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Abstract

An approach to distributed memory parallel programming that has recently become popular is one where
the programmer explicitly specifies the data layout using language extensions, and a compiler generates all
the communication. While this frees the programmer from the tedium of thinking about message-passing,
no assistance is provided in determining the data layout scheme that gives a satisfactory performance on the
target machine. We wish to provide automatic data alignment and distribution techniques for a large class
of scientific computations, known in the literature as loosely synchronous problems.

We propose an interactive software tool that allows the user to select regions of the sequential input
program, then responds with a data decomposition scheme and diagnostic information for the selected region.
The proposed tool allows the user to obtain insights into the characteristics of the program executing on
a distributed memory machine and the behavior of the underlying compilation system without actually
compiling and executing the program on the machine. }

An empirical study of actual application programs will show whether automatic techniques are able to
generate data decomposition schemes that are close to optimal. If automatic techniques will fail to do so,
we want to answer the questions (1) how user interaction can help to overcome the deficiencies of automatic
techniques, and (2) whether, in particular, there is a data-parallel programming style that allows automatic

detection of efficient data alignment and distribution schemes.

1 Introduction

Although distributed memory parallel computers are among the most cost-effective machines avail-
able, most scientists find them difficult to program. The reason is that traditional programming
languages support single name spaces and, as a result, most programmers feel more comfort-
able working with a shared memory programming model. To this end, a number of researchers
[CK88, CCL88, KMV90, PSvG91, RA90, RP89, RSW88, ZBG88, KZBG88, Ger89] have proposed
using a traditional sequential or parallel shared-memory language extended with annotations speci-
fying how the data is to be mapped onto the distributed memory machine. This approach is inspired
by the observation that the most demanding intellectual step in rewriting programs for distributed
memory is the data layout — the rest is straightforward but tedious and error prone work. The
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Figure 1: Fortran D Parallel Programming Environment

Fortran D language and its compiler [FHK*90, HKT92b)] follow this approach. Given a Fortran D
program the compiler mechanically generates the node program for a given distributed-memory
target machine.

A problem with this approach is that it does not support the user in the decision process about a
good data layout. We want to propose the development of automatic techniques for data alignment
and distribution for regular loosely synchronous problems that deal with realignment/redistribution,
data replication, procedure calls, and control flow. Loosely synchronous problems represent a large
class of scientific computations [FJL*88]. They can be characterized by computation intensive
regions that have substantial parallelism, with a synchronization point between the regions. We
restrict our proposed system to regular loosely synchronous problems with arrays as their major data
structures. In addition, we will allow regular problems that give rise to wavefront style computations
[Lam74].We do not handle representations of data objects as they occur, for instance, in irregular
problems like sparse matrix and unstructured mesh computations [SCMB90, WSHB91, KMV90].

We will investigate the feasibility of these new automatic techniques in the context of an interac-
tive system. The proposed automatic data decomposition tool is part of the Fortran D programming
environment as shown in Figure 1. The automatic data partitioner may be applied to an entire
program or on specific program fragments. When invoked on an entire program, it automatically
selects data decompositions without further user interaction.

The feasibility of the automatic system is determined by the ‘quality’ of the generated data
decomposition schemes compared to schemes that are considered optimal. This quality measure
has to be defined a priori to our investigation in order to guarantee an unbiased discussion of
results gained by an empirical study of our techniques applied to real programs. If it will turn
out that automatic data decomposition is not feasible for some applications we want to discuss
why automatic techniques failed and how user interaction can help to overcome its deficiencies. In
particular, we want to investigate whether there is a data-parallel programming style for sequential
programs that facilitates automatic data alignment and distribution. The existence of a usable
programming style in the context of vectorization has been observed by some researchers [CKK89,
Wol89] and is partially responsible for the success of automatic vectorization. We believe that for



regular loosely synchronous problems written in a data-parallel programming style, the automatic
data partitioner can determine an efficient decomposition scheme in most cases. However, we do
not believe that fully automatic techniques will be successful for ‘dusty deck’ programs.

After a short introduction to Fortran D, we motivate the need for automatic data decomposition.
A discussion of our approach to to automatic data alignment and distribution follows. The rest of
the paper gives a description of the success/failure criterion for the proposed automatic techniques.
An overview of related work together with our research goals and contributions conclude the paper.

2 Fortran D

The data decomposition problem can be approached by considering the two levels of parallelism
in data-parallel applications. First, there is the question of how arrays should be aligned with
respect to one another, both within and across array dimensions. We call this the problem mapping
induced by the structure of the underlying computation. It represents the minimal requirements for
reducing data movement for the program, and is largely independent of any machine considerations.
The alignment of arrays in the program depends on the natural fine-grain parallelism defined by
individual members of data arrays.

Second, there is the question of how arrays should be distributed onto the actual parallel machine.
We call this the machine mapping caused by translating the problem onto the finite resources of
the machine. It is affected by the topology, communication mechanisms, size of local memory, and
number of processors in the underlying machine. The distribution of arrays in the program depends
on the coarse-grain parallelism defined by the physical parallel machine.

Fortran D is a version of Fortran that provides data decomposition specifications for these two
levels of parallelism using DECOMPOSITION, ALIGN, and DISTRIBUTE statements. A decomposition
is an abstract problem or index domain; it does not require any storage. Each element of a
decomposition represents a unit of computation. The DECOMPOSITION statement declares the name,
dimensionality, and size of a decomposition for later use.

The ALIGN statement is used to map arrays onto decompositions. Arrays mapped to the same
decomposition are automatically aligned with each other. Alignment can take place either within
or across dimensions. The alignment of arrays to decompositions is specified by placeholders in the
subscript expressions of both the array and decomposition. In the example below,

REAL X(N,N)
DECOMPOSITION A(N,N)
ALIGN X(I,J) with A(J-2,I+3)

A is declared to be a two dimensional decomposition of size N X N. Array X is then aligned with
respect to A with the dimensions permuted and offsets within each dimension.

After arrays have been aligned with a decomposition, the DISTRIBUTE statement maps the de-
composition to the finite resources of the physical machine. Distributions are specified by assigning
an independent attribute to each dimension of a decomposition. Predefined attributes are BLOCK,
CYCLIC, and BLOCK_CYCLIC. The symbol «» marks dimensions that are not distributed. Choosing
the distribution for a decomposition maps all arrays aligned with the decomposition to the machine.
In the following example,

DECOMPOSITION A(N,N)
DISTRIBUTE A(:, BLOCK)
DISTRIBUTE A(CYCLIC,:)
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Figure 2: Fortran D Data Decomposition Specifications

distributing decomposition A by (:,BLOCK) results in a column partition of arrays aligned with A.
Distributing A by (CYCLIC,:) partitions the rows of A in a round-robin fashion among processors.
These sample data alignment and distributions are shown in Figure 2.

We should note that our goal in designing Fortran D is not to support the most general data
decompositions possible. Instead, our intent is to provide decompositions that are both powerful
enough to express data parallelism in scientific programs, and simple enough to permit the compiler
to produce efficient programs. Fortran D is a language with semantics very similar to sequential
Fortran. As a result, it should be quite usable by computational scientists. In addition, we believe
that our two-phase strategy for specifying data decomposition is natural and conducive to writing
modular and portable code. Fortran D bears similarities to both CM Fortran [TMC89] and KALI
[KM91]. The complete language is described in detail elsewhere [FHK+90].

3 Why is Finding a Good Data Layout Hard?

The choice of a good data decomposition scheme depends on many factors. All these factors make
it extremely difficult for a human to predict the behavior of a given data decomposition scheme
without having to compile and run the program on the specific target system. The effect of a given
data decomposition scheme and program structure on the efficiency of the compiler-generated code
running on a given target machine depends on:

1. compiler characteristics such as the communication analysis algorithm and optimizing trans-
formations used, and the set of communication primitives and routines that can be generated.
For instance, fast collective communication routines as the Crystal router package developed
at Caltech [FF88], are crucial for determining the profitability of realignment and redistribu-
tion. In addition, if the compiler generates a node program, the characteristics of the target
machine node compiler have to be considered.

2. machine characteristics, such as communication and computation costs, and machine topol-
ogy. For example, the specification of a three dimensional grid partition might be efficient on
a machine with a three dimensional topology assuming the predominance of nearest neighbor
communication. On a machine with a one dimensional ring topology the same specification
Jeads to less efficient communication because messages must be sent to distant nodes on the
ring, creating the potential for collisions.



DOUBLE PRECISION v(N,N), a, b

DECOMPOSITION d(N,N)
ALIGN v(1,J) WITH d(1,3)
DISTRIBUTE d(BLOCK,BLOCK)

DOk=1M
// Compute the red points
DOj=1,N,2
DOi=1,N,2
v(ij) = a*(v(ij—1) + v(i—-1J) + v(ij+1) + v(i+1J)) + b * v(ij)
11 ENDDO

O 00 =IO Ov Wb

12 ENDDO

13 DOj=2,N,2

14 DOi=2,N,2

15 v(ij) = a*(v(ij-1) + v(i-1J) + v(ij+1) + v(i+14)) + b* v(iJ)
16 ENDDO

17 ENDDO

18 // Compute the black points

19 DOj=1,N,2

20 DOi=2,N,2

21 i) = as(v(ij—1) + v(i=L3) + v(ij+1) + vi+1) + bx v(id)
22 ENDDO

23 ENDDO

24 DOj=2,N,2

24 DOi=1,N,2

26 V(i) = ax(v(id=1) + v(i= 1) + v(ii+1) + v(i+13)) + bx V(i)
27 ENDDO

28 ENDDO

29 ENDDO

Figure 3: Fortran D code with BLOCK distribution, DOUBLE PRECISION

3. problem characteristics, such as actual problem size and number of processors to be used. The
ratio between local computation and necessary communication can determine the efficiency
of a data decomposition scheme. For some programs, problem characteristics are not needed
to generate good data decomposition schemes. For such programs recompilation for different
problem sizes and number of processors used can be avoided.

In the reminder of this section, we will examine the relationship between the listed factors
using the characteristics of the Fortran D compiler [HKT92b, HKT91, HHKT91). Figure 3 shows
a Fortran D code for pointwise red-black relaxation using a block-partitioning scheme for the
N x N, double precision array v. Substituting line 4 by DISTRIBUTE d(:,BLOCK) specifies a column
partitioning scheme for array v.

To execute a program on a distributed memory machine the program’s data and code have to be
mapped into the local memories of the machine’s processors. The Fortran D compiler generates a
node program according to the single program, multiple data (SPMD) programming model [Kar87],
exploiting the data parallelism inherent in the program, as opposed to its functional parallelism.

5



so0eocfjeoceo0 900049 00O e of[e o|e o[® O O G40 G4 648 O
oOeocesji0ce0oe oO®eOeeOSe o ejo e|lOo @O0 @ O opO 03O O30 ©
eo0eoleceo ©0 0040 000 ® oje oje oje © o 01e Gte Of8 O
oooocooo'__begngggg © 0|0 0j0 ®|0 8| _., |0 ®PO O30 @10 ©
eO0Oe00Oj0e00®O [ XXX I XK XX] e ole oje o|le © ® 040 048 038 O
ocoeocejoe0e ceoceeOe o ejo sloejoe O 850 3O o0 O
eo0eocjeoeoO 0040 000 e oje o|e oje © 0 040 010 040 O
osoesjloeOe 00000000 0 ejo ejo ej0 @ O 84O @30 64O O
Oeoe0o0 OO oceoce/joece O ©§0 040 840 O 0 ej0 #|0 @[0C ®
@e0eo04e 000 eoceocjleoceo © 048 048 019 O e oje o|e o|® ©
coeoep0o 000 ocoeoceloeoce O 840 40 &30 © 0 ®j0 ®jO0 0|0 @
900349 9 90|, |e0ceocjeceO ® 040 048 038 O| ,|® O|® O|® Oj® ©
Q08D od¢|° (000000 Oe O &40 40 o0 O o ejo ej0 @|O @
e0@ec4e 0080 e0@®O0je000O o 049 049 OF0 O ® oje o|/e oje ©
NN, N E-XJ ocoeoceloeoce O &40 040 80 © o ®jo ejOo ejO @
00004 O8O @08 0je0e0 @ 040 048 038 O ® ole oje ole ©
(a) DISTRIBUTE d(BLOCK, BLOCK) (b) DISTRIBUTE d(:, BLOCK)
@ compute
© no-op

@& communicate

Figure 4: Computation and Communication cycles for block and column partitioning

Each processor executes only those program statement instances that define a value of a data
item that has been mapped onto that processor by the decomposition, alignment and distribution
specifications. Data items that are mapped onto a processor are said to be owned by that processor.
Execution of such a statement may require non-local data, i.e., data that is owned by another
processor. Such non-local data items must be obtained by communication.

For the given example we assume that the Fortran D compiler performs the following com-
munication optimizations. Message vectorization uses the results of data dependence analysis
[AK87, KKP*81] to combine element messages into vectors. The level of the deepest loop-carried
true dependence or loop enclosing a loop-independent true dependence determines the outermost
loop where element messages resulting from the same array reference may be legally combined
[BFKK90, Ger90]. Message coalescing ensures that each data value is sent to a processor only
once. A detailed description of different communication optimizations can be found in [HKT92a).
This paper also discusses an alternative approach to generating messages for the red-black example,
called vector message pipelining.

Using message vectorization, the Fortran D compiler generates communication statements be-
fore the first loop nest at line 7 and after the second loop nest between line 17 and line 19. Our
hypothetical, simplified version of the Fortran D compiler inserts code to communicate all bound-
ary points although only black or red points need to be communicated before the first and third
loop, respectively. Figure 4 illustrates the resulting compute-communicate sequence for the block-
partitioning and column-partitioning schemes.

We assume in our example that the compiler generates an EXPRESS! node programs [EXP89]
where communication is performed by calls to vector-send and vector-receive communication rou-
tines KXVWRI and KXVREA, respectively. Execution of KXVWRI is non-blocking in the sense that the
sending processor does not wait until the message is received. Execution of KXVREA is blocking,
i.e. the processor has to wait until it receives the message. Alternatively, the compiler could have
chosen to insert calls to the communication routines KXVCHA that implement communication using

1EXPRESS a copyright of ParaSoft Corporation.



a handshaking protocol.

Figure 5 and Figure 6 show the actual execution times of one iteration of the outermost
timestep loop (line 5 in Figure 4) for increasing sizes of array v using column-partitioning and
block-partitioning schemes. Figure 5 shows the execution times on the Ncube-1 for 16 and 64
processors, where v is a single precision floating point array. Figure 6 contains the results on 16
processors on the iPSC/860 for a single precision and double precision array v. The figures show
that the tradeoffs between a column-partitioning and block-partitioning schemes for a compiler-
generated node program. The tradeoffs depend on the actual problem size, i.e. the the element size
and overall size of the array v, the specific target machine, and the actual number of processors
used on the target machine.

What we need is a programming environment that helps the user to understand the effect of a
given data decomposition and program structure on the efficiency of the compiler-generated code at
the Fortran D language level. The Fortran D programming system, shown in Figure 1, provides such
an environment. The main components of the environment are a static performance estimator and
an automatic data partitioner. In this paper we will mainly discuss the automatic data partitioner.

4 Automatic Data Decomposition

The key ideas and assumptions behind automatic data decomposition are

1. reasonably simple static models can be used to estimate the performance of a compiler-
generated node program with explicit communication, and

2. the behavior of the Fortran D compiler on a specified program segment, such as a loop or
the entire program, can be anticipated efficiently, i.e. without actually compiling the whole
program, and

3. if we restrict ourselves to fairly simple decomposition schemes, then for a program segment
there are only a small number of such decompositions suitable for each array and hence these
decompositions can be exhaustively examined by an automatic system, and

4. the automatic data decomposition for the entire program can be done by successively decom-
posing the data for smaller program segments, and realignment /redistribution when necessary
between the segments.

We believe that these assumptions are true for loosely synchronous problems written in a data
parallel programming style. In the following we will discuss some of the issues involved in the above
key ideas and assumptions.

4.1 Static Performance Estimation

It is clearly impractical to use dynamic performance information to choose between data decom-
positions in our programming environment. Instead, a static performance estimator is needed that
can accurately predict the performance of a Fortran D program on the target machine.

The performance estimator is not based on a general theoretical model of distributed-memory
computers. Instead, it employs the notion of a training set of kernel routines that measures the
cost of various computation and communication patterns on the target machine. The results of
executing the training set on a parallel machine are summarized and used to train the performance
estimator for that machine. By utilizing training sets, the performance estimator achieves both
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accuracy and portability across different machine architectures. The resulting information may
also be used by the Fortran D compiler to guide communication optimizations.

The static performance estimator is divided into two parts, a machine module and a compiler
module. The compiler module predicts the performance at the Fortran D language level while the
machine module estimates the performance at a level where the decomposition scheme is already
‘hardcoded’ into the program, i.e. at the node program level containing explicit communications.

4.1.1 Machine Module

The machine module predicts the performance of a node programs with explicit communications.
It uses a machine-level training set written in message-passing Fortran. The training set contains
individual computation and communication patterns that are timed on the target machine for
different numbers of processors and data sizes. To estimate the performance of a node program,
the machine module can simply look up results for each computation and communication pattern
encountered.

Note that even though it is desirable, to assist automatic data decomposition the static perfor-
mance estimator does not need to predict the absolute performance of a given data decomposition.
Instead, the it only needs to accurately predict the performance relative to other data decomposi-
tions. In many cases the accurate prediction of the crossover point at which one data decomposition
scheme is preferable over another will be sufficient.

A prototype of the machine module has been implemented for a common class of loosely syn-
chronous scientific problems [FIL*88]. It predicts the performance of a node program using EX-
PRESS communication routines for different numbers of processors and data sizes [EXP89]. The
prototype performance estimator has proved quite precise, especially in predicting the relative per-
formances of different data decompositions [BFKK91]. Figure 7 and Figure 8 show the estimated
execution times for our red-black example using the training set approach. The crossover points and
execution times induced by the different decomposition schemes are predicted with high accuracy.

4.1.2 Compiler Module

The compiler module forms the second part of the static performance estimator. It assists the user in
selecting data decompositions by statically predicting the performance of a program for a set of data
decompositions. The compiler module employs a compiler-level training set written in Fortran D
that consists of program kernels such as stencil computations and matrix multiplication. The
training set is converted into message-passing Fortran using the Fortran D compiler and executed
on the target machine for different data decompositions, numbers of processors, and array sizes.
Estimating the performance of a Fortran D program then requires matching computations in the
program with kernels from the training set.

The compiler-level training set also provides a natural way to respond to changes in the For-
tran D compiler as well as the machine. We simply recompile the training set with the new compiler
and execute the resulting programs to reinitialize the compiler module for the performance estima-
tor.

Since it is not possible to incorporate all possible computation patterns in the compiler-level
training set, the performance estimator will encounter code fragments that cannot be matched with
existing kernels. To estimate the performance of these codes, the compiler module must rely on
the machine-level training set. We plan to incorporate elements of the Fortran D compiler in the
performance estimator so that it can mimic the compilation process. The compiler module can
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thus convert any unrecognized Fortran D program fragment into an equivalent node program, and
invoke the machine module to estimate its performance.

4.2 Data Alignment and Data Distribution

The analysis performed by the automatic data partitioner divides the program into separate compu-
tation phases. A phase consists of a group of statements that are mutually involved in a computation
and therefore should be mapped onto the same Fortran D decomposition using ALIGN statements.
In the absence of procedure calls we define a phase as follows: A phase is a loop nest such that for
each induction variable that occurs in a subscript position of an array reference in the loop body the
phase contains the surrounding loop that defines the induction variable. A phase is minimal in the
sense that it does not include surrounding loops that do not define induction variables occurring in
subscript positions. The maximal size and number of dimensions of arrays referenced in the phase
defines the dimensionality and size of its associated Fortran D decomposition. For example, the
red-black program in Figure 4 has four phases enclosed in the outer k-loop. Each phase has an
associated Fortran D decomposition of dimensionality and size equal to the array v.

4.2.1 Intra-phase Alignment and Distribution

The intra-phase decomposition problem consists of determining a set of good data decompositions
and their performance for each individual phase. The data partitioner first tries to match the phase
or parts of the phase with computation patterns in the compiler training set. If a match is found, it
returns the set of decompositions with the best measured performance as recorded in the compiler
training set. If no match is found, the data partitioner must perform alignment and distribution
analysis on the phase. The resulting solution may be less accurate since the effects of the Fortran D
compiler and target machine can only be estimated.

Alignment analysis is used to prune the search space of possible arrays alignments by select-
ing only those alignments that minimize data movement. Alignment analysis is largely machine-
independent; it is performed by analyzing the array access patterns of computations in the phase.
We intend to build on the inter-dimensional and intra-dimensional alignment techniques of Li and
Chen [LC90a] and Knobe et al [KLS90]. The alignment problems can be formulated as an opti-
mization problem on an undirected, weighted graph. Some instances of the problem of alignment
have been shown to be NP-complete [LC90a]. One major challenge in our proposed work will be
to define the appropriate weights of the graph and to come up with a heuristic that solves the
alignment problem in a way that is suitable for loosely synchronous problems.

Alignment analysis is compiler dependent. A compiler may recognize arrays that are used
only as temporaries and therefore are allocated locally in each processor without inducing any
communication. These local or private arrays are not considered during the alignment analysis.

Distribution analysis follows alignment analysis. It applies heuristics to prune unprofitable
choices in the search space of possible distributions. Distribution analysis is compiler, machine,
and problem dependent.

For instance, the compiler may not be able to generate efficient wavefront computations [Lam74]
for a subset of distributions. Transformations like loop interchange and strip-mining can substan-
tially improve the degree of parallelism induced by the wavefront [HKT91]. Distributions that
sequentialize the computation are eliminated. Another consideration in our pruning heuristic are
the sizes of the dimensions of the decomposition. If the size of a dimension is smaller than a ma-
chine dependent threshold, the dimension will always be localized. This eliminates all distributions

11
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Figure 9: Interphase merge problem with realignment and redistribution

that map small dimensions to distinct processors. We will also restrict the possible block sizes in
BLOCK_CYCLIC distributions to a reasonable subset of values.

After the automatic data partitioner has determined a set of reasonable data decomposition
schemes, the static performance estimator is invoked to predict the performance of each reasonable
scheme.

4.2.2 Inter-phase Alignment and Distribution

After computing data decomposition schemes for each phase, the automatic data partitioner must
solve the inter-phase decomposition problem of merging individual data decompositions. It consid-
ers realigning and redistribution of arrays between computational phases to reduce communication
costs or to improve the available parallelism.

The merging problem can be formulated as a single-source shortest paths problem over the
phase control flow graph. The phase control flow graph is similar to the control flow graph [ASU8E6]
where all nodes associated with a phase are substituted by nodes representing the set of reasonable
data decomposition schemes for the phase. The static performance estimator is used to predict the
costs for these reasonable decomposition schemes. The availability of fast collective communication
routines will be crucial for the profitability of realignment and redistribution.

The merging problem for a linear phase control flow graph can be solved as a single-source
shortest paths problem in a directed acyclic graph [CLR90]. For example, Figure 9 shows a three
phase problem with four reasonable decompositions for each phase. Each decomposition scheme is
represented by a node. The node is labeled with the predicted cost of the decomposition scheme for
the phase. Edges between phases are labeled with the realignment and redistribution costs for the
source and sink decomposition schemes. For each of the four decompositions of the first phase we
will solve the single-source shortest paths problem. In general, let k denote the maximal number of
decomposition schemes for each phase and p the number of phases. The resulting time complexity
is O(p x k3).

The merging of phases in a strongly connected component of the phase control flow graph should

12
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be done before merging any of its phases with a phase outside of the strongly connected component.
This suggests a hierarchical algorithm for merging phases based on, for example, Tarjan intervals
[Tar74)]. Assuming that the innermost loop bodies can be represented by a linear phase control flow
subgraph, the merging problem is solved by adding a shadow copy of the first phase after the last
phase in the linear subgraph keeping the subgraph acyclic. After solving the single-source shortest
paths problem, the subgraph is collapsed into a single interval summary phase representing the
different costs resulting from entering the interval with a decomposition scheme and exiting it with
a possibly different scheme. An example interval summary phase is shown in Figure 10. In the
resulting phase control flow graph we again identify the innermost loops and repeat the process of
collapsing and summarizing until the phase control flow graph consists of a single node.

In fully automatic mode, the data partitioner selects the decomposition scheme that has the
minimal cost for the shortest path from a decomposition in the first phase to a decomposition in
the last phase of the selected program segment. Following the selected shortest path, ALIGN, and
DISTRIBUTE statements are inserted if the decomposition at the source of an edge is different from
the decomposition at the sink. DECOMPOSITION specifications are declared at the beginning of the
subroutine containing the selected program segment.

4.2.3 The Algorithm

Figure 11 gives the basic algorithm for automatic data decomposition for a program segment
without procedure calls. The algorithm does not handle control flow other than loops and does not
consider data replication.

4.2.4 Automatic Decomposition in the Presence of Procedure Calls

One of the major challenges of the proposed research on automatic data decomposition is to devise
techniques that can deal with procedure calls. Interprocedural analysis is used to allow the merging
of computation phases across procedure boundaries.

Interprocedural phase merging is compiler dependent. In particular, the automatic data par-
titioner has to know whether and when the compiler performs interprocedural optimizations such
as procedure cloning [CHK92, HHKT91)] or procedure inlining [Hal91]. In the following we will
assume that the compiler performs procedure cloning for every distinct pattern of entry and exit
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Algorithm DECOMP

Input: program segment without procedure calls; problem sizes and number of processors to be used.
Output: data decomposition schemes for data objects referenced in the input program segment
with diagnostic information.

determine program phases of input program segment;
build phase control flow graph;
for each phase do
perform alignment analysis;
perform distribution analysis;
generate diagnostic information, if available;
endfor
while phase control flow graph contains a loop do
identify innermost loop (e.g. using Tarjan intervals);
solve single-source shortest paths problem for this loop;
identify realignment and redistribution points;
generate diagnostic information, if available;
substitute loop by its interval summary phase in the phase control flow graph;
endwhile
use the computed shortest path to generate DECOMPOSITION, ALIGN,
and DISTRIBUTE statements, if in fully automatic mode;

Figure 11: Basic Algorithm for Automatic Data Alignment and Distribution
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decomposition schemes. We will only consider programs with acyclic call graphs.

The call graph is first traversed in topological order to propagate loop information into called
procedures. This information is needed to identify single computation phases. Subsequently, the
call graph is traversed in reverse topological order. For each procedure P the single-source shortest
paths problem is solved on its phase control flow graph using the hierarchical approach of algorithm
DECOMP in Figure 11. Each call site of Pin procedure @ is represented by a copy of the interval
summary phase of P in the phase control flow graph of Q. The information about the computed
data decomposition schemes with their realignment and redistribution points are passed to the
Fortran D compiler. The automatic data partitioner cannot insert the Fortran D data layout
statements directly into the program since it does not actually perform the cloning of procedures.

If the compiler does not perform cloning a procedure can have only a single entry and exit
decomposition scheme. The automatic data partitioner will use a heuristic to select the decompo-
sition scheme. The heuristic takes the static execution count of call sites and the penalties due to
mismatched decomposition schemes into account.

Using the outlined strategy the automatic system generates the same decomposition, alignment,
and distribution for the programs of Figure 3 and Figure 12.

5 Success/Failure Criterion

The feasibility of the proposed automatic techniques depends on the ‘quality’ of the generated
decomposition schemes compared to schemes that are considered optimal. We want to define
our quality measure prior to an investigation into automatic techniques. This will guarantee an
unbiased discussion of results gained by an empirical study.

We will use a benchmark suite being developed by Geoffrey Fox at Syracuse that consists of a
collection of Fortran programs. Each program in the suite will have five versions:

(v1) the original Fortran 77 program,

(v2) the best hand-coded message-passing version of the Fortran program,
(v3) a “nearby” Fortran 77 program,

(v4) a Fortran D version of the nearby program, and

(v5) a Fortran 90 version of the program.

The “nearby” version of the program will utilize the same basic algorithm as the message-passing
program, except that all explicit message-passing and blocking of loops in the program are re-
moved. The Fortran D version of the program consists of the nearby version plus appropriate data
decomposition specifications.

To validate the automatic data partitioner, we will use it to generate a Fortran D program from
the nearby Fortran program (v3). The result will be compiled by the Fortran D compiler and its
running time compared with that of the compiled version of the hand-generated Fortran D program
(v4). Our goal is that for 80% of the benchmark programs the nearby version with automatically
generated data layout will run at most 20% slower than the hand-generated Fortran D program. We
expect that such a performance degradation due to automatic data decomposition is still acceptable
to the user.

We believe that in many cases it is easy for the user to specify the problem mapping, i.e. the
data alignment onto a decomposition, since the problem mapping is determined by the structure
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DOUBLE PRECISION v(N,N), a, b

DECOMPOSITION d(N,N)
ALIGN v(1,J) WITH d(1,3)
DISTRIBUTE d(BLOCK,BLOCK)

DOk=1M
// Compute the red points
CALL redpoints (v,a,b,N)
// Compute the black points
CALL blackpoints (v,a,b,N)

ENDDO
SUBROUTINE redpoints (v,a,b,n)
INTEGER n
DOUBLE PRECISION v(n;n), a, b
DOj=1,N,?2
DOi=1,N,2
v(iJ) = ax(v(ij—1) + v(i-1J) + v(ij+1) + v(i+1.)) + b* v(ij)
ENDDO
ENDDO
DOj=2N,2
DOi=2,N,2
v(ij) = a*(v(ij—1) + v(i-1J) + v(ij+1) + v(i+1J)) + b=* v(iJ)
ENDDO
ENDDO
END
SUBROUTINE blackpoints (v,a,b,n)
INTEGER n
DOUBLE PRECISION v(n,n), a, b
DOj=1,N,2
DOi=2,N,2
V(i) = as(v(ij—1) + v(i=Li) + v(ig+D) + vi+13)) + be v(is)
ENDDO
ENDDO
DOj=2,N,2
DOi=1,N,2
v(ij) = ax(v(ij—1) + v(i-1,) + v(ij+1) + v(i+1J)) + b* v(iJ)
ENDDO
ENDDO
END

Figure 12: Example loop nest with procedure calls.
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of the underlying algorithm. However, the user will have difficulties to predict the combined
effects of the compiler, problem, and machine characteristics on the performance of a specified data
decomposition scheme. Therefore we expect the Fortran D program generated by the automatic
data partitioner to do better than the hand-coded Fortran D version for some programs of the
benchmark suite.

Initially, the automatic techniques will be validated by applying them to whole programs in the
benchmark suite. If automatic techniques will fail for whole programs, we want to understand why
this is the case and how user interaction can overcome their deficiencies.

6 Related Work and Research Goals

Our proposed techniques for automatic data decomposition are based on previous work done by

1. Knobe, Lukas at Compass, Steele at Thinking Machines Corporation, and Natarajan at Mo-
torola [KLS90, KN90],

2. Li, Chen, and Choo for the Crystal project at Yale University [CCL89, LC90a, LCI1b, LC91a,
LC90b], and

3. Balasundaram, Fox, Kennedy, and Kremer at Caltech and Rice University in the context of
the Fortran D distributed memory compiler and environment project [FHK*90, HKT92b,
HKT91, HHKT91, BFKK90, BFKK91, HKK*91].

Knobe, Lukas, Natarajan and Steele deal with the problem of automatic data layout for SIMD
architectures such as the Connection machine. They discuss an algorithm that uses heuristics
to solve conflicting requirements between minimizing communication and maximizing parallelism.
They also observed the problem of data replication of arrays that are used solely as temporaries.

Li, Chen, and Choo discuss automatic data decomposition in the context of a functional lan-
guage. They introduce the notion of index domains for phases of the computation. After alignment,
i.e. mapping data objects or functions into the common index domain of the phase, the functional
program is transformed into an imperative, intermediate form. Data partitioning is defined on
the data objects of the intermediate program and is specified by the user at execution time of the
program. Li, Chen, and Choo also briefly discuss ideas for automatic data partitioning. Given
a data partitioning strategy, a performance model is used to determine optimal communication,
selecting efficient collective communication routines whenever possible. In contrast to the Crysal
project, the input to our system is an imperative language, namely Fortran. Since Crystal starts
out with a functional program many functional characteristics are still present in the imperative,
intermediate code.

Balasundaram, Fox, Kennedy, and Kremer proposed an interactive performance estimation
tool that helps the user to understand the effects of a user specified decomposition with respect to
communication time and overall execution time [BFKK90] without actually compiling and executing
the program. The described techniques are based on the knowledge about the compiler, the actual
problem size, and the number of processors to be used. In [BFKK91], techniques are discussed
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that allow static performance estimation with high accuracy for a large class of loosely synchronous
problems.

Some approaches to automatic data decomposition concentrate on single loop nests. The
iteration space is first partitioned into sets of iterations that can be executed independently.
The data mapping is determined by the iterations that are assigned to the different processors
[RS89, Ram90, D’H89, KKBP91]. Other techniques for single loop nests are based on recognizing
specific computation patterns in the loop, called stencils [SS90, HA90, IFKF90, GAY91]. This more
abstract representation is used to find a good data mapping.

Our approach to automatic data alignment and distribution is closely related to the work
done by Gupta and Banerjee at the University of Illinois at Urbana-Champaign [GB90, GB91,
GB92], Wholey at Carnegie Mellon University [Who91}, and Chapman, Herbeck, and Zima at the
University of Vienna [CHZ91). The described techniques for automatic data decomposition work
on whole programs taking machine characteristics and problem characteristics into account. The
automatic data partitioner is an integral part of the compiler.

The major contributions of our research are

1. the development of new techniques for automatic data alignment and distribution. These
techniques consider realignment, redistribution, and data replication to minimize communi-
cation or enhance the available parallelism in the program. The techniques have to consider
procedure calls and control flow.

2. the design of a portable automatic data decomposition tool that achieves compiler and ma-
chine independence by using compiler and machine level training sets.

3. the validation of the new techniques using a suite of benchmark programs.

4. the answer to the question whether there is a data parallel programming style that allows
the automatic data decomposition of regular loosely synchronous programs across a variety
of distributed memory machines.

The proposed automatic techniques will be implemented as part of the ParaScope parallel
programming environment adapted to distributed memory multiprocessors [BKK*+89, KMT91,
BFKK90, HKK*91]. A prototype of the machine module of the static performance estimator
is already available [BFKK91].
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