13

An Implementation of a Primal-Dual
Interior Point Method for
Block-Structured Linear Programs

Irvin Lustig
Guangye Li

CRPC-TR92194
January 1992

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Revised and renamed in June 1992. Appears in Computational Optimization
and Applications, 1, 141-161, 1992.

f»

Computational Optimization and Applications, 1, 141-161 (1992)
© 1992 Kluwer Academic Publishers. Manufactured in The Netherlands

An”Implementation of a Parallel Primal-Dual
Interior Point Method for Block-Structured
Linear Programs

IRVIN J. LUSTIG
Department of Civil Engineering and Operations Research, Princeton University, Princeton, NJ 08544.

GUANGYE LI
Department of Mathematical Sciences and Center for Research in Parallel Computation, Rice University,
Houston, TX 77251.

Received January 10, 1992, Revised June 8, 1992.

Abstract. An implementation of the primal-dual predictor-corrector interior point method is spe-
cialized to solve block-structured linear programs with side constraints. The block structure of the
constraint matrix is exploited via parallel computation. The side constraints require the Cholesky
factorization of a dense matrix, where a method that exploits parallelism for the dense Cholesky
factorization is used. For testing, multicommodity flow problems were used. The resulting im-
plementation is 65%-90% efficient, depending on the problem instance. For a problem with K
commodities, an approximate speedup for the interior point method of 0.8K is realized.

Keywords: parallel computing, interior point methods, linear programming, multicommodity flow
problems.

1. Introduction

Many applications of linear programming can be modeled using the following
formulation:

K

minimize Y _(c*)Tz* (1)
k=1

subject to Az* = ¥, k=1,...,K)

« ‘
Y B2t = m (3)
k=1 ' :
& > 0, k=1,....K 4)

This formulation requires the determination of decision vectors z!, z2, ..., X
that must satisfy a set of independent block constraints (2) and a set of side
constraints (3), while minimizing the objective function (1). If the constraints
(3) were not present, then K independent linear programs could be solved

142 : LUSTIG AND LI

yielding the optical solution. The presence of the side constraints increases the
computational requirements for finding a solution of the entire linear program.
Often, the size of each block as well as the number of variables in each block
is large, yielding a very large linear program. -

The recent interest in interior point methods for linear programming has
spawned implementations of both interior point methods and simplex methods
that can easily solve large-scale linear programs with thousands of constraints
and variables. This increase in size is also due to the improvement in computer
hardware and software technology. Even with the improvement in simplex and
interior point methodologies, block-structured problems with side constraints still
remain among the most difficult types of linear programs to solve due to their
sheer size. Interior point methods have difficulties solving these types of problems
because of the fill-in within the Cholesky factor even after a suitable ordering
has been performed. A possible solution to these problems is to exploit parallel
processing. _

For interior point methods, parallelism has been exploited in theory by com-
puting simple decomposable preconditioners and using these preconditioners in
a conjugate gradient method to solve the normal equations generated on each
iteration of the interior point method. However, these methods, proposed by
Vannelli ([16]), have only been shown to work on extremely well-conditioned
problems with a very strong block structure. In addition, conjugate gradient
methods have only been used successfully in dual affine scaling interior point
algorithms. In general, numerical difficulties will most likely appear when using
conjugate gradient algorithms, especially in the context of primal-dual interior
point methods.

Schultz and Meyer ([14]) approach the parallel solution of block-structured
problems using a shifted-barrier concept. Their method remains in the relative
interior of only the side constraints by applying a shifted-barrier function to
these constraints. Their method, which has been implemented on a parallel
computer, does not compute fully optimal solutions nor dual optimal solutions.
Their implementation, which was specialized for multicommodity flow problems
where the block constraints are network constraints, takes full advantage of the
network structure.

For solving systems of equations using parallel processing, iterative methods
have frequently been used. With a predictor-corrector interior point method,
an iterative method is not appropriate because one factorization is needed on
each interior point method iteration to solve two sets of equations with different
right-hand sides. Hence, a direct method seems to be more appropriate. The
systems of interest are very large and sparse. Though there have been some
new developments in parallel sparse factorizations (see, for example, [7]), it is
difficult to obtain very high efficiencies for parallel direct matrix factorizations
and triangular solves on general sparse problems.

Our approach attempts to take advantage of the problem structure in order
to obtain high efficiencies for the overall method. Rather than depending on

A PARALLEL PRIMAL-DUAL INTERIOR POINT METHOD 143

a preconditioned conjugate gradient algorithm to solve a system of equations,
the block structure of the equations is exploited directly to factor and solve the
system. This method, related to work of Choi and Goldfarb ([4]), computes
primal and dual optimal solutions and does not take advantage of the special
structure in the blocks, but does take advantage of the special structure in the
matrices B¥. The resulting implementation is 65%-90% efficient, depending on
the problem instance solved.

To test our implementation, we use a test suite drawn from multicommodity flow
problems. These problems are a specific well-known form of block-structured
linear programs and have been extensively studied in the literature. Assad
([2]) and Kennington ([9]) provide surveys of much of the literature on these
problems. Many different algorithms have been proposed to solve these problems,
yet the problems still remain a challenge due to their size and complexity. The
multicommodity flow model can be applied in a variety of contexts, yielding
a number of different formulations. These formulations have an impact on
decomposition algorithms applied to the problem as discussed by Jones et al.
(L8D).

We develop our algorithm in the context of multicommodity flow problems, but
it is important to stress that the algorithm is easily generalizable to any block-
structured problem with side constraints of the form described by (1)—~(4). The
main goal of this paper is to see how parallelism can improve the performance
of the basic primal-dual predictor-corrector interior point method.

Section 2 discusses the formulation of multicommodity flow problems in order
to establish notation. Section 3 discusses how a primal-dual predictor-corrector
interior point method can be applied to such problems. Section 4 discusses how a
primal-dual interior point method can use parallelization to solve multicommodity
flow problems. This is followed by computational results in Section 5 and some
conclusions in Section 6.

2. Multicommodity flow formulation

A linear multicommodity flow problem has K commodities with supplies and
demands for each commodity distributed over a network of m nodes and n arcs. .
Assad ([2]) and Kennington ([9]) provide surveys of the problem. A discussion
of the different formulation issues is given by Jones et al. ([8]). We consider
problems that are modeled mathematically as:

K
minimize) _(c¥)Tz* (%)
k=1
subject to AzF = ¥, k=1,... K (6)

144 : LUSTIG AND LI

K
Yoak+t = @ | o (7
k=1

f+sk = o, k=1,..., K (8)
o st > 0, k=1,...,K | 9)

Here, A € R™" is a node-arc incidence matrix on a network with m nodes and
n arcs; c& € R is a vector of costs for commodity k; and b* is a supply/demand
vector for commodity k, where b > 0 indicates a supply node i for commodity

k and b < 0 indicates a demand node i for commodity k. The vector T € R"
is a vector of mutual capacities corresponding to each arc in the network, while
u* € R is a vector of individual capacities. Some of these capacities may
be infinite. Note that zF € R" is a vector of arc flows for commodity k£ and
t € ®" is a vector of slack variables. The vectors sk € ®" are a collection of
vectors of slack variables for each commodity and link in the network. If arc
j = (4, i2) is in the network, then A;; = 1 and A;;; = —1. The value K is
the total number of commodities in the problem. The constraints (6) are the
flow conservation constraints for the network while (7) are known as the mutual
capacity constraints (or bundling constraints) that specify the total maximum flow
across all commodities for each arc. The constraints (8) are individual capacity
constraints on link flows for specific commodities.

The dual of (5) is

K
maximize Y (6*)7y* —T"v - ()T wt
k=1
subject to ATy + 2 —wf —v = & k=1,..., K (10)
Zwv > 0, k=1, oo, K

Each commodity k has a vector of dual variables y* € R™ associated with the
commodity along with a set of reduced costs (z* — w*) € R". The vector v € R"
is a set of dual variables corresponding to the bundling constraints (7). We
are interested in methods that compute a pair of optimal primal solutions and
optimal dual solutions.

3. Interior point methods for multicommodity flow problems

It has been shown by Lustig et al. ([10]) that a variant of Mehrotra’s ([12])
predictor-corrector primal-dual interior point algorithm is the preferred interior
point method for solving large-scale problems. The usual primal-dual algorithm
and the predictor-corrector variant use Newton’s method at each iteration to
solve sets of equations. For the primal-dual algorithm, these equations are
solved once, while in the predictor-corrector variant, these equations are solved
twice with a varying right-hand side. These algorithms will solve linear programs

™

A PARALLEL PRIMAL-DUAL INTERIOR POINT METHOD 145

of the_ form
minimize 22
subject to A% = 3 (11)
T+5s = 7
z,% > 0
and the associated dual
.. ~T A
maximize b y
. ATA A A A
subjectto Ay-w+7Z2 = ¢ (12)
Z,w > 0. ‘

To solve a multicommodity flow problem represented by equations (5)-(9) as a
generic linear program, let

r o
A T
A 3
A= , b= ¢,
bK
A _
I I o I T L
L J (13)
- -
: ul
e=| |, 2= :
A "
- ol - -
st y
,a?= b ’s\= : b /y\= b
K . K
z K y_
[t L =Y
(14)
R S
Z= “ |, and & = :
ZK wK
L v [0 |

where it is understood that the vector ¢ does not appear in the constraint
Z +%5 = 1. Note that the vector 7 is enforcing v > 0.

146 LUSTIG AND LI

In an implementation of a primal-dual interior point algorithm, the most time-
consuming and crucial step is the computation of a solution to a system of
equations of the form ‘

AA% = 7
AN - AR+ 43 =
RAZ+ 248 = 74 (15)
AT+ A5 = T
SAD+WAs = ™

for a right-hand side (71, 73, 74, 6, 77) that varies on each iteration. Furthermore,

the matrices X, 2, S, and W are diagonal matrices with the iterates Z,7Z,’s, and
 respectively, on the diagonals.
The system (15) can be reduced to solving

AAAT
(ABA)AG =~ (16)

for the vector A7 given the vector r, where o= (5\{ 12 +35 lﬁ/’)‘l is a diagonal
matrix. In the predictor-corrector algorithm, these equations are solved twice
per iteration. Since the matrix) changes on each iteration, a new Cholesky
factorization (X@XT) = LLT must be computed on each iteration. This Cholesky
factorization has the property that the nonzero structure of L remains fixed over
the course of the interior point method. Hence, before the first iteration a
permutation matrix P is computed via an ordering heuristic (such as a minimum-
degree ordering) in an attempt to reduce the number of nonzeros in L. Hence,
a generic solver would actually solve the linear program

e AT
minimize Tz
. XA
subject to PAZT

e

T +
N\
T

17)

Il
o l:’);q)

n))
Il

2

)

with the consequence that the resulting solution to the dual of (17) would have
to be permuted in order to obtain a solution to the dual (12) of (11).

For a multicommodity flow problem, ordering heuristics will cause the flow
conservation constraints (6) and the bundling constraints (7) to be mixed, de-

stroying the block structure in A. This suggests considering techniques for solving
the equations (16) that retain the block structure. It turns out that preserving
this block structure allows one to take advantage of parallel processing.

It should be noted that the methods of Fourer and Mehrotra ([6]) and Vanderbei
and Carpenter ([15]) can also be used to solve the Newton equations (15). In
this case, the matrix that is factorized is of the form

A PARALLEL PRIMAL-DUAL INTERIOR POINT METHOD 147

. a 18
57" A7 (18)

For these algorithms, a pivoting method ([6]) or an ordering heuristic ([15]) is
used to solve the system of equations resulting in a permutation of both rows
and columns. While these methods are designed to reduce the amount of work
necessary to solve (15), there are still difficulties with respect to parallel processing
because the block structure is not necessarily preserved by the pivoting/ordering
methods.

4. Parallel factorization and solution of Newton equations

For a block-structured linear program with side constraints and, in particular, a
multicommodity flow problem, the solution of (15) can be obtained by taking
advantage of the block structure of the linear program. These equations are
rewritten as

AAzt = rf k=1 ... K (19)

K .
> At + At = n (20)

k=1

ATAY — Av + AZF — Awt = ¥ =1,..., K (21)
XA + ZFAsk = rf k=1,... K (22)
TAv+ VAt = 75 (23)
AzF + At = f k=1,... K (24)
SkAuvk + WA =) k=1,... K (25)

and are solved with a given right-hand side (%, 5, r%, 7%, ¥, vk r%) to obtain a
solution vector (Az*, Ay*, AzF, Auk, Ask, Av, Ab).
The solution can be computed by the following steps:

Step 1: Let ©F = ((X*)~1Z* + (§F)-1wH)-L,
Step 2: Compute the Cholesky factorization AQ*AT = L¥(L¥)T.
Step 3: Compute the factorization :

K K
(V-IT HOCAEDS [@kAT((L’“)T)‘l(L")“lAG"]) =LL"
k=1 k=1

Step 4: Compute
¢" = (LIt - ABH(X¥) Ik — vk + (85I (Whek — 1))

148 . : - LUSTIG AND LI

Step 5: Compute the vector

K
Av = (LH)'L™! (V'1r5 —ry+ Z@k [(Xk)'lrﬂf —r¥

k=1

+(Sk)'1(W'°r{5c —rE) + Aqu])

Step 6: Compute Ay* = ¢* + (L*)T) " (L*)1AB* Aw.
Step 7: Compute Az* = OF[(X*)'rf—r§+ AT Ayk — Av + (SF) 1 (WErE —15)].
Step 8: Compute AzF = (X¥)~1(r§ - Zk Az*).
Step 9: Compute As* = rf§ — Az*.
Step 10: ~ Compute Aw* = (§%)7!(r§ — Wk Ask).
Step 11: Compute At = r? — K | Ak,

It should be noted that the above steps do not take advantage of the network
structure present in A. Furthermore, if a general block-structured program with
side constraints of the form (3) is being solved, only minor changes are made
to the above equations to introduce the matrices BF. In the remainder of this
section, methods of using parallel computation for the above procedure are
described.

4.1. Parallel factorization

We are interested in using parallel computation to compute the solution. Assume
that K processors are available. Steps 1-3 are equivalent to computing a

factorization of (2@?11'). Steps 1 and 2 can clearly be done in parallel. In
Step 3, each of the matrices D* = (6% — Ok AT((L¥)T)~Y(L*)1A6F), 1 <k L K,
can be computed in parallel. These matrices are dense and symmetric and require
the storage of O(d?) nonzeros each, where d is the number of bundled links in.the
network, i.e., the number of links such that u; is finite. They can be computed
efficiently on each processor by computing the vector p§ = (LF)T)~X(LF)1A;6%
for each arc j, followed by computing column j of D* as D = ok — 6k ATk
Hence, storage for the matrix D* is needed by each processor. Once the
K matrices D* are computed, their sum can be computed by partitioning the
matrices into K parts and using each processor to compute the sum of its
individual part. Note that this part of the computation requires that the matrices
DF be communicated to each processor. If a shared-memory multiprocessor is
used, this communication does not incur any overhead.

A PARALLEL PRIMAL-DUAL INTERIOR POINT METHOD 149

4.2. A dense parallel Cholesky factorization

Step 3 also requires the factorization of a dense matrix, Here, parallel com-
putation can again be used. In computing a Cholesky factorization, there are
a number of choices of methods. These issues are discussed by Lustig et al.
([11]) with regard to using Cholesky factorizations within the context of interior
point methods. An important aspect of these issues for parallel computation
is the difference between a “pulling” or “leftward-looking” factorization and a
“pushing” or “rightward-looking” factorization. It turns out that the pushing
version is more appropriate for parallel computation.

A rightward-looking Cholesky is computed as follows, gives that E = LLT is
to be computed and that E € R¥¥9, The initial value of L is set to the lower
triangular part of the matrix E. The elements of L are computed as follows:

1. forj=1toddo

2. Lj; «— \/L;

3. for i=35+1toddo

4. Lij = Li;/ Ly

S. end for

6. for k=j5+1toddo

7. for i =k to d do .
8. Lik — L,‘k - ngijLij
9. end for

10. end for

11 end for

The elements in column j are computed in steps 2-4 and not modified again.
Once they are computed, columns k > j are modified by column j in the loop
in steps 7-8. These modifications can be done in parallel. If K processors
are available, then each processor can be given (d — j)/K columns to modify.
This procedure has the majority of the computation [O(d®) arithmetic operations
total] done in parallel and the computation of each column [O(d?) arithmetic
operations total] done sequentially. The efficiency depends upon the relative
values of K and d. -

4.3. Parallel solution

On each iteration of the predictor-corrector algorithm, (19)—(25) must be solved
twice for different right-hand sides r,, 1 < £ < 7. Hence, on each iteration, steps
5-11 are executed twice. Each of steps 4 and 6-10 can clearly be done on K
processors. For step S, the vectors

150 _ LUSTIG AND LI

= 0k [(XF) ik — ok + (SH)TH(WErE —) + AT, (26)

1 < k < K, can be computed in parallel. The sum g = Ziil’cfk is a vector of
length d < n. It can be computed in parallel or sequentially depending on the
length of d. In the implementation, we chose to use a sequential computation
independent of the value of d. Finally, step 5 involves an FTRAN and a BTRAN
step, which requires a sophisticated parallel computation to compute v with very
little benefit for our application because the size of the dense matrix is relatively
small. Hence, we used a straightforward sequential computation. In addition,
step 11 also requires the sum of K + 1 vectors. Since At is a vector of length
d, we chose to do this part of the computation sequentially.

From the above discussion, it is clear that most of the procedure to compute the
factorization and solution can be done in parallel, using a coarse-grain approach.
Sequential computation is used in one step of the method for computing the
dense factor L as well as in the computations of the vector g, Av, and At.
The most substantial part of the sequential computation is in the FTRAN and
BTRAN steps required in step 3.

4.4. Other parallel computations

Each iteration of a primal-dual predictor-corrector interior point method involves
the computation of the vectors 7§, 7§, r§, rf, 1 <k < K. On K processors, these
vectors can be computed in parallel. In addition, each iteration also involves a
ratio test for the primal step length ap computed as

k
Z;

— k?
Amj

ap = 0.9995 min{ min {min min{

1<k<K 1<j<n

Am? <0},

s ot <o) pinf i at <)) e

For each value of k, 1 <k < K, the values

' zk . sk .
. - J ; .] ;
min{ min { —p, ek <0}, min {75 adf <0} @)
can be computed on K separate processors with the resulting value of ap
computed on a controlling processor. Similarly, the dual step length ap can also
be computed in parallel when performing the ratio tests on zF, wk, and v.

After a ratio test, each of the vectors z*, s¥, y*, z*, and w* must be updated.
Clearly this can be done in parallel. However, the update of the vectors ¢ and
v must be done serially.

It should be noted that the methods described above are not necessarily the best

methods for achieving parallelization of a primal-dual interior point method for

A PARALLEL PRIMAL-DUAL INTERIOR POINT METHOD 151

block-structured linear programs with side constraints. Certainly other avenues
exist for using parallel processing in other parts of the procedure. However,
because the method spends the majority of time computating a dense Cholesky
factorization and the block factorizations, small improvements to parallelization
will probably lead to only small differences in the results.

5. Computational results

To test the above ideas, a special version of Mehrotra’s primal-dual predictor-
corrector algorithm ([12]) as implemented in OB1 ([10]) was created to solve
multicommodity flow problems. Minor modifications would be required to allow
the implementation to solve general block-structured linear programs. The
algorithm is identical to the algorithm described in [10], except for the choice of
starting point. For a starting point, the values :

¥ = ||F|lo, 1<Ek<K, 1<j<n (29)
sf = ||t*lley, 1<k<K, 1<j<n (30)
t =g (31)
y=20 (32)
. o= k y
v; 1@?1{”6 oo, 1<j<n (33)
k k : k> .
4= Imdsrliclle + G G200 4 g cian o
Zmaxlsksx ”Ck”co if C; <0;
k|| _ ok if ok .
wi = 2mskexlle s GHG<O | j<k 1<i<n (35
2max15kg(”C ”oo if C?ZO;

were used. Note that for any link that also appears in the bundle constraints
(7), it is possible to construct the initial dual solution to satisfy dual feasibility
for that link. Furthermore, if ¥ is infinite, then s¥ =0, and w} = 0, eliminating
these variables from the computation. If %; is infinite, then ¢; = 0 and v¥ = 0,
eliminating these variables as well.

This version of the interior point method implementation assumed that the
problem was derived from a multicommodity flow problem and, hence, did
not need to store explicit nonzeros of 4. To factor the matrices (A9*AT), a
simple Cholesky factorization using no supernode or dense window strategies was
used. Before the problem was solved, a minimum-degree ordering of AAT was
computed in order to reduce fill in the factors L*. Hence, each of the factors
L*, 1 < k < K had the same nonzero structure.

The code was written in Fortran-77 on a Sequent Symmetry S81 with 20
Intel 80386 processors with Weitek WTL1167 floating point accelerators. The
operating system was DYNIX 3.1.2 and the Sequent ATS 2.1 Fortran compiler was

152 ' LUSTIG AND LI

Table .1. Statistics for Assad data set.

Network Statistics _ LP Statistics

Problem No. of No. of | No. of [No. of bund.|No. of| No. of
name |[comm. (K)|nodes (m)|links (n)| links (d) rows |columns
assadl.ik 3 47 98 98 239 294
assadil.2k 5 47 98 98 333 490
assadl.3k 7 47 98 98 427 686
assadl.4k 6 47 98 98 380 588
assadl.5k 10 47 98 98 568 980
assadl.6k 15 47 98 98 803 1,470
assadl.7k 3 47 98 - 98 239 294
assad1.8k 3 471 98 98| 239| 294
assad2.1k 4 28 102 102 214 408
assad2.2k 10 28 102 102 382 1,020
assad2.3k 20 28 102 102 662| 2,040
assad?2.4k 34 28 102 102|| 1,054 3,468
assad2.5k 10 28 102 102 382 1,020
assad2.6k 14 28 102 102 494 1,428
assad2.7k 20 28 102 102 662| 2,040
assad2.8k 24 28 102 102 774| 2,448
assad3.1k 4 28 204 204 544 816
assad3.2k 6 85 204 204 714 1,224
assad3.3k 12 85 204 204\ 1,224| 2,448
assad3.4k 18 85 204 204\ 1,734 3,672
assad3.5k 6 85 204 204 7141 1,224
assad3.6k 12 85 204 204 1,224| 2,448
assad3.7k 18 85 204 204| 1,734 3,672
assad4.1k 6 47 274 274 556 1,644
assad4.2k 10 47 274 274 744 2,740
assad4.3k 14 47 274 274 932 3,836
assad4.4k 20 47 274 274\ 1,214 5,480
assad4.5k 30 47 274 274 1,684 8,220

A PARALLEL PRIMAL-DUAL INTERIOR POINT METHOD 153

used. The parallel directives available in the compiler were used to achieve the
coarse-grain parallelization described in Section 4. A maximum of 18 processors
were used on any given run. Real memory on the Sequent was limited to 80
megabytes. All of the problems solved in this study were chosen so that the total
amount of memory required by the implementation was less than 80 megabytes,
reducing the paging activity on the system to a minimum. Times are reported as
processor time of the controlling processor as measured by the Sequent function
etime. This time was found to be very similar to the actual wall-clock time.

5.1. Test problems

The test problems used for this study come from three different sources. The
first set comes from test problems of Assad ([1]) and are described in Table
1. The second set comes from test problems used by Farvolden ([S]) and are
described in Table 2. The third set are problems from the patient distribution
system model of the Military Airlift Command that were used by Carolan et al.
([3]) in their testing of the AT&T KORBX system. This last set is described in
Table 3. For each table, the statistics about the multicommodity flow network as
well as the size of the equivalent linear programming formulation are given.

Table 2. Statistics for Farvolden data set.

Network Statistics LP Statistics

Problem No. of No. of | No. of |No. of bund.||No. of| No. of
name comm. (K)|nodes (m)|links (n)| links (d) rows |columns
5term.100 5 95 225 46 521 1,125
5term.50 5 95 227 48 523 1,135
5term.0 5 95 229 50 525 1,145
Sterm 5 95 267 88 563 1,335
10term.100 10 190 491 127] 2,027 4910
10term.50 10 190 498 134|| 2,034 4,980
10term.0 10 190 507 143|| 2,043 5,070
10term 10 190 507 146|| 2,046 5,070
15term.0 15 285 745 202| 4,477 11,175
15term 15 285 796 253 4,528| 11,940
20term.0 20 380 1,150 428| 8,028 23,000

154

Table 3. Statistics for PDS data set.

LUSTIG AND LI

Network Statistics LP Statistics
Problem|| No. of No. of | No. of |No. of bund.||No. of| No. of
name ||comm. (K)|nodes (m)|links (n)| links (d) rows |columns
pds02 11 252 685 181 2,953 7,535
pds06 11 835| © 2,605 696 9,881| 28,655
pds10 11 1,399 4,433 1,169(16,558| 48,763

In a multicommodity flow problem, a commodity can be defined as one of
three types. The product specific problem (PSP) corresponds to a product to
be shipped (such as different types of freight). The destination specific problem
(DSP) corresponds to a specific product from many origins to a single destination
(such as freight in a hub-and-spoke network from the spokes to the hub). The
origin-destination problem (ODP) corresponds to a specific product with a single
origin and a single destination (such as a telephone call). These issues are
discussed by Jones et al. ([8]). The pds problems described in Table 3 are PSP
problems. The term problems described in Table 2 are DSP problems while
the assad problems in Table 1 are ODP problems. The assad problems can
be converted to DSP problems by aggregating flows into a destination, reducing
the total number of commodities while reducing the opportunity to take full
advantage of extra parallel processors. Problems of this type were created by
modifying the problem assad3.4k. This problem, entitled DSP.assad3.4k, has
six commodities and the same network structure as the problem assad3.4k.
The equivalent linear programming formulation has 715 rows and 1,230 columns,
which is smaller than the ODP formulation of assad3.4k.

5.2. Efficiency and speedups

The effectiveness of a parallel implementation can be evaluated in a number
of ways. The relative speedup of an algorithm that uses parallel computation
measures how much faster the parallel implementation is as compared to a
single-processor implementation. The efficiency of an implementation measures
how well the parallel implementation uses the available processors. Ideally, an
algorithm using p processors would have a speed up close to p and a corresponding
efficiency of close to 100%. To achieve “good parallelism,” one desires to balance
the computational load among the p processors so that the computation is equally
distributed across the multiple processors.

Timings for solving a problem with K commodities were recorded for the code
using one processor and K processors. If K > 18, then K/2 processors were

&

A PARALLEL PRIMAL-DUAL INTERIOR POINT METHOD 155
Table 4. Results for Assad data set.

Problem No. of |/1-processor| No. of |p-processor

name |comm. (K)| time (secs) ||proc. (p)|time (secs) ||Speedup | Eff.
assadl.1k 3 29.95 3 12.73 2.410.78
assadl.2k 5 40.57 5 11.02 3.7|0.74
assadl.3k 7 50.93 7 10.20 5.010.71
assadl.4k 6 41.97 6 9.47 4.4/0.74
assadl.5k 10 73.72 10 10.73 6.910.69
assadl.6k 15 94.25 15 9.57 9.910.66
assadl.7k 3 30.13 3 12.77 2.4/0.79
assadl.8k 3 29.98 3 12.72 2.4|10.79
assad2. 1k 4 28.05 4 9.70 2.910.72
assad2.2k 10 54.35 10 8.72 6.2(0.62
assad2.3k 20 103.47 10 14.38 7.210.72
assad2.4k 34 182.27 17 16.57 11.0]0.65
assad2.5k 10 49.65 10 7.82 6.4)0.64
assad2.6k 14 63.55 14 7.65 8.310.59
assad2.7k 20 94.27 10 13.10 7.210.72
assad2.8k 24 132.22 12 15.63 8.5(0.70
assad3. 1k 4 265.45 4 80.03 3.3/0.83
assad3.2k 6 292.73 6 61.97 4.7(0.79
assad3.3k 12 485.63 12 54.55 8.9|0.74
assad3.4k 18 702.33 18 55.55 12.6|0.70
assad3.5k 6 268.37 6 56.55 4.7(0.79
assad3.6k 12 483.92 12 54.62 8.9(0.74
assad3.7k 18 809.28 18 63.18 12.8/0.71
assad4.1k 6 413.63 6 87.48 4.7(0.79
assad4.2k 10 502.68 10 68.77 7.310.73
assad4.3k 14 591.75 14 61.58 9.6(0.69
assad4.4k 20 727.25 10 93.47 7.8(0.78
assad4.5k 30 1,153.32 15 102.55 11.210.75

156

used in an attempt to achieve effective load balancing. Computational results
for the assad, term, and pds problems are presented in Tables 4, 5, and 6,
respectively. Note that the problem pds10 was estimate to take over 50 hours of

LUSTIG AND LI

time on one processor. A comparison for this problem is given in Section 5.3.

All times in the tables represent wall-clock times. The speedup is the relative
speedup of the algorithm using p processors versus one processor. The efficiencies
indicate how well the p processors were utilized by the procedure when using

multiple processors.

Table 5. Results for Farvolden data set.

Problem No. of |1-processor|| No. of |p-processor
name |comm. (K)| time (secs) ||proc. (p)|time (secs) || Speedup | Eff.
Sterm.100 5 40.47 5 9.92 4.110.82
5term.50 5 42.53 5 10.40 4.110.82
Sterm.0 5 47.45 5 11.63 4.110.82
Sterm 5 98.52 5 24.32 4.110.81
10term. 100 10 661.38 10 79.23 8.310.83
10term.50 10 712.60 10 82.25 8.710.87
10term.0 10 757.08 10 91.33 8.310.83
10term 10 852.62 10 102.52 8.310.83
15term.0 15 2,645.50 15 206.88 12.810.85
15term 15 4,329.00 15 351.32 12.3|0.82
20term.0 20| 15,333.98 10 1,791.72 8.60.86
Table 6. Results for PDS data set.
Problem| No. of |[1-processor| No. of |p-processor
name |comm. (K)| time (secs)||proc. (p)|time (secs) ||Speedup| Eff.
pds02 11 1,206.70 11 139.85 8.6 0.78
pds06 11| 40,915.07 11| 4,317.93 9.5| 0.86
pds10 11(/222,469.20¢ 11| 22,027.75 10.1¢10.92¢

e Estimated as 1.2 times for OB1 time

A PARALLEL PRIMAL-DUAL INTERIOR POINT METHOD 157

5.3. Comparison to other solvers

To compare the performance of the parallel implementation to another solver,
the problems assad3. 4k, pds-02, Pds-06, and pds-10 were solved by the primal-
dual predictor-corrector interior point method as implemented in OB1 ([10]).
This code is a general-purpose linear programming code and takes no specific
advantage of the block structure. However, as mentioned in Section 3, the
general purpose implementation orders the entire matrix A, thus, mixing the
flow-conservation constraints (6) and the bundling constraints (7). Hence, the
amount of work per interior point method iteration is reduced for OB1 as
compared to the one-processor version of the parallel code. This is because

the factorization (ﬁéﬁT) = fﬁT computed in the full interior point method is
sparser than the combination of the matrices L*, P¥ and L computed by the
method as specialized to block angular problems. Even so, the comparative
K processor results for the parallel code and one processor results for OB1
as shown in Table 7 exhibit that the parallel version is still quite efficient as
compared to an excellent implementation of an interior point method. It should
be noted that the number of interior point iterations for OB1 and the specialized
code differed slightly due to differences in the starting point.

Table 7. Results for OB1 on selected problems—1 processor Sequent times.

Problem | OB1 CPU
name time (secs)

assad3.4k 1,074.68

pds02 523.33
pds06 28,187.80
pdsi0 185,391.00

Schultz and Meyer ([14]) tested a larger set of the pds problems and ob-
tained impressive results for running a fixed number (50) of iterations of their
decomposition/barrier method. Results for their algorithm running on a similar
Sequent computer using 11 processors are given in Table 8. The performance
of their method is clearly better than the parallel implementation of the parallel
primal-dual interior point method. Their code takes full advantage of the net-
work structure in the problem but only generates approximate primal optimal
solutions as compared to our method that generates primal and dual optimal
solutions that agree to eight digits in objective value. Furthermore, they reported
that their method is only 35%-40% efficient, while our method makes better
use of the parallel processors. For block angular problems where the blocks do

158 — LUSTIG AND LI

not have network structure, it is not clear how well their method will work. On
the other hand, we feel that the performance of our method on general block
angular problems will be similar to that reported here and that our method is
well suited for supercomputers such as the CRAY-Y/MP.

Table 8. Results for method of Schultz and Meyer on selected problems—Wall-
clock time on 11 processors of Sequent.

Problem | Wall-clock
name | time (secs)

pds02 129
pds06 524
pds10 999

Pinar and Zenios ([13]) have also solved some of the pds problems with their
parallel decomposition code. When comparing to a version of OB1 that did not
use the predictor-corrector enhancements, they found their parallel and vectorized
code to be approximately 15.8 times faster for solving problem pds10 than OBl
running on a single processor of a CRAY-Y/MP. Improvements for OB1 since
the comparison made by Pinar and Zenios have increased the speed of OB1
by a factor of 2, so that our method should be competitive with their method.
(at least for this one problem instance). In addition, Pinar and Zenois report
that load-balancing problems occur in their method because the subproblems
solved by their method may not be of an equal degree of difficulty. The method
described in this paper does not suffer from such effects.

It should be mentioned that other researchers ([17], [18]) have been successful
in solving nonlinear multicommodity flow problems, and that their methods
applied to the problem instances in this paper would probably outperform the
parallel implementation of the primal-dual interior point method.

5.4. Comparisons of formulations and number of processors

The problems assad3.4k and DSP.assad3.4k are the same multicommodity flow
problem except for the definition of a commodity. The problem assad3.4k
has 18 commodities while the problem DSP.assad3.4k has six commodities.
Both problems were solved using the parallel implementation on p processors,
1 < p < 18. These results are presented graphically in Fig. 1. Note that the
problem assad3.4k attains additional efficiencies due to load balancing as the
number of processors increases from 8 to 9 and 17 to 18. However, more than six

A PARALLEL PRIMAL-DUAL INTERIOR POINT METHOD 159

—®— assad3.4k —/{—— DSP.assad3.4k —*—— Perfect Speedup

18

il
1

16
14
S 12

e 10

s e SR |

v Ccao
oo

A b

6 7 8 9 10 11 12 13 14 15 16 17 18

Number of Processors

o
-
n
w 4
H
[8,]

Fig. 1. Speedups for assad3.4k (18 commodities) and DSP.assad3.4k (6 commodities).

processors for DSP.assad3.4k attain a much smaller effect since the additional
processors only assist in computing the dense factorization. Furthermore, using
18 processors on the 18-commodity problem assad3.4k is 70% efficient while
using 18 processors on the six commodity problem DSP.assad3.4k is only 35%
efficient. Clearly the formulation of the problem has an effect on interpreting
the computational results.

6. Conclusions

It is clear that interior point methods can be adapted to specialized problems
for parallelization. As compared to using decomposition-type ideas, which suffer
from load-balancing problems (see [13]), an interior point method can ignore
the combinatorial complexities of the different networks correspondings to the
different commodities. As compared to the methods of Schultz and Meyer ([14]),
the primal-dual interior point method computes primal and dual optimal solutions
to these problems and is easily extended to problems without embedded networks.
Furthermore, similar parallel techniques do not seem to apply to implementations
of the simplex method.

160 ' - -~ LUSTIG AND LI

The computational results presented here indicate future promise for using
parallel processing within a primal-dual interior point method. Future research
will investigate the possibility of using parallelism to solve other types of problems
as well as investigating the possibility of using distributed processing.

Acknowledgments

The authors would like to thank Richard Tapia and Yin Zhang for their useful
comments and encouragement during this research. Use of the Sequent Symmetry
S81 was provided by the Department of Computer Science at Rice University
under NSF grant CDA-8619393. The authors were supported in part by NSF
Coop. Agr. No. CCR-8809615 (the first author as a visiting member of the
Center for Research in Parallel Computation, Rice University, Houston, TX).

References

1. A.A. Assad, “Solution techniques for the multicommodity flow problem,” Master’s thesis, Mas-
sachusetts Inst. of Tech., Cambridge, MA, 1976.

2. A.A. Assad, “Multicommodity network flows — A survey,” Networks, vol. 8, pp. 37-91, 1978.

3. W. Carolan, J. Hill, J. Kennington, S. Niemi, and S. Wichmann, “An empirical evaluation of the
KORBX algorithms for military airlift applications,” Oper. Res., vol. 38, pp. 240-248, 1990.

4. 1.C. Choi and D. Goldfarb, “Solving multicommodity network flow problems by an interior point
method,” in Large-Scale Numerical Optimization, (TE. Coleman and Y. Li, eds.), Society of Industrial
and Applied Mathematics (SIAM): Philadelphia, PA, pp. 58-69, 1990.

5. J.M. Farvolden, “A primal partitioning solution for multicommodity network flow problems,” PhD
thesis, Princeton University, Department of Civil Engineering and Operations Research, Princeton,
NJ, 1989.

6. R. Fourer and S. Mehrotra, “Performance of an augmented system approach for solving least-squares
problems in an interior-point method for linear programming,” in Committee on Algorithms Newsletter,
Mathematical Programming Society, pp. 26-31, 1991.

7. M.T. Heath, E. Ng, and B.W. Peyton, “Parallel algorithms for sparse linear systems,” SIAM Review,
vol. 33, pp. 420-460, 1991.

8. K.L. Jones, LJ. Lustig, J.M. Farvolden, and W.B. Powell, “Multicommodity network flows: The
impact of formulation on decomposition,” Princeton University, Department of Civil Engineering
and Operations Research, Princeton, NJ, Tech. Report SOR 91-23, 1991.

9. J.L. Kennington, “A survey of linear cost multicommodity network flows,” Oper. Res., vol. 26, pp-
209-236, 1978. :

10. L.J. Lustig, R.E. Marsten, and D.E. Shanno, “On implementing Mehrotra’s predictor-corrector interior
point method for linear programming,” vol. 2, pp. 435-449, 1992.

11. LJ. Lustig, R.E. Marsten, and D.F. Shanno, “The interaction of algorithms and architectures for
interior point methods,” in Advances in Optimization and Parallel Computing, (P.M. Pardalos, ed.),
North-Holland: Amsterdam, pp. 190-205, 1992.

12. S. Mehrotra, “On the implementation of a (primal-dual) interior point method,” Northwestern
University, Department of Industrial Engineering and Management Sciences, Evanston, IL, Tech.
Report 90-03, 1990.

13. M.C. Pinar and S.A. Zenios, “Parallel decomposition of multicommodity network flows using smooth
penalty functions,” University of Pennsylvania, Decision Sciences Department, The Wharton School,

A PARALLEL PRIMAL-DUAL INTERIOR POINT METHOD , 161

14.

15.

16.

17.

18.

Philadelphia, PA, Report 90-12-06, 1990. .

G.L. Schultz and R.R. Meyer, “An interior point method for block angular optimization,” SIAM J.
on Optimization, vol. 1, pp. 583-602, 1991.

R.J. Vanderbei and T. Carpenter, “Symmetric indefinite systems for interior point methods,” Princeton
University, Department of Civil Engineering and Operations Research, Princeton, NJ, Tech. Report
SOR 91-7, 1991.

A. Vannelli, “A parallel implementation of an interior point method for linear programming,” Depart-
ment of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario Canada,
1991.

H. Nagamochi, M. Fukushima, and T. Ibaraki, “Relaxation methods for the strictly convex multi-
commodity flow problem with capacity constraints on individual commodities,” Networks, vol. 20,
pp. 409-426, 1990.

S.A. Zenios, “On the fine-grain decomposition of multicommodity transportation problems,” SIAM
Journal on Optimization, vol. 1, pp. 643669, 1991.

