine instructions. The
abstract machine may be implemented by an emulator written in a low-level language.
Alternatively, sequences of abstract machine instructions may be further compiled to ma-
chine code. ‘ :

In designing an abstract machine for PCN, we have emphasized architectural simplic-
ity, sometimes apparently at the expense of efficiency. In particular, we provide no special
support for sequential composition or nested choice blocks. Hence, the machine can ex-
ecute only directly programs expressed in a PCN subset referred to as core PCN. We
expect this “RISC”-like approach to permit novel optimizations in an implementation and
hence provide good overall performance. However, experience may motivate extensions to
support particular language features.

1.1 Core PCN

Definitions. A kernel is a process that invokes a primitive operation. A call is a process
that invokes another program. A kernel is nonsuspending if it is a definition or if it is an
assignment or other kernel for which the input arguments are known to be available at
the time it is called. A kernel is suspending if it is not known to be nonsuspending.

Core PCN is the language subset in which programs have the following restricted form:

1. A program has the form P {? Cy, ..., Cn},n>0.

9. Each choice C; has the form G — B, where G is either a sequence of guard tests or
the empty test true.

3. Each body B has the form {; K1, ..., Kx, { || P1, sy Pi}}, k, I > 0, where the K;
are nonsuspending kernels and the P; are calls. If k£ = 0, the sequential block may
be omitted; if | < 2, the parallel block may be omitted.

1.2 The Program Composition Machine

The Program Composition Machine (PCM) consists of three components: a reduction
component, a communication component, and a garbage collection component. These
execute at every processor.

Reduction Component. This provides the facilities required to execute core PCN programs.
That is, it maintains a pool of processes and repeatedly selects and attempts to execute
processes in this pool. Execution of a process involves trying each of the choices in the
associated program. If the guard associated with any choice evaluates to true, any kernels
in the body of that choice are executed, and processes are created to execute any calls.
Otherwise, the process is replaced in the pool.

Two important optimizations improve the efficiency of the basic model. These are
support for tail recursion and a scheduling structure. Tail recursion permits execution to
continue with a body process when a choice with one or more calls in its body is used to
reduce a process. This avoids the overhead of adding the process to the process pool and
subsequently selecting it. To ensure that reduction is just, tail recursion is applied only a
finite number of times before the current process is added to the process pool and a new
process is selected for reduction. The number of tail recursive calls permitted before such
a process switch occurs is termed the timeslice.

The scheduling structure avoids the overhead of repeatedly attempting to reduce pro-
cesses whose data is not available. It comsists of a single active queue containing all
reducible processes plus a suspension structure that links together processes requiring
particular data.

Recall that guard execution in PCN reads terms, while definition statements may
provide values for definitions. Both read and definition operations may generate com-
munication if they encounter references to remote terms (i.e., remote references). This
effectively provides a global address space.

Communication Component. This operates at the end of a timeslice and receives messages
that arrive at a processor. It can modify local data structures and/or send outgoing
messages. Five types of message can be received: Read, Define, Value, Cancel, and Collect.

The Read message signifies that a remote processor requests a copy of local data, to be
provided when it becomes available. The Value message carries a data structure to be used
locally and is received in response to a Read message. The Define message signifies that a
remote processor has executed a definition operation that refers to a local definition. The
Cancel message indicates that a remote processor no longer requires certain interprocessor
references. The Collect message signifies that a remote processor requires this processor
to perform a local garbage collection.

Garbage Collection Component. Programming systems that support automatic storage al-
location and dynamic data structures generally require a garbage collector to reclaim
inaccessible storage. PCN is no exception. Global analysis techniques and program an-
notations can support optimizations that allow certain programs to execute in constant
space. However, a garbage collector is required in the general case.

The garbage collector employed in the PCM has a global and a local component. The
global component supports asynchronous garbage collection: that is, it permits individual
processors to reclaim inaccessible storage independently [3]. The local component employs
a stop and copy algorithm [2].

1.3 Instruction Set

The PCM instruction set is summarized in Appendix A. To briefly illustrate the use of
these instructions, consider the following program:

movej(lb,j,s,a,R)
int Ib,j,s,a[]
?

j21b,afj] >s— {:j:=j-1, movej(lb,j,s3,R)},

default — R =[]
}

This compiles into the following instruction sequence:

movej: try(L1) % Start of 1st choice
le(A0,A1) %j>Ib
build _static(AS5,int,1) % Create space for aj]
get_element(A1,A3,A5) % Access alj]
It(A2,A5) % a[j] > s
put_data(A6,1) % Build integer 1
sub(A1,A6,A7) %j=j-1
copy-mut(A7,A1)
recurse(move;j,5) % Recurse as movej
L1: default(5) : % Succeed if 1st choice failed
build static(A5, tuple,0) % Create []
define(A4,A5) % R =[]
halt % Terminate process

The try instructions encode the beginning of choices; their arguments are labels that
indicate where execution should continue if a choice’s guard does not succeed. Matching
and test operations in guards are encoded by using instructions such as le; the build static
and get_element instructions are used to access arguments. The body of a choice is encoded
by using instructions such as put.data, which creates a new integer, sub, which performs
subtraction, and define, which encodes a definition. The recurse instruction encodes a tail-
recursive call to a new program; halt encodes process termination. Another instruction,
fork, is used to encode process creation.

1.4 Foreign Interface

A call to a program written in a language such as Fortran or C is compiled to a sequence
of put_foreign instructions, which set up a vector of pointers to arguments, followed by a
call foreign instruction, which invokes the foreign program. Further, machine-dependent
primitives are required to load foreign code.

1.5 Performance Tools

The PCM incorporates low-level support for the Gauge profiling system. Each halt, recurse,
and default instruction takes an offset to a counter as an argument and increments this
counter each time it is executed. The call_foreign instruction takes an offset to a timer
as an argument. This is used to accumulate the total time spent in the foreign program.
The counters and timers are stored in code modules and can be accessed by using special
primitives.

Support is also provided for animation tools. A segment of memory may optionally be
reserved for storing information about program events; a special primitive allows programs
to record events in this area. System facilities support the dumping of logged events to
external storage.

2 Data Structures

In the rest of this report, we define first the various PCM data structures and then the
abstract instructions that operate on these data structures. This constitutes a specification
for the reduction component. The communication and garbage collection components are
described in separate sections.

The PCM uses a set of registers to hold important components of abstract machine
state. Otherwise, it uses only a single data area, the heap. This is a contiguous sequence
of 32-bit cells. All application program data structures and system control structures are
allocated on the heap; all structures are cell aligned.

2.1 Control Structures

The PCM maintains various control structures representing processes, the suspension
structure, interprocessor references, etc.

Process Records. A process record is a contiguous block of two or more cells. The first cell
is the nezt field; it contains a pointer and is used for attaching the process into either the
active queue or a suspension structure. The second cell is the program field, which contains
a pointer to the code that the process is to execute when it is scheduled. Additional cells
contain references to process arguments.

Active Queue. The active queue is a list of process records, linked together by using the
nezt field in each record. Pointers to the first and last entries in the queue are held in
abstract machine registers (cf. AF and AB, respectively).

Incoming Reference Table (IRT). A processor’s IRT is used to record references from other
processors to terms on the local heap. This permits garbage collection to be performed
on a single processor independently of other processors. The IRT consists of a contiguous
array of IRT entries, initially located at the bottom of the heap. A fixed-sized IRT is
allocated initially; free entries are linked in a free list. If this free list becomes empty, the
IRT is extended, as described in Section 5.1.

An IRT entry comprises two cells. The first is a 32-bit quantity representing the
weight associated with the referred-to object. The second contains a pointer to either the
referred-to object or, if the weight is zero, the next entry in the IRT free list.

Qutgoing Reference Table (ORT). A processor’s ORT is used to record local references to
terms located on other processors. This permits the processor to cancel these references
when local garbage collection indicates that they can be discarded. The ORT is maintained
as a linked list of entries located on the heap. A pointer to the first element of this list is
kept in a register (cf. OH). The list is compacted at local garbage collection by removing
free entries (i.e., those with weight zero). At other times, free entries are linked in both a
free list and the ORT list.

Each ORT entry represents an outgoing reference to another processor and, if it has not
become inaccessible, is referenced by a remote reference or value note (described below)
located within local memory. An entry consists of four cells. The first contains a 31-bit
integer value representing the weight associated with the interprocessor reference, plus a
flag (the top bit) that indicates whether a Read request has been generated on that remote
reference. The second contains an integer value representing an IRT index. The third cell
contains either an integer value representing a processor identifier or a reference to the
next entry in the ORT {free list. The fourth contains a reference to the next entry in the
ORT. In addition, the high bit of the second cell is used as a mark bit during local garbage
collection. The third cell is used to link an ORT entry into the ORT free list when the
weight of that ORT entry is zero, indicating that the remote reference has been-deleted.

Suspension Structure. During a reduction attempt, matching or guard evaluation may
require values that are not yet available. These values may be either local definitions or
remote terms referenced via remote references. A suspension register (cf. SU) is used
to record the suspension status of the current process. This register is set to 0 before

a reduction attempt. If matching or guard evaluation requires a value, SU is set to the
address of the required definition or remote reference. If subsequent evaluation requires a
further value, SU is set to the value -1 to indicate that the current process requires more
than one value. If a process requires more than one value, a Read message is generated for
remote references, unless other processes have already read them. A flag associated with
a remote reference indicates whether a Read message has already been generated.

If guard evaluation succeeds for any choice, the suspension register is reset, causing
entries to be discarded. If execution reaches the default choice, indicating that all previous
choices have failed or suspended, the register’s value is examined to determine whether the
current process must be added to the suspension structure, as follows. If the value is zero,
all previous choices have failed, and so execution proceeds with the body of the default
choice. If the value is neither 0 nor -1, the process requires the value of a single definition
or remote reference: the process is then added to a circular queue associated with the
definition or remote reference. This case occurs most often and is the prime suspension
technique.

A process that requires the value of more than one variable or remote reference (SU
= -1) is added to a Global Suspension Queue. Pointers to the first and last entries in this
queue are held in machine registers (see AF and AB, respectively). If the active queue ever
becomes empty, all processes recorded on the global suspension queue are moved to the
active queue. Execution then proceeds normally. However, if the active queue becomes
empty again without any intervening reductions, the abstract machine enters a suspended
state, which it exits only upon receipt of input from the keyboard or other processors. In
order to ensure that reduction is just, the global wakeup is also performed at regular (but
infrequent) intervals, even if the active queue never becomes empty.

Value Note. The communication component attaches a value note to an unbound definition
when it receives a Read message requesting its value. This permits a Value message to
be generated if the variable becomes bound. A value note consists of four contiguous
cells. The first is the nezt field; it points at the next process or suspension record in
the suspension structure. The second contains a null value. The third is the ORT field;
it contains a pointer to the ORT entry for the remote term for which a Read request is
pending. The fourth field contains a pointer to the definition, so that its value can be
accessed when the value note is processed.

2.2 PCN Data Types

Both application program data structurés and executable code are represented on the heap
by sequences of cells. Tuples, integers, reals, strings, arrays, and code are represented by
header cell containing the tag and size information, followed by one or more untagged
data cells representing the data structure. This organization simplifies communication
with programs written in other languages. Four data types are supported: Tuple, String,
Integer, and. Real. In addition, Definitions are represented by tagged cells, and reference
chains are represented by tagged Remote Reference and Local Reference cells.

Tagged data types have a three-bit tag located in the low bits of a cell. The Local

Table 1: Tag Values

[Type [Tag [27]27[27]
Reference REF

-10
Undefined UNDEF |0 |1 {0
Remote Ref | RREF |1 [1] 0
Tuple TUP 0j10}|1
String STR 11011
Integer INT 0f11]1
Real REAL 1 (111

Reference data type is distinguished by zeros in bits 0 and 1; all other data types have at
least one of these bits set to 1. The tag values used to represent the different types are
given in Table 1.

Data Headers. A data header cell has the general form
< SIZE(31-4), INLINE(3), TAG(2-0) >

The SIZE field contains a positive size, expressed in terms of the number of elements
(integers, reals, characters, tuple arguments) contained in the data structure. The INLINE
field is 1 if the data structure is embedded in a module, and 0 otherwise.

Integers are stored as 32-bit quantities and reals as double-precision, 64-bit quantities.
Strings contain four bytes per cell and are padded with null characters to a cell boundary.

References. References are represented by a single cell with the two low bits zero. Hence,
a reference cell’s contents can be interpreted as a pointer to a cell-aligned data structure.

Definitions. Definitions are represented by a single cell with a tag value of 2 (hexadecimal).
The remainder of the cell contains a 29-bit cell offset from the beginning of the heap, which
is used to construct a pointer to a circular suspension queue.

Remote References. A remote reference is represented by two cells. The first has a tag
value of 3 (hexadecimal); the remainder of the cell contains a 29-bit cell offset from the
beginning of the heap, which is used to construct a pointer to a circular suspension queue.
The second cell contains a pointer to an ORT entry.

Code. Compiled code modules are represented as strings with a particular internal struc-
ture. A code module cannot be distinguished from other strings except by context. Fig-
ure 1 illustrates the format of a code module.

A module’s header cell has a string tag, an inline flag of 0, and a size corresponding to
the actual size of the module in bytes. The code string itself contains the following fields,
in the following order:

Export
Table

Programs <

STR| 0 Module Size

Counter Offset

First Offset

0

First Program

Second Program

Counters

Last Program

No of Counters

No of Timers

First Counter

Last Timer

Offset to
Program

Program

Figure 1: The Module Data Type

Idle Offset

Module

Code Size

Code Bytes

Name

1. Counter Offset. The offset, in cells, to the Counters field.

2. Ezport Table. A sequence of cell offsets to programs that are exported by the module
(i.e., that appear in its export declaration). The last entry in the export table is a
cell containing zero.

3. Programs. A sequence of compiled programs.

4. Counters. A sequence of counters and timers.
Each compiled program has the following fields in the following order:

1. Idle Offset. The offset to the timer used to accumulate idle time attributed to the
program. i

2. Module. A cell containing the cell offset from itself to the beginning of the module.
This field is used only during garbage collection.

3. Arity and Code Size. A cell whose top byte is the arity of the program and whose
low three bytes contain the size of the program in cells; this corresponds to the offset
to the string for the program name. The Arity field must be a number less than 256
and is used when scheduling a process for execution.

4. Code Bytes. The assembled abstract machine instructions for the program. All ab-
stract machine instructions are cell aligned.

5. Name. The program’s name, as a null-terminated string padded with nulls to a cell
boundary.

Note that offsets within a module are always to the code cells for a program, not
the start of the program. The Module, Code Size, and Arity fields are accessed by using
negative offsets from the code cells.

Finally, the Counters area contains a one-cell counter for each halt, recurse, and suspend
instruction in the module, and a two-cell timer for each program and for each call_foreign
instruction. The first two cells of this area specify the number of counters and timers.
Subsequent cells contain first a sequence of counters, then a possible alignment cell to
ensure double-cell alignment, and finally a sequence of timers. The order of the counters
and the timers corresponds to the order of the corresponding instructions in the program
definitions.

Code modules may be stored on disk in files. In this case, the module is preceded
by a cell containing a magic number and version number, and the second cell contains
the size (in cells) of the remainder. To ensure portability across machines with different
byte ordering conventions, offsets, reals, and integers contained inside code are stored in
a portable format. :

Code modules on disk also contain three sections that are not placed on the heap
when the module is loaded. The first two sections contain lists of the foreign object files
and foreign libraries, respectively, that are needed to resolve foreign function references in

9

this module. These sections are (optionally) used to dynamically link in foreign code at
run time. The third section contains a list of all foreign functions that are referenced by
this module, as well as a list of where in the code each function is called. This section is
used during both dynamic and static linking of resolve foreign function references in the

module.

2.3

Registers

The state of the abstract machine is held in registers. The following registers hold pointers
to cells located on the heap:

HP Heap Pointer, points to the top of the heap.

AF Active queue Front, points to the first process in the active queue.
AB Active queue Back, points to the last process in the active queue.
GF Global queue Front, points to the first process in the global queue.
GB Global queue Back, points to the last process in the global queue.
CP Current Process, points to the process currently being reduced.
SP Structure Pointer, a pointer used for building structures.

IFL IRT Free List, points to the first entry in the IRT free list.

QOFL ORT Free List, points to the first entry in the ORT free list.

QH ORT Head, points to the first entry in the ORT.

SU Suspension, either points to a definition or remote reference for which the value
is required by the current process, or contains the value 0 or -1.

ES Event Stream, points to the tail of the global event stream.
KS Keyboard Stream, points to the tail of the keyboard input stream.
PC Program Counter, points to instruction cells on the heap.

FL Failure Label, points to an instruction to branch to in case of choice failure.

Finally, the following auxiliary registers are used:

TS Time Slice, an integer designating the remaining timeslice for the current process.

BU Buffer flag, a Boolean value that is set to true during tail recursion; otherwise
false.

CA Current Arity, an integer designating the arity of the current process.

10

A registers A set of 256 registers that may hold references to heap cells. The A
registers are used to hold process arguments and temporary values.

F registers A set of 64 registers that may hold pointers to untagged data structures
on the heap. The F registers are used to hold arguments to foreign procedures.

FP Foreign Pointer, a pointer used for building calls to foreign procedures.
ISZ IRT Size, an integer designating the number of entries in the IRT.

RF Resize Flag, a Boolean value that is set to true when the IRT has been resized;
otherwise false.

3 Abstract Instruction Set

The instruction set includes six types of instruction:

1.

A TR

Control Instructions: used to encode process scheduling and manipulation of various
machine registers.

Build Instructions: used to construct data structures on the heap.

Put Instructions: used to place references to data structures in memory cells.
Test Instructions: used to encode guard execution.

Term Manipulation Instructions: used to encode various operations on terms.

Foreign Instructions: used to encode calls to foreign procedures.

The instruction set is summarized in Appendix A; example encodings are presented
in Appendix B. Each instruction is assembled into one or more cell-aligned values. The
top byte of the value is an op-code in the range zero to N — 1 (where N is the number of
abstract machine instructions). The main emulation loop simply inspects the op-code at
the current program counter, increments the program counter, and dispatches to execute
the code for that instruction.

In the sections that follow, a Pascal-like notation is used to explain the operation of
each abstract machine instruction. Block structure is represented by indentation. The
following notation is also used:

e X := Y Assignment of one variable to another.

=,# Equality and inequality.
TAG<value> A cell with TAG and value fields.

o HEADER<tag,size> A data header cell with tag and size fields (and inline = 0).

11

o is_zzz(P) Tests for specific data types (e.g., is_integer(P) tests whether the cell at
location P is a reference to an integer).

o cell_at(P), real_at(P) The byte, cell, real, etc., at address P.
o byte_1(P), byte_2(P), byte_3(P) Byte 1, 2, or 3 of the cell at address P.

e tag_at(P) The tag value of the cell at address P.

e offset_to_pointer(P) Adds the 32-bit integer offset at location P to the pointer P and
yields a new pointer to a cell.

e case A case statement in which execution enters and exits a single case and may not
fall through to alternatives.

o size_in_cells(tag,count) Returns the number of cells required to hold count elements
of type tag.

The following auxiliary functions will be used to define the instruction set:

e is_unknown(C) returns true if the heap cell C is a variable or a remote reference;
false otherwise.

e suspend_on(P) manipulates the suspension register (SU) to record the fact that the

current process requires the value at location P. Execution continues at the current
failure label (FL).

e fail() causes execution to continue at the current failure label (FL).

o dereference(P) causes the reference P to be followed until P does not point to a
reference.

o enqueue_process(P) places process P at the rear of the active queue using the active
queue back register (AB).

o schedule_process() schedules a process from the front of the active queue using the
active queue front register (AF). The process is made the current process by loading
a pointer to it into the current process register (CP). Its arguments are then loaded
into consecutive A registers beginning at register 0. This can be achieved since the
program associated with a process includes the number of arguments (arity) in the
process (see Arity in Figure 1). The program counter (PC) is initialized to point at
the encoded program associated with a process. In addition, the BU flag is set to
false to indicate that the process arguments are currently unbuffered, and the CA
register is loaded with the process Arity.

e process_susp_list(P) processes the list of suspended processes and value notes at P.
Processes are added to the active. queue; Value messages are generated for value
notes. Note that processes and value notes can be distinguished by the value of their
second cell: processes contain a non-null pointer in this field, and value notes a null
value.

12

o suspend.process() suspends a process according to the value of the suspension register
(see Section 2.1).

e save.arguments(N) saves the contents of the first N A registers in the current process,
if it is large enough (register CA > N), or in a new process record otherwise.

o signal(M) appends a message M to the global event stream (cf. register ES).

o increment_counter(P) increments the counter located at offset_to_pointer(P).

o try-events() checks whether garbage collection needs to be performed and processes
any pending keyboard input and messages from other processors.

Detailed specifications are provided for most instructions in following sections. Unless
stated otherwise, instructions assume that their arguments are dereferenced and available
at the time of call. Hence, calls to most instructions cannot suspend. Type and range
checking is optional; if such checking is performed, errors are signaled on the global event
stream. In the specifications that follow, no type or range checking is performed.

3.1 Control Instructions

The process pool computational model is implemented with five control instructions: fork,
halt, recurse, default, and try. The instructions are responsible for scheduling processes
from the active queue, generating suspension structures, testing whether garbage collection
should be performed, etc. In addition, the run instruction is used to initiate execution of
a process using a module and the send instruction to send a message on the global event
stream.

fork(Label,Arity) allocates a new process record with a specified Arity and adds it to the
rear of the active queue. The program field in the process is set to be Label and SP is set
to point at the first argument of the process.

P := make_process(byte_1(PC))

cell_at(program field(P)) := REFERENCE<offset_to_pointer(PC+1)>
SP := arguments_of(P)

PC:=PC+ 2

enqueue_process(P)

recurse(Label, Arity, CountOff) encodes tail recursion. It uses the values of the A registers
and the current process record for the next reduction and thus saves process scheduling.
If the timeslice (TS) is zero, then Arity arguments (buffered in A registers) are saved in a
process record (see save_arguments). The process is then placed in the active queue with
its program field set to Label, and a new process is scheduled. If the timeslice is not over,
execution proceeds from Label, and the timeslice is decremented. The Buffer flag (BU) is
set to true, indicating that the process arguments are now buffered. The Current Process

13

Arity (CA) register is set to Arity. The suspension register is reset to indicate that there
are no suspensions for the next reduction attempt. A check is made to determine whether
garbage collection is required. The counter associated with the instruction is incremented.

increment_counter(PC+1)
if (TS = 0) then
save_arguments(byte_at(PC))
cell_at(program._field(CP)) := REFERENCE<offset_to_pointer(PC+2)>
enqueue_process(CP)
schedule_process()

else
TS:=TS -1
BU := True -

cell_at(program_field(CP)) := REFERENCE<offset_to_pointer(PC+2)>
PC := program-field(CP) + offset.to.code_bytes

SU:=0

try-event()

halt(CountOfF) is used when a process reduces using a choice that has an empty body and
thus terminates; this necessarily signifies the end of the current timeslice. The suspension
register is reset. Another process is then scheduled, and a test is made to determine
whether garbage collection is required. The counter associated with the instruction is
incremented.

increment_counter(PC+1)
SU:=0 /
schedule_process()
try_event()

default(Arity,CountOff) causes the current process to proceed to the next instruction, to
suspend on a single value, or to suspend on the global suspension queue, according to the
value of the suspension register (see Section 2.1). If suspension foll,ows a recursive call
then the arguments, buffered in A registers, must be saved in a process record. Suspension
also requires that another process be scheduled and that the counter associated with the
instruction be incremented.

14

if (SU = 0) then
PC := PC+2
else
increment_counter(PC+1)
if (BU) then save.arguments(byte_1(PC))
suspend _process()
schedule_process()
try-event()

try(Label) is used to encode conditional execution. It sets the failure label (FL) to Label;
execution continues at the next instruction. ’

FL := offset_to_pointer(PC+1)
PC:=PC + 2

run(M,P) is used to initiate execution of a process represented by a string or tuple P using
the module M. An error is signaled if the program to be executed by P is not exported by
M.

P1 := A[byte_1(PC)]

P2 := A[byte2(PC)]

C := mlookup(P1,P2)

if (C = Null) then send(undefined(P1))

NP := make_process() % Create a new process record
program field(NP) := C % New process is to execute P
“copy args from P2 to NP"

enqueue_process(NP) % Add new process to active queue
PC:=PC+1

send(Reg) is used to append the term referenced by Reg to the global event stream. Any
processes suspended on the definition referenced by ES are woken up; this definition is
then overwritten with a reference to a new list structure. The contents of Reg are copied

to the head of the new list structure, and a reference to a new definition is placed in both
the list tail and ES.

15

P1 := A[byte1(PC)]

if (suspensions_at(ES)) then process_susplist(ES)
cell at(ES) := REFERENCE<HP>

cell_.at(HP) := HEADER<tuple.tag,2>

cell at(HP+1) := REFERENCE<P1>
cell_at(HP+2) := REFERENCE<HP+3>
cell_at(HP+3) := DEFINITION<0>

ES := HP+3
HP := HP+4
PC:=PC+1

3.2 Build Instructions

The instructions build_static, build_dynamic, and build_def construct a data structure on
the heap and place a reference to the new structure in a register. They differ only in the
structures that they build.

build _static(Reg,Byte, Tag,Size) constructs a data area of specified Tag and Size on the heap,
and places a reference to this area in Reg. If the data area represents a tuple, the structure
pointer (SP) is set to point to its first element. This instruction is used to build arrays,
mutable values, and tuples of size less than 31.

A[byte 1(PC)] := REFERENCE<HP>
cell.at(HP) := HEADER<byte 2(PC),integerat(PC+1)>
if (byte2(PC) = tuple.tag) then

SP:=HP +1
HP := HP + 1 + size_in_cells(byte2(PC), integer.at(PC+1))
PC:=PC+2

build_dynamic(Tag,Registerl,Register2) constructs a integer array, real array, character ar-
ray, or tuple filled with definitions (as specified by Tag), of size specified by the integer
referenced by Registerl, and places a reference to the structure in Register2.

16

tag := byte 1(PC)

size := integer_refed_by(A[byte 2(PC)])
A[byte 3(PC)] := REFERENCE<HP>
cell at(HP) := HEADER<tag,size>

HP:=HP +1
if (tag = tuple_tag) then
i:= size

while (i > 0) do
cell_at(HP +size) := DEFINITION<0>

HP :=HP +1

i=i-1
HP := HP + 1 + size_in_cells(tag,size)
PC:=PC+1

build def(Register) constructs a definition on the heap and places a reference to the defini-
tion in a Register.

A[byte_1(PC)] := REFERENCE<HP>
cell at(HP) := DEFINITION<0>
HP:=HP +1

PC:=PC+1

3.3 Put Instructions

The instructions put.data, put_value, and copy place a reference to a data structure in a
memory cell. They differ only in the type of reference that they construct and where they
put it. '

put_data(Reg,Tag,Size,Value) places a reference to a value with tag Tag in Reg and incre-
ments PC by Size. The instruction is used to encode strings, single integers, and reals.

The instruction is followed by a negative offset to tlie beginning of the module, a data
header cell with the INLINE field set to 1, and one or more data cells containing the data
value.

Albyte 1(PC)] := REFERENCE<PC+3>
PC := PC + byte 3(PC)

17

put_value(Register) places the value in Register at the structure pointer, SP.

cell_at(SP) := A[byte 1(PC)]
SP:=SP +1
PC:=PC+1

copy(Registerl,Register2) copies the contents of Registerl to Register2.

A[byte2(PC)] := A[byte_1(PC)]
PC:=PC+1

3.4 Test Instructions

Test instructions encode test operations on process arguments. They are type, data, equal,
neq, get_tuple, It, and le. Of these, only type, data, and get_tuple can suspend. The other
instructions assume that their arguments are available and dereferenced at the time of
call.

In general, these instructions first obtain the number of an A register by using the
current program counter (PC). The register contents is then compared against some value.
If the comparison succeeds, execution proceeds at the next abstract machine instruction.
Otherwise, execution proceeds at the current failure label. If the argument to a type, data,
or get_tuple instruction dereferences to a variable or remote reference, this fact is recorded
by the suspension register, and execution proceeds at the current failure label (FL).

type(Register, Tag) tests that Register dereferences to a cell with the specified Tag. If the
test succeeds, Register is overwritten with a reference to the dereferenced value.

P := A[byte 1(PC)]

dereference(P)

if (iscunknown(P)) then suspend_on(P)
if ((tag-at(P) # byte2(PC)) then fail()
A[byte_1(PC)] := REFERENCE<P>
PC:=PC+1

18

data(Register) succeeds when the value of the term referenced by Register becomes avail-
able. Register is overwritten as in the type instruction.

P := A[byte_.1(PC)]

dereference(P)

if (iscunknown(P)) then suspend_on(P)
Albyte_1(PC)] := REFERENCE<P>
PC:=PC+1

get_tuple(Registerl, Arity,Register2) is used to match structures. It tests that Registerl
dereferences to a tuple of size Arity. If the test succeeds, then the arguments of the tuple
are loaded into consecutive A registers beginning with Register2.

P := A[byte1(PC)]
dereference(P)
if (iscunknown(P)) then suspend_on(P)
arity := byte2(PC)
if (not is_tuple(P) OR arity # cellsize.at(P)) then fail()
B := byte 3(PC)
while (arity > 0) do
A[B] := cell_at(P)
P:=P+1
arity := arity - 1
B:=B+1
PC:=PC+1

le(Register1,Register2) tests that the value of the integer or real referenced by Registerl is
less than the value of that referenced by Register2.

19

P1 := Albyte_1(PC)]
P2 := A[byte2(PC)]
PC:=PC +1
if (is_integer(P1) and is.integer(P2)) then

if (integer.at(P1+1) > integer.at(P2+1)) then fail()
else if (is_real(P1+1) and is_real(P2+1)) then

if (realat(P1+1) > realat(P2+1)) then fail()
else if (is-integer(P1+1) and is_real(P2+1)) then

if (integerat(P1+1) > real.at(P2+1)) then fail()
else if (is_real(P141) and is_integer(P2+41)) then

if (real.at(P1+1) > integer.at(P2+1)) then fail()
else fail()

equal(Registerl Register2) tests that Registerl and Register2 reference single integers, single
reals, or strings with the same value, or that they reference tuples of the same arity with
equal subterms. Strings are compared by using the C function strcmp(): they are compared
on a character by character basis until the first null character. Hence, this function cannot
be used to test equality of character arrays.

3.5 Term Manipulation Instructions

The instructions get_element, put_element, and get_arg provide access to arrays and tuples.
The instruction sizeof determines the size of a data structure. Arithmetic expressions on
the right-hand side of calls to := are compiled to calls to five arithmetic kernels: add, sub,
div, mul, and mod, which implement addition, subtraction, division, multiplication, and
modulus, respectively. Each takes two values as input, each either an integer or a real,
and constructs either a real (if either input is a real) or an integer (if both inputs are
integers) as output. The copy.mut instruction copies one mutable value to another of the
same type. The coerce_mut instruction copies a mutable value to another that may be of
a different type; this may require type coercion. The arguments to all these instructions
are assumed to be available, dereferenced, and of the correct type. Finally, the define
instruction is used in conjunction with build instructions to encode definition statements.

define(Registerl, Register2) checks that Registerl dereferences to a variable or remote refer-
ence and generates an error if it does not. Otherwise, it processes any suspension queue
attached to this location and assigns the location the contents of Register2. If the location
is a remote reference, then a Define message is generated.

20

P1 := A[byte_1(PC)]

P2 := A[byte2(PC)]

PC:=PC+1

dereference(P1)

if (is_cunknown(cell_at(P1))) then
if (isrem_ref(cell at(P1))) then send_define(P1,P2)
if (suspensions_at(P1)) then process_susp.list(P1)
cell at(P1) := cell-at(P2)

else
signal_bad_define()

add(Registerl,Register2,Register3) adds the numerical values referenced by Registerl and
Register2, constructs a real or integer result on the heap, and places a reference to the
result in Register3. The sub, mul, div, and mod instructions are similar; the mod instruction
expects integer arguments.

P1 := A[byte1(PC)]
P2 := A[byte2(PC)]
A[byte3(PC)] := REFERENCE<HP>
PC:=PC+1
if (isdnteger(P1) and is_integer(P2)) then
cell.at(HP) := HEADER<integer_tag,1>
integer.at(HP+1) := integer.at(P1+1) + integer.at(P2+1)
HP := HP + 2
else
cell at(HP) := HEADER<real tag,1>
if (is_integer(P1)) then d1 := integer.at(P1+1)
else d1 := real_at(P1+1)
if (is{integer(P2)) then d2 := integer_at(P2+1)
else d2 := real at(P2+1)
real at(HP+1) := d1 + d2
HP := HP + 3

get_element(Registerl,Register2, Register3) extracts an element of an integer, real, or char-
acter array. Registerl is assumed to reference an integer index, and Register2 an array. A
data structure of the correct type to hold the retrieved element (an integer in the case of
a character or integer array; otherwise a real) is constructed on the heap, and a reference
to this structure is placed in Register3.

21

P1 := A[byte1(PC)]

P2 := A[byte2(PC)]

P3 := REFERENCE<HP>

if (is.integer(P2)) then
cell at(HP) := HEADER<integer.-tag,1>
integer_at(HP+1) := integer_at(P2 + integerat(P1+1))
HP := HP + 2

else if (is_real(P2)) then
cell.at(HP) := HEADER<real tag,1>
real at(HP+1) := real.at((real *) P2 + integer-at(P1+1))
HP := HP + 3

else if (is_string(P2)) then
cell.at(HP) := HEADER<integer_tag,1>
integer.at(HP+1) := (integer) character.at((char *) P2 + integer_.at(P1+1))
HP := HP + 2

PC:=PC+1

put_element(Register] Register2,Register3) copies an integer or real value in a data item
to a specified index in an integer, real, or character array. Registerl provides the index,
Register2 the array, and Register3 the element. Type coercion is performed if necessary
(integer to character, real to integer, integer to real).

P1 := A[byte1(PC)]
P2 := A[byte2(PC)]
P3 := A[byte3(PC)]
if (is-integer(P2) and is.integer(P3)) then
P := P2 + integerat(P1+1)
integer_at(P) := integer_at(P3+1)
else if (is_real(P2) and is_real(P3)) then
P := (real *) P2 + integer.at(P1+1)
real.at(P) := real.at(P3+1)
else if (is_character(P2) and is_integer(P3)) then
P := (char *) P2 + integer.at(P1+1)
character_at(P) := (character) integer.at(P3+1)
else if (is_real(P2) and is_integer(P3)) then
P := (real *) P2 + integer.at(P1+1)
real at(P) := (real) integer_at(P3+1)
else if (is_integer(P2) and is_real(P3)) then
P := (integer *) P2 + integer.at(P1+1)
integer_at(P) := (integer) real_at(P3+1)
PC:=PC+1

22

get_arg(N,Tuple,Register) places a reference to the Nth argument of Tuple in Register.

P1 := A[byte1(PC)]

P2 := A[byte2(PC)]

A[byte3(PC)] := REFERENCE<P2 + 1 + integer.at(P1+1)>
PC:=PC+1

sizeof(Registerl,Register2) determines the size (i.e., number of elements) of the term ref-
erenced by Registerl and places an integer representing this size in the mutable integer
referenced by Register2.

P1 := A[byte_ 1(PC)]

P2 := A[byte2(PC)]
integer_.at(P2+1) := cellsize.at(P1)
PC:=PC+1

copy-mut(Registerl,Register2) copies the value of the mutable data structure referenced
by Registerl into the mutable data structure referenced by Register2. The two structures
are assumed to be of the same type and size. The coerce_mut instruction is similar but
performs coercion.

P1 := A[byte1(PC)]
P2 := A[byte2(PC)]
i := sizein_cells(cell_tag.at(P1), cell size.at(P1))
while (i > 0) do
cell_.at(P2) := cellat(P1)
i=i-1
P1:=P1+1
P2:=P2+1
PC:=PC+1

3.6 Foreign Instructions

Two instructions, put_foreign and call_foreign, are used to encode calls to procedures written
in languages such as C and Fortran.

put_foreign(Register) places a pointer to the data structure referenced by Register in the F
register referenced by the register FP, and increments FP. Register is assumed to contain
a previously dereferenced reference to a structure of the correct type.

23

cell at(FP) := A[byteat(PC)] + 1
FP:=FP +1
PC:=PC+1

call foreign(Arity,Address, TimeOff) places a null pointer in the F register referenced by FP
and invokes the procedure at Address, passing the address of F[0] as the base address for
the argument vector. It resets FP and, upon return, increments the timer associated with
the instructions.

then := time()

cell.at(FP) := NULL

FP := address_of(F[0])
CALL(byte.1(PC),integerat(PC+1),FP)
FP := address_of(F[0])
increment_timer(PC+2, time() — then)
PC:=PC+3

4 The Communication Component

There are five types of message: Read, Value, Define, Cancel, and Collect. At the end of
each time-slice, the communication component is invoked to process any pending messages.
FEach message received is deposited directly onto the heap. When sending a term it is
copied into contiguous locations of a message buffer and absolute pointers are translated
into relative offsets. On arrival, the term is scanned to perform the reverse translation.

4.1 Terms

Copying Terms. The copy.term procedure copies a term from the heap to the message
buffer to be sent as part of a Value or Define message. The size of the term copied is
determined by the size of the message buffer. A term is copied depth first with remote
references to unbound subterms and to subterms that do not fit. A depth-first traversal
is used because it is particularly efficient for commonly used stream structures.

" An IRT entry must be allocated when a new remote reference is created in a message.
A reference to the local term is stored in this entry, and a remote reference to the IRT
entry (consisting of the node identifier and the IRT entry’s index) is placed in the message.
Both the newly created IRT entry and the remote reference are given the same large initial
weight.

A remote reference may be encountered during copying. In this case, the ORT entry
that it r=ferences is located. If this entry contains a weight greater than 1, a copy of the
initial remote reference is included in the message. The weight associated with the ORT

24

entry is split: a proportion (e.g., one third) is allocated to the remote reference, and the
remainder retained locally.

If an interprocessor reference is repeatedly duplicated, its weight will eventually become
one. Such a reference is chained the next time it is duplicated: that is, a new reference to
the reference with weight one is created, with a large initial weight. This process involves
creating a new IRT entry, as if a definition had been encountered.

A remote reference in a message has a different format from one to a remote reference
on the heap. It consists of three cells. The first cell contains an integer value representing
a weight, with a remote reference tag. The second and third cells contain integer values
representing a node identifier and a location within a node, respectively.

The copy.term procedure should be coded as an iterative algorithm that traverses a
term and continues copying while there is room in the message buffer. In order to copy
the term depth-first, the algorithm should maintain a stack of uncopied subterms. If the
remaining space in the message buffer is adequate only for remote references to stacked
subterms, copying terminates and these remote references are created.

Scanning Terms. Scanning a term serves two purposes: it converts relative references into
absolute references and allocates an ORT entry for each remote reference in the message.
An ORT entry records the weight, processor identifier, and IRT index associated with the
remote reference. The remote reference in the message is replaced in the heap by a remote
reference data type containing a reference to the ORT entry.

scan_term(P)
while (not end_of_message(P)) do

if (relative_reference(P)) then
cell_at(P) := REFERENCE<P + offset at(P)>

if (remote_reference(P) then
P1 := allocate_ort_entry(Weight(P),Node(P),Locn(P))
cell.at(P) := REMREF<P1>

P := P + size_of(term.at(P))

4.2 Message Processing

Define. The Define message contains a term to be copied locally and two integer values,
which specify the IRT entry corresponding to the location to be assigned to and the weight
associated with the remote reference to which the define operation was initially applied.

The destination IRT entry specified in the message is accessed to determine the location
that is to be defined. The weight contained in the message is then subtracted from the
weight associated with this IRT entry. If the location to be defined is a variable or a remote
reference, the message is scanned. The location is then overwritten with the scanned term,
and suspended processes are woken up. If the location is a remote reference, the message
is forwarded; if it already has a value, a definition error is signaled.

25

define()
extract from_message(index,weight)
locn := irt_address(index)
cancel_irt_entry(index,weight)
dereference(locn)
scan(term)
case tag-at(locn)
Variable : process_susp.list(locn)
cell_at(locn) := REFERENCE<term>
RemRef : process_suspJist(locn)
send.assign(locn,fnode,findex,term)
cell_at(locn) := REFERENCE<term>
Otherwise : send(deferror(locn.term))

A Define message is generated when a definition operation is applied to a remote
reference. The remote reference specifies an ORT index; the ORT entry with this in-
dex is accessed to determine the remote processor identifier, remote address, and weight
components of the message. The ORT entry is then canceled.

Value. A Value message contains a term to be copied locally and an IRT index representing
a location at which the term is to be placed. If this location is a remote reference or
definition, the message is scanned. The location is then overwritten with the scanned
term, and suspended processes are woken up. Otherwise the message is discarded. In
both cases the weight of the IRT entry is decremented by one.

value()

extractfrom_message(index,term)

locn := irt_address(index)

cancel irt_entry(index,1)

dereference(locn)

if (is_unknown(cell_at(locn)) then
scan(term)
process_susplist(locn)
heap.at(locn) := REFERENCE<term>

Read. A Read message contains three integer values, which specify the IRT entry repre-
senting the location to be read, the source processor, and the IRT entry representing the
location to which the value is to be returned. The latter two fields specify the location of
the remote reference at which the Read message originated.

If a Read message is received and it refers to a variable, a value note is attached to the
variable. If it refers to a value, a Value message is generated to the requesting processor.
If it refers to a remote reference, the message is forwarded. In neither case is the IRT

26

entry modified.

read()

extract _from_message(index,fnode,findex)

locn := irt_address(index)

dereference(locn)

case tag-at(locn)
Variable : V := make_value_note(locn,fnode,findex)

enqueue_on_variable(V locn)

RemRef : send_read(locn,fnode,findex)
Otherwise : send_value(fnode,findex,locn)

Cancel. A Cancel message contains an integer value specifying how many cancellations are
encoded in the rest of the message, followed by a sequence of integer pairs that encode
these cancellations. Each pair consists of an IRT index and a weight. A processor receiving
a Cancel request decrements the weight of each referenced IRT entry by the associated
weight. If the weight becomes zero, the IRT entry is added to the free list.

Collect. A Collect message requests a processor to perform immediate garbage collection.

5 Garbage Collection

Recall that the PCM locates all data structures created in the course of a computation
— such as terms, code, and process records — in a memory area termed the heap. New
structures are continually being created. However, most structures are never explicitly
destroyed. Garbage collection must therefore be performed periodically to free heap space
occupied by structures that are no longer required.

The garbage collector employed in the PCM has a global and a local component. The
global component permits individual processors to reclaim inaccessible storage indepen-
dently. In many situations, this can reduce both garbage collection overhead and real-time
delays resulting from garbage collection. The global algorithm is based on that described
in [3].

Many PCN processes iterate over lists. The iterative aspect of program behavior may
result in a high proportion of useless verses useful data. It is thus beneficial to base
the local algorithm on a stop-and-copy method [2]). Hence, the heap at each processor is
organized as two semi-spaces: oldspace and newspace. Garbage collection causes accessible
structures in the oldspace to be copied to the newspace; the two semi-spaces then exchange
roles.

27

X" | RREF e B X

wl w2

ORT IRT

Figure 2: Incoming and Outgoing Reference Tables

5.1 Global Collection

The global component of the garbage collector uses an extended reference counting algo-
rithm (first described in [4]) to determine when memory cells accessed by remote refer-
ences can be reclaimed. This algorithm can maintain reference counts in 2 multicomputer
with substantially less communication than conventional reference counting. It associates
weights with both interprocessor references and referenced objects. When an interproces-
sor reference is created, the reference is given an initial large weight and the weight of the
referenced object is incremented by the same value. If the reference is subsequently du-
plicated, the weight in the reference is shared between the original reference and the copy
(unless the weight is one, as discussed later). If the reference is reclaimed. a cancellation
request is sent containing its weight to the object that it references. The weight of the
reference is subtracted from the weight of the object. The algorithm hence maintains the
invariant that the sum of weights of all references to an object (whether located on other
processors or in messages in transit between processors) is equal to the weight associated
with that object. When this weight becomes zero, there are no interprocessor references
to the object, and it may be reclaimed by local garbage collection. Optimizations reduce
the number of interprocessor communications generated by garbage collection.

Indirection tables are introduced to support the integration of reference-counting inter-
processor garbage collection and copying intraprocessor collection. These permit reloca-
tion of data during local collection, identification of terms referenced from other processors,
and concise storage of weights. The indirection tables are termed the Incoming Reference
Table (JRT) and Outgoing Reference Table (ORT). A processor’s IRT records references
from other processors to local objects. A processor’s ORT records references to terms
located on other processors. Hence, every interprocessor reference has an entry in two
indirection tables: one in the originating processor’s ORT, and one in the IRT of the
processor on which the referred-to object is located. Figure 2 illustrates this: a remote
reference X’ to a variable X passes via an ORT entry on one processor and an IRT entry
on the other. The terms wl and w2 represent the weights associated with the reference
and the referred-to object, respectively. Note that wl must be less than or equal to w2.

The form of the IRT and ORT has been described in Section 2.1. Here, we define the
procedures that are used to manipulate these data structures.

28

Operations on the IRT

The IRT and its three associated registers (IFL, ISZ, RF) are manipulated by using the
following procedures.

irt_.address(N) converts an IRT index into a heap address.

if (RF = True) then return(current_space + N)
else return(other_space + N)

irt_indez(P) converts a heap address into an IRT index.

if (RF = True) then return(P - current_space)
else return(P - other_space)

allocate_irt_entry(Address. Weight) allocates an IRT entry from the IRT free list, extending
the IRT if the free list is empty.

if (IFL = NULL) then extend.irt()
T:=1IFL

Index := irt_index(IFL)

IFL := cell_at(IFL+1)

cell_at(T) := Weight

cell.at(T+1) := REFERENCE<Address>
return(Index)

cancel_irt_entry(Indez, Weight) decrements the weight associated with an IRT entry. If the
entry’s weight becomes zero, the entry is added to the IRT free list.

Address := irt_address(Index)

cell_at(Address) := cell_at(Address) — Weight

if (cell_at(Address) = 0) then
cell_at(Address+1) := REFERENCE<IFL>
IFL := Address

extend_irt() is used to extend the IRT when the IRT free list becomes empty- This process
involves copying the contents of the IRT to the bottom of the inactive semi-space, if this
has not already be done, and setting the Resize Flag (RF); allocating space in the inactive
semi-space, contiguous with the existing IRT, and linking this space into the IRT free list;
modifying the contents of the IRT Size register (ISZ) to reflect the new size of the IRT;
and decrementing the amount of space available for the heap proper (free_space).

29

if (RF = False) then
1:=0
while (I < ISZ*2) do
cell_at(other_space + I) := cell_at(current.space + I)
I1:=1+1
RF := True
IFL := other_space + ISZ
P := other_space + ISZ
while (P < other_space + IRTINCREMENT - 2) do
cell.at(P):=0
cell_.at(P+1) := REFERENCE<P+2>
P:=P +2
cell_.at(P):=0
cell_at(P+1) := REFERENCE<0>
ISZ := 1SZ + IRT_.INCREMENT
free_space := freespace - IRT.INCREMENT

Operations on the ORT

Operations on the ORT and the associated registers OFL and OH are defined as follows.

allocate_ort_entry(Weight, Node, Location) allocates a new ORT entry, from the free list if

possible and otherwise from the heap.

if (OFL == NULL) then
OAddress := HP
HP := HP + 4
cell_at(OAddress + 3) := REFERENCE<OH>
OH := OAddress
else
OAddress := OFL
OFL := cell_at(OFL+2)
cell_at(OAddress) := Weight
cell_.at(OAddress+1) := Node
cell_at(OAddress+2) := Location
return(OAddress)

30

cancel_ort_entry(Address) returns an ORT entry to the ORT free list.

cell_at(Address+1) := 0
cell_at(Address+2) := REFERENCE<OFL>
OFL := Address

5.2 Local Collection

Local garbage collection causes accessible structures in the oldspace to be copied to the
newspace. Accessible structures are those accessible from pointers into the heap. It is
assumed that local garbage collection is performed only between reductions and that
there is no current process. Hence, the pointers that must be followed comprise the queue
registers (AF, AB, GF, and GB), the IRT, and pointers supporting asynchronous input
and event handling (KS and ES).

The local garbage collector marks ORT entries that it encounters when copying;
these correspond to accessible remote references. Once copying is completed, the ORT
is scanned; unmarked entries can be discarded from the ORT. A cancellation request is -
generated for each unmarked entry. These requests are bundled in Cancel messages.

In outline, the algorithm operates as follows:

collect()
hp := lp := newspace
copy-rt_to_new_space()
OH := copy.ort_tonew _space(OH)
AF, AB, GF, GB, KS, ES := copy-tonew_space(AF, AB, GF, GB, KS, ES)
while(lp < hp) do
if (newspace_at(lp) refers to oldspace) then
P := newspace_at(lp)
dereference(P)
if (in_new _space(P)) then
newspace_at(lp) := P
else
newspace_at(lp) := copy-tonew_space(P)
lp := Ip + sizeof(object_at(lp))
process_ort()
“swap oldspace and newspace”

31

copy-to.new_space(pointer)
“copy single level of structure at pointer to newspace at hp, represent
substructures by references to their location in oldspace”
“replace each copied item by a reference to its location in newspace”
“increment hp by size of data copied”
“return value of hp prior to increment”

Minor elaborations of this basic algorithm are required to ensure that untyped data
structures are copied in their entirety. An untyped data structure is one whose structure
can be determined only by its context and not by its representation on the heap. This is
the case with process records and IRT and ORT entries. Hence, the IRT and ORT are
copied before other structures and are traced in a separate stage. Similarly, when tracing
the active process queue (which originates in the register AF) and suspension structures,
copying proceeds until all process records encountered have been copied to the new space.
Finally, PCN data structures must be dealt with specially, to ensure that mutable data
structures are not duplicated.

A process’s code pointer references a program in a module. An entire module must
be copied if any of its programs are referenced. The module field associated with each
program is used to locate the start of a module and perform this operation when copying
a process. The module’s header cell is then overwritten with the new address of the
module, to indicate that copying has occurred.

A reference to a tuple in the old space may be encountered when scanning the new
space. The following algorithm is used to copy a tuple of arity A at location P. It returns
a pointer to the location of the tuple in the new space.

copy-tuple(P,A)
copy-tuple_size
foreach argument
copy arguments to new heap
first argument := reference to new_heap
return new address of first argument

When copying encounters a reference to a data structure other than a tuple, the header
cell is examined. If the INLINE bit is set, the item is in a module. The negative offset
contained in the preceding cell is applied to locate the beginning of the module. ‘If the
module’s preceding cell is a reference to the new heap, then the module has already been
copied; otherwise, the entire module is copied. If the INLINE bit is not set, the data
structure is copied, and the header cell is set to reference the new location on the new
heap. Finally, the position of the data structure in the new space (whether copied or not)
is returned.

The algorithm used to copy data structures other than tuples (i-e., integer, real, or
string) is summarized in the following description:

32

copy_data_item(P)

if (inline(P)) then % Data in module
P1:= P + integer_at(P-1) % access module beginning
P1 := copy-dataitem(P1) % copy the module
P2 := P1 - integer_at(P-1) % new location of data
cell_at(P) := REFERENCE<P2> % set old to point to new
return(P1 - integer.at(P-2)) % return new location

else % Ordinary data structure
copy -cells(cell_size_at(P)) % copy it '

cell.at(P) := REFERENCE<newspace location>
return(newspace locations)

5.3 Garbage Collection Failure

Garbage collection is said to fail when computation cannot continue because of lack of free
space. In local failure, a single processor runs out of space; in global failure, all processors
run out of space. A garbage collector can in principle recover from local failure but not
from global failure. Two mechanisms address the problem of local failure.

Broadcast. A processor in which local collection fails requests other processors to
perform local collection, by broadcasting a Collect message. It then waits until either it
receives a Cancel message, in which case it performs local garbage collection, or a time-out
period elapses. If local free memory remains insufficient, the broadcast is repeated. An
error is reported if a broadcast is repeated some fixed number of times without storage
being reclaimed. A broadcast may be directed at all processors or, in a large parallel
machine, to some subset of all processors.-

Idle Collection. Idle processors perform local collection after a specified idle period.
This optimization tends to reduce the frequency with which the broadcast mechanism
must be invoked.

5.4 Deficiencies

We claim (but have not proved) that the garbage collector described here will eventually
reclaim all garbage created by successful execution of a legal PCN program. However,
illegal or nonterminating programs can create circular structures that cannot be reclaimed.

Illegal Programs. Dllegal PCN programs that create circular data structures (i.e., def-
initions of the form X = Y, where Y contains X) can generate garbage that cannot be
reclaimed.

Nonterminating Programs. If a nonterminating (and hence erroneous) program creates
processes that suspend on more than one variable, these processes will remain on the
global suspension queue indefinitely. Memory occupied by these processes and their data
structures will never be reclaimed.

33

6 System Bootstrap

The bootstrapping of a PCN system involves loading a bootstrap module to each proces-
sor, building a collection of streams to link different processors, and creating an initial
process that invokes the bootstrap process on each processor. By convention, the initial
process is called boot. It is provided with a tuple as an argument; this contains the initial
interprocessor streams. The boot argument has the form

{Keybd,Events,ProcId,Procht,UseHost,[lnl,..,lnN],[Outl,...,OutN],}

where Keybd is a stream from the keyboard, Events is the processor’s event stream, Procld
is the processor identifier of this processor, ProcCnt is the number of processors being
used, UseHost indicates whether the host node is to be used for process mapping (value =
“y” or “n”), and the In’s and Out’s are streams to neighboring processors, used for input
and output, respectively. Processors are assumed to be numbered 0...N-1, for N nodes,
where node N — 1 is the host.

The input streams (In’s) from other processors will be remote references to variables
at known locations in the heap. The output streams are variables written into known

locations for the benefit of other processors.

M = load_.initial_module

C = mlookup(M,boot)

if (C # Null) then
P := make_process()
procedure_field(P) := C
S := build_boot_tuple()
argument(P,0) := REFERENCE<S>
enqueue_process(P)
schedule_process()

else
exit

In addition, the bootstrap procedure must initialize the various machine registers.

7 Asynchronous Keyboard Input

A convenient interface to asynchronous keyboard input is provided by a keyboard event
strearn which is incrementally bound to a list of characters typed at the keyboard. Ar-
chitectural support for the event stream consists of a single machine register, XS. This
points to the tail of the stream. A check is made at the end of each timeslice to determine
whether input is pending; if so, the event stream is bound, and KB is modified to point
to the mew tail. The nature of the check performed at each timeslice depends on the
capabilities of the underlying operating system. Two alternative techniques can be used.
The first, preferred, technique is to provide an interrupt service routine that sets a flag

34

when input is available. A new machine register, IP (the Input Pending flag), is used for
this purpose. The implementation then needs only to check this flag at the end of each
timeslice. The second technique should be used only if the underlying operating system
does not provide access to interrupts. In this case, the implementation must physically
poll for events. If this is an expensive operation, polling may need to be performed less
frequently (e.g., once every 100 time slices).

The keyboard event stream is made available to the initial process created at bootstrap
time (see Section 6).

References

[1] Chandy, M., and Taylor, S. The composition of parallel programs, Proc. Supercom-
puting 89, Reno, 1989.

[2] Cohen, J. Garbage collection of linked data structures, Computing Surveys, 13(3),
341-367, 1981.

[3] Foster, I. A multicomputer garbage collector for a single-assignment language, Inter-
national Journal of Parallel Programming, 19(6), 1989.

[4] Weng, K., An abstract implementation for a generalized data flow language. MIT
Laboratory for Computer Science TR-228, 1980.

35

A Abstract Instruction Set and Encoding

[Abstract Instruction [OoP B1 B2 B3 [Celll [Cell2 |
fork(Procedure,A) 0 A 0 0 | Offset
recurse(Procedure,A) 1 A 0 0 | CountOff | Offset
halt 2 0 0 0 | CountOff
default(A) 3 A 0 0 | CountOff
try(Label) 4 0 0 0 | Offset
run(R1,R2) 5 Rl R2 O
send(R) 6 R O 0
build_static(R,T,Size) 7 R T 0 | Size
build_-dynamic(T.R1,R2) || 8 T Rl R2
build_def(R) 9 R 0 0
put_data(R,T,S,Value) 10 R T S Valuel Value2 ...
put_value(R) 11 R 0 0
copy(R1,R2) 12 R1 R2 0
get _tuple(R1,A,R2) 13 R1 A R2
equal(R1,R2) 14 R1 R2 0
neq(R1,R2) 15 R1 R2 O
type(R1,Tag) 16 Rl Tag O
le(R1,R2) 17 R1 R2 O
1t(R1,R2) 18 R1 R2 0
data(R) 19 RI R2 0
sizeof(R1,R2) 20 R1 R2 O I
define(R1,R2) 21 R1 R2 O
get_arg(R1,R2,R3) 22 Rl R2 R3
get_element(R1,R2,R3) 23 R1 R2 R3
put_element(R1,R2,R3) [[24 R1 R2 R3
add(R1,R2,R3) 25 R1 R2 R3
sub(R1,R2,R3) 26 R1 R2 R3
mul(R1,R2,R3) 27 R1_R2 R3
div(R1,R2,R3) 28 R1 R2 R3
copy.-mut(R1,R2) 29 R1 R2 O
coerce_mut(R1,R2) 30 R1 R2 0 -
put foreign(R) 31 R O 0
call foreign(A,Address) 32 A 0 0 | TimeOff | Address
exit() 33 0 0 0

36

B Coding Examples

B.1 Partition: Array Version

PCN
partition(lb,ub,i,j,s,a) % partition array
int i,j,a[];
{?igj— % not done yet
{: { || movej(lb,j,s,a), movei(ub,i,s,a) }, % move in parallel
i<j — {;swap(ij,a), i:=i+l,j:=j-1}, '
partition(lb,ub,i,j,s,a) % continue
}
}
Core PCN
partition(lb,ub,i,j,s,a,L,R)
int i,j,a];
{7 data(L), i<j —
{1

movej(lb,j,s,a,L,M1),
movei(ub,i,s,a,L,M2),
barrier2(M1,M2,R1),
new$1(i,j,a,R1,R2),
partition(lb,ub,i,j,s,a,R2,R)

|3
default - R =[]

}

Abstract Instructions

partition/8: try(L1)
' data(R6)
data(R2)
data(R3)
It(R2,R3)
build_def(R8) % M1
build_def(R9) % M2
build_def(R10) % R1
build_def(R11) % R2
fork(movei)
put_value(R1)
put_value(R2)
put_value(R4)

put_value(R5)
put_value(R6)
put_value(R8)
fork(barrier2)
put_value(R8)
put_value(R9)
put_value(R10)
fork(new$1)
put_value(R2)
put_value(R3)
put_value(R4)
put_value(R10)
put_value(R11)
fork(partition)
put_value(RO)
put_value(R1)
put_value(R2)
put_value(R3)
put_value(R4)
put_value(R5)
put_value(R11)
put_value(R7)
copy(R3,R1)
copy(R4,R2)
copy(R5,R3)
copy(R6,R4)
copy(R8,R5)
recurse(movej,6)
L1: default(8)
build_static(R9,tuple,0)
define(R8,R9)
halt

Auxiliary Program barrier2

Core PCN

barrier2(M1,M2,R)
{? data(M1), data(M2) — R =[]}

Abstract Instructions

barrier2/3: try(L1)
data(R0)
data(R1)
build_static(R3,tuple,0)
define(R2,R3)
halt

L1: default(3)

Auxiliary Program new§l

Core PCN

new$1(i,j,a,L,R)
int i,j,a[];
{? data(l), i<j —

{1
swap(i,j,a,L,R1),
new$2(i;j,R1,R)

h

default - R =[]
}

Abstract Instructions

new$1/5: try(L1)
data(R3)
data(RO)
data(R1)
It(RO,R1)
build_def(R5)
fork(new$2)
put_value(RO)
put_value(R1)
put_value(R5)
put_value(R4)
copy(R5,R4)
recurse(swap,5)
L1: default(5)
build _static(R5,tuple,0)
define(R4,R5)
halt

39

Auxiliary Program new$2

Core PCN
new$2(i,j,L,R)

int i,j;

{?data(L) — {;i:==i+l,j:=j1,R= (1}

Abstract Instructions

new$2/4: try(L1)
data(R2)
put_data(R4,1)
add(RO,R4,R5)
copy-mut(RS5,R0)
sub(R1,R4,R6)
copy-mut(R6,R1)
build static(R7,tuple,0)
define(R3,R7)
halt

L1: default(4)

A uxiliary Program swap

Core PCN
swap(i,j,a,L,R)

int i,j,a[];
{? data(L) — {; tmp = a[i], a[i] := a[j], a[j] := tmp, R =[]} }

Abstract Instructions

swap/5: try(L1)

data(R3)

get_element(RO,R2,R5) % tmpl := ai
build_def(R6) % tmp
define(R6,R5) % tmp = tmpl
get_element(R1,R2,R6) % tmp2 := alj]
put_element(R0,R2,R6) % ali] := tmp2
put_element(R1,R2,R5) % a[j] := tmp

build_static(R7,tuple,0)
define(R4,R7)
halt

L1: default(5)

40

Auxiliary Program movej

Core PCN

movej(Ib,j,s,a,L,R)

int j,a[];

{?
data(L), j >=1Ib, a[j] > s = {; j :=j = 1, movej(lb,j,s,a,L,R) },
default — R =[]

}

Abstract Instructions

movej/6: try(L1)
data(R4)
data(RO) % 1b
data(R2) % s
le(RO,R1)
get_element(R1,R3,R6)
It(R2,R6)
put_data(R7,1)
sub(R1,R7,R8)
copy-mut(R8,R1)
recurse(movej,6)
L1: default(6)
build_static(R6,tuple,0)
define(R5,R6)
halt

41

B.2 Partition: Definitional Version I
PCN

part(X,Y,L,R)

{?2Y7=[N|Ns, X>N={]| L=
Y ?=[N|Ns], X < N = {||R=
Y?=[]=-{llL=[lR=1[]}

}

Core PCN

part(X,Y,L,R,L¢,Rc)

{ 7data(Lc), Y 7= [N|Ns, X > N = {|| L =
data(Lc), Y 7= [N|Ns, X < N = {||R =
data(Le), Y?2=[] = {lIL=[].R=

default — Rc = []
}

Abstract Instructions

part/6: try(L1)
data(R4)
get_tuple(R1,2,R6)
data(R0)
data(R6)
It(R6,R0)
build_def(R8)
build _static(R9,tuple,2)
put_value(R6)
put_value(R8)
define(R2,R9)
copy(R7,R1)
copy(R8,R2)
recurse(part,6)

... etc ...

42

[N|Ns1], part(X,Ns,Ns1,R) },
[N|Ns1], part(X,Ns,L,Ns1) },

[N|Ns1], part(X,Ns,Ns1,R,L¢,Re) },
[N|Ns1], part(X,Ns,L,Ns1,Le,Re) },

(. Re=[]}.

% R6: N, R7: Ns
% X
% N

% Nsl

= [N|Ns1]

B.3 Partition: Definitional Version II

An alternative version that makes N mutable and hence performs snapshots.
Core PCN

part(X,Y,L,R,L¢,Re)

int N;

{ ?data(Lc), Y 7= [N|Ns], X > N
data(Lc), Y 7= [N|Ns], X < N
data(Le), Y?=[] = {]||L =
default — Re =[]

— { |l L = [N|Ns1], part(X,Ns,Ns1,R,Lc,Rc) },
— { || R = [N|Ns1], part(X,Ns,L,Ns1,Lc,Re) },
LR :

[l R=[lLRe=[]},

}

Abstract Instructions

part/6: build_static(R12,int,1)

try(L1)
data(R4) % data(Lc)
get_tuple(R1,2,R6) % R6: N, R7: Ns
data(RO0) % X
data(R6) % N
copy-mut(R6,R12) % local copy of N
It(R12,R0) %X >N

build_static(R13,int,1)
copy-mut(R12,R13)
build_def(R8) % Nsl
put_tuple(R9,2)
put_value(R13)
put_value(R8)
define(R2,R9) % L = [N|Ns1]
copy(R7,R1)
copy(R8,R2)
execute(part,6)
.. etc ...

43

@

