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Abstract

A systolic algorithm for the SVD of arbitrary complex matri-
ces, based on the cyclic Jacobi. method with “parallel ordering”
is presented. A novel two-step, two-sided unitary transforma-
tion scheme, tailored to the use of CORDIC algorithms for high
speed arithmetic, is employed to diagonalize a complex 2 X 2 ma-
trix. Architecturally, the complex SVD array is modeled on the
Brent-Luk-VanLoan array for real SVD. An expandable array of
O(n?) complex 2 X 2 matrix processors computes the SVD of an
n X n matrix in O(nlogn) time. A CORDIC architecture for
the complex 2 X 2 processor with an area complexity twice that
of a real 2 x 2 processor is proposed. Computation time for the
complex SVD array is less than three times that for a real SVD
array with a similar CORDIC based implementation.

1 Introduction

Real-time signal processing concerns combined with the advent
of parallel algorithms and architectures, have pushed systolic ar-
rays to the forefront of special-purpose computing. The Singular
Value Decomposition (SVD) is an important matrix factorization
procedure used extensively in signal and image processing algo-
rithms. While most systolic arrays proposed for the SVD in the
literature assume real input matrices, complex data matrices do
occur in practice. In particular, several adaptive beam-forming
algorithms [6] which determine the direction or bearing of a sig-
nal source, require complex matrix factorizations and can benefit
from a complex SVD array.

In this paper, a systolic algorithm for the SVD of an arbitrary
complex matrix is presented along with a CORDIC (COordinate
Rotation DIgital Computer) based VLSI architecture for the sys-
tolic processor element. The expandable array structure of the
Brent-Luk-VanLoan systolic array [1] with the 2 X 2 processors
is preserved. The Jacobi-SVD method with a novel two-step,
twelve-angle two-sided rotation scheme for the diagonalization
of arbitrary 2 x 2 matrices is employed to compute the SVD of
larger matrices. A new systolic scheduling scheme is proposed
to improve the performance of the array by 50%. An area/time
complexity analysis for either array is compared.

2 SVD and Jacobi Methods

A singular value decomposition (SVD) of a matrix MeCm™*"is
given by
M = UTvH, Q)

where U € C™*™ and V € C™*™ are unitary matrices and T €
R™X" is a real non-negative “diagonal” matrix. Since MH =
VETUH, we may assume m > n without loss of generality.
Jacobi-type procedures are extremely amenable to parallel
computation as evidenced by the number of such schemes that

have been proposed [1]. In the classical Jacobi eigenvalue pro-

cedure as extended to the SVD of a square matrix M € cnxn,

the matrix is diagonalized via a sequence of 2 x 2 SVDs. Corre-
sponding to the eigenvalue decomposition of a symmetric 2 X 2
matrix, a similar scheme needs to be devised for the SVD of an
arbitrary 2 X 2 matrix.

In the context of VLSI architectures, the various methods pro-
posed in the literature for the SVD of a complex 2 X 2 matrix
have shortcomings [5]. They are either, too cumbersome to im-
plement in special-purpose VLSI using CORDIC or traditional.
arithmetic units like the Forsythe-Henrici scheme [4], or they as-
sume a specialized matrix structure as in the Deprettere-Van der
Veen scheme [7]. The scheme due to Cavallaro-Elster (2], though
implementable in CORDIC, does not efficiently adapt to systolic
computation. =

Ideally, a one-step diagonalization procedure for the complex
2 x 2 problem is desirable. It allows the straightforward adapta-
tion of the array architectures that have been proposed for the
real SVD problem, like the Brent-Luk-VanLoan systolic array,
since a real 2 x 2 matrix can be diagonalized by a single two-
sided rotatjon. Also, from the discussion of the diagonalization
of an arbitrary complex 2 x 2 matrix M in [4], any simplifica-
tion will require at least one-additional transformation step for
diagonalization. The structuring of a two-sided transformation
for efficient VLSI implementation using CORDIC was motivated
primarily by these considerations.

Defining a Q transformation as

[qe"- —sgeils [Ae“- Bei® [c,g.e""' syei? @
sgei= cyeils Ceile Dei®a | | —syei®s cyes |* )

we show that by appropriately choosing the various parameters
8., 6p, 04, 05, 04 and 6y, an arbitrary complex 2 X 2 matrix
can be diagonalized in two steps. A detailed derivation for the
two-step diagonalization scheme is given in (5]. The first Q trans-
formation essentially performs a QR decomposition (QRD) of M.
The second completes the diagonalization.

The first Q transformation which performs a QRD is given by

[coei®= "5‘3"’] [Ae"" Be“'] [ cyei®s s;e"‘T]

seeie cgei¥s | | Ceile Deita| | —syei® cyei®t
Weile Xei=
= [ 0 eZ ’ (3)
where
0, = 0 = :(_oﬂ'_a_‘).,g,,=_o,= Q‘_"_&.).,

2 2
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s = 0, and §y = tan o) (4)

and the second Q transformation which completes the diagonal-
jzation can be written as

caefe —greifn ] [Weils Xeis cpec s e
sae’e creidn 0 Z —s,ev c eitv

ro
= 0Q)’ (5)
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where

9:+9w oz_ow
o= -(32), == (B),

6, = (92;2'-9—’), tan(fr £ 6,) = — (Z;:Y_W) (6)

SVD algorithms require costly arithmetic operations such as
division and square root in the computation of rotation param-
eters. Increased efficiency may be obtained through the use of
hardware oriented arithmetic techniques that relate better to the
algorithm. The CORDIC (8, 9] algorithms, which allow easy com-
putation of inverse tangents and vector rotations, have proven
extremely useful in this context [3].

The Q transformation in (2) may be rewritten as

ce =84 [e*> 0O Aei's Bei ] [+ 0 cy Sy 7

84 c4 0 '] | Cei Deite 0 ei*| |—sycy)’ ™
to hint at a procedure for the use of CORDIC in the applica-
tion of the Q transformation. As indicated by (7), the Q trans-
formation can be performed in two steps. The inner two-sided
unitary transformation is completed first, and followed by the
two-sided rotational transformation. The inner unitary trans-
formation, essentially affects only the arguments of the complex
data clements. .

We assume that the complex data elements of the input ma-
trix are represented in orthogonal coordinates. Since the inner
transformation affects only the arguments of the complex data,
it is convenient to compute the polar coordinate representations
of the data elements. The unitary transformation angles can
then be used to modify the arguments appropriately. A transfor-
mation back to the orthogonal coordinate system completes the
unitary transformation.

Once the inner rotation of the Q transformation has been
completed, the outer two-sided rotation needs to be computed.
From the arithmetic of complex numbers, it is easy to observe
that the two-sided rotation may be applied independently to the
real and imaginary parts of the data elements. The application of
the outer transformation, for the real or imaginary parts, involves
two vector rotations. The vectors are given by the rows for the
left rotation and by the columns for the right rotation. CORDIC
scale factor correction is postponed uatil both the left and right
rotations are applied to employ two-sided scale factor correction.

3 A Processor Architecture

In the application of the Q transformation using CORDIC, a
basic CORDIC processor [3], is required for each complex data
element. However, additional complexity in control is required to
handle extra computations required for complex data manipula-
tions. To achieve maximum parallelism in the application of the
Q transformation for the complex 2 x 2 problem, four CORDIC
modules are needed.

No more than four CORDIC modules are necessary to achieve
maximum concurrency in the application of the Q transforma-
tion. This is because each module can independently apply the
inner unitary transformation sub-step of the Q transformation if
there exists 2 mechanism for the broadcast of the necessary rota-
tional angle parameters. Also, adjacent modules (row or column
adjacency depending on whether the right or the left rotation is
being applied) share rotation angles and exchange data in the
application of the outer rotational transformation sub-step.

Due to the adjacency in the pattern of communication of data
and results of CORDIC iterations between the CORDIC mod-
ules, it is more efficient to have register banks shared by neigh-

boring CORDIC modules than a centralized register bank. Fur- .

thermore, the results of some CORDIC operations, such as the

rotation angles, are needed by all the CORDIC modules. A data
bus linking the four register banks is also required.

The proposed CORDIC complex 2 x 2 processor as shown in
Figure 1, is composed of four CORDIC modules and a central
control unit. The CORDIC modules are similar to those men-
tioned in (3], with modifications in the control units to implement
the schemes for complex arithmetic using CORDIC [5].
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Complex | |"p7" | —
CORDIC i Comelex
Module #0 : ——| Module #1
Rag fu-1
Regin |
Rzg Bank #0 Reg Bank #2
Reg #0 M Reg #0
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L L Control o Restt
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Reg fo-1 Reg fn-1
Reg in Regfun
Reg Bank #3 Extermal 1O
L.
Complex Reg 0 Complex
CORDIC Reg 81 CORDIC
Module #2 - Module #3
. Reg fn-1
Reg fn
~¢———e Intcrmodular Data'Bus

«@w——s=  Global Data Bus

Figure 1: Complex 2 X 2 Processor Architecture

Let T and TQq3, be the time required to compute the first
and second Q transformations in the computation of the SVD.
The time complexity analysis presented below is indicative of the
maximum parallelism that can be exploited in the CORDIC SVD
algorithm using the architecture of Figure 1. Both T'q; and Tq.
can be split up as

Tq1 = Tqz = Tpr+ Tir+ Ton+ 2Tvr + 2TrsFc,

where Tpr, TIT, TCR, TV R and TrsFc, are the times to compute
the polar transformation of a complex number represented in
orthogonal coordinates using CORDIC, the inverse tangent, the
complex rotation, the vector rotation and the two-sided scale
factor correction, respectively. All of the times mentioned above,
except for Trsrc, are about the same as the time required to
compute one CORDIC vector rotation, Tc [5). For fixed-point
data paths , Trsrc = 0.25T¢ [3]. Thus,

Tqr = Tq2 = 5.5T¢.

The total time complexity of the two-step diagonalization method
is therefore
Tesvp = Tqu+Tg2 = 11Tc.

The principal components of the complex SVD processor are
the four CORDIC modules, each of which requires a barrel shifter
of O(b?) area! with three adders, angle ROM, control and mod-
erately complex interconnection buses. Each CORDIC module
is similar to a basic CORDIC processor of area Ac. The four

1) = word length in bits
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register banks which serve as storage for the CORDIC modules
and communication of data and angles between the processors
and/or modules and the central control unit complete the list of
major components in terms of area requirement. If Apeg is the
area requirement for each of the register banks and AconTROL
is that of the control unit, the area complexity of the complex
CORDIC SVD processor, can be expressed as

Acsvp =~ 4Ac + 4AReG + AcoNTROL-

4 A Systolic Array for CSVD

The complex SVD array is an expandable, mesh-connected array
of processors, where each processor contains a 2 X 2 sub-matrix
of the input matrix M € C™*™. Assuming that n is even, the
complex SVD array is a square array of n/2 X n/2 processors.
Defore the computation begins, processor P;; contains

[m2i-l.2j-l M3i1,2j
m2j2i-1  M2i32j

where (i,j = 1,..., g) Each processor P;; is connected to its “di-
agonally” nearest neighbors Piy ji1, (1 < 1,5 < 3). The com-
plex SVD array, with 16 processors for n = 8, is shown in Fig-
ure 2. The interconnections between the processors facilitate
data exchange to implement the “parallel ordering” of Brent-

Luk.

Q | D
11 12 " Pll ] Pl‘
1 1 1 i )
Pll Pn e P?J | Pﬂ
y ' i )
Py LN ne IR e A
! ! 1 1 )
L1 P‘I = P‘J P“

———e  Matrix Data Elements
«=s= Rotation Angles, Systolic Flow

Figure 2: The Complex SVD Array

The Brent-Luk “parallel ordering” permits Jacobi transfor-
mations to be applied, in parallel, in groups of n/2. The param-
eters for the n/2 Jacobi transformations are generated by the
n/2 processors on the main diagonal of the array. The diagonal
processors P; (i =1,...,%) in the array have a more impor-
tant role in the computation of the SVD when compared to the
off-diagonal processors P;; (i # j,1<i,i< §).

The application of a two-sided Jacobi transformation affects
only the row and column of the diagonal processor generating the
transformation. In an idealized situation, the diagonal processors
may broadcast the parameters along the row and the column cor-
responding to their position in the array, in constant time. Each
off-diagonal processor applies a two-sided transformation using

_ the rotation angle parameters generated by the diagonal proces-

sors in the same row and column with respect to its location in
the array.

It cannot realistically be expected that the transformation
parameters be broadcast in constant time for any array size.
However, by assuming that the transformation parameters can
be transmitted between adjacent processors in constant time,
Brent-Luk-VanLoan specify a scheme to stagger computations
that preciudes the need for broadcast of rotation parameters,
but still completes a sweep of the “parallel ordering” in O(n)
time.

The complex SVD array as described so far is identical to the
Brent-Luk-VanLoan systolic array in all respects except that the
Brent-Luk-VanLoan systolic array diagonalizes a real 2 2 matrix
as opposed to arbitrary 2 x 2 matrices in the complex SVD array.
With the use of the two-step diagonalization scheme proposed
in this paper and the CORDIC implementation of the scheme,
it is clear that the number of transformation parameters (Eqs.
4,6) that are generated at each step of the Jacobi-SVD method
is significantly greater than the real SVD case?. The two-step di-
agonalization scheme is composed of two Q transformations each
of which requires the generation and application of six angles,

. four unitary angles and two rotational angles. Thus, the total

count of the angles amounts to twelve in all; eight unitary and
four rotational angles.

In a direct adaptation of the Brent-Luk-VanLoan systolic ar-
ray for systolic computation of the SVD of a complex matrix, six
angles must be propagated along both the rows and columns of
processors on the main diagonal. These processors are responsi-
ble for the generation of the angles, in addition to applying them
to diagonalize the 2 x 2 matrices stored on them. Also, while the
diagonal processors are computing the second @ transformation,
the immediately off-diagonal processors are idle; even though the
rotational parameters needed for the application of the first Q
transformation are available at the diagonal processors.

The identity of the steps in the two-step diagonalization
scheme was intended to prompt an overlapping of computation
across the array. The novel scheme proposed then, is to chase
the first and second Q transformations down the diagonals, one
behind the other as shown in Figure 3. Thus, while the proces-
sors on the main diagonal are still computing the parameters for
the second Q transformation step, the immediately off-diagonal
processors are applying the first Q transformation. The added
systolicity and pipelining due to this new scheduling of computa-
tions, improves performance and reduces the communication load
per step for the propagation of rotational parameters through
the array. The processor utilization increases from 33% to 50%
due to the fact that processors along any diagonal are now ac-
tive twice every four computation steps as opposed to once every
three computation steps.

In comparing the relative performance of the Brent-Luk-
VanLoan systolic array and the complex SVD array, the con-
vergence of the SVD-Jacobi method and the time to compute 2
sweep of the “parallel ordering” are the determining factors. A
measure of the computational speed of the two arrays is the time
required for processors on the main diagonal to start processing
new data after completing a diagonalization. These times for
the different SVD arrays are tabulated in Table 1, where A ;teps
refers to the number of computation steps before the main diag-
onal starts processing data again.

A direct scheme for the computation of the SVD for a real
2 x 2 matrix using CORDIC was shown to require 3.25 Tc (3]
From the discussion of the area/time complexity of the complex
CORDIC SVD processor we know that a Q transformation re-
quires 5.5 Tg. Again, both the times mentioned above include
the time to generate the respective rotation parameters involved.

20nly two rotation angles are needed for real diagonalization

1063



moogaag mEooo ogmoo
omaoaoa Ommoo mOomEOoo
O0oo00 -000o00 —-000080
ooooag CoomO ooDmoa
goooa oooom gooomOo
!
B@ao0om BOo0Om oomgma
mEeodg omaoom ooooom
i -— 00000~ 00000
ooaEad mOoo®o omooo
moooa omaoa comao
|
oa=z0o0 goaao aooss
BO0zE0 oooea: ozOooad
IEinEn - E00060 -00000
oa@EOon B@O00 mOoOoo0
oom@®Ea gam@ag a@E0o0og

X -> First Q Transformation of Step X
X'® -> Second Q Transformation of Step X

Tigure 3: Overlapped Computations on the CSVD Array
(Snapshots of activity on a 5 x 5 Array)

In all of the systolic arrays listed in Table 1, generation of the
rotational parameters is done only along the main diagonal. For
the direct scheme (C.SVD (B)), the processors along any diag-
onal are active once every three computation steps while in the
pipelined scheme (C.SVD (P)) the same processors are active
twice every four steps. The last column of Table 1 shows the
time to complete a sweep of the “parallel ordering” relative to
the real SVD array (R.SVD). The pipelining of computations
in the complex SVD array allows 11.0/33.0 = 33%, saving in
computation time.

Rel. Pert.

Array Asteps Tc

R.SVD 3 9.75 1c | 1.0 Tnasvp |
C.SVD (B 3 33.0 T¢ | 3.38 Tasvp

C.SVD (P 4 22.0 Tc | 2.26 TasvD

Table 1: Relative Performa.ﬂce of SVD Arrays

The estimates of the relative speed of the real and complex
SVD arrays depend on the rate of convergence for the SVD-
Jacobi scheme and nature of the matrix data (real or complex).
A simulation of the complex SVD array was performed on the
Connection Machine [5] to observe the convergence behavior in
terras of the number of sweeps required for a given matrix (array)
size. A similar study was also performed by Brent, Luk and
VanLoan (1] to observe the convergence rate for the real SVD
using “parallel ordering” and the two-sided rotation scheme for
diagonalizing a real 2 x 2 matrix. The convergence behavior of
the SVD-Jacobi method with “parallel ordering” for real data
matrices is given in [1]. The number of sweeps required for the
convergence of the complex SVD scheme is greater than that for
the real SVD, but the convergence behavior is identical. Also,
since the time required to complete a sweep in the complex SVD
array is 2.26 times greater than the real SVD array (Table 1),

the overall time for computation is less than three times that for -

the real SVD array.
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5 Conclusions

In this paper, a novel VLSI hardware oriented two-step diagonal-
ization scheme for the SVD of a complex 2 X 2 matrix, the basic
step in a Jacobi-type procedure for the computation of the SVD,
was presented. Each step in the scheme was a two-sided unitary
transformation (Q transformation), designed to be efficiently im-
plementable in hardware using CORDIC. A systolic array sim-
ilar in structure to the Brent-Luk-VanLoan systolic array, with
an enhanced scheduling and data exchange algorithm designed
to efficiently implement the two-step diagonalization scheme was
proposed for the solution of the complex SVD problem. The be-
havior of a processor in the complex SVD array, illustrating the
systolic computation, was detailed. An architecture for the com-
plex 2 x 2 processor, exploiting the parallelism in the CORDIC
implementation of the two-step diagonalization scheme, was pre-
sented. In spite of the involved nature of computations in diago-
nalizing a complex 2 x 2 matrix, the time for completing a sweep
in the complex CORDIC SVD array is less than three times that
for a CORDIC based implementation of the real SVD array.
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