DO and FORALL: Temporal and
Spatial Control Structures

Min-You Wu
Wei Shu

CRPC-TR91189
November, 1991

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

SCCS-139
CRPC-TR91189

DO and FORALL:
Temporal and Spatial Control Structures

Min-You Wu and Wei Shu

Department of Computer Science
State University of New York at Buffalo
Buffalo, NY 14260

Geoffrey C. Fox
Syracuse Center for Computational Science
Syracuse University
111 College Place
Syracuse, NY 13244-4100

Abstract — Control structures provided in programming languages relate program
statements to one another and are influenced by the underlying hardware machine archi-
tecture. Due to the rapid progress of parallel computing, the development of new control
structures for the latest generation of parallel machines is going to be an issue of great inter-
est. This paper describes do and forall, two major control structures in temporal and spatial
domains, respectively. We examine different control structures during the transitional pe-
riod from a traditional temporal structure to a newly introduced spatial structure. The
general format and semantics of the temporal and spatial control structures are described,
as well as the nested hierarchical structures. A survey of currently existing implementations

of forall statements is then followed.

1. Introduction

In programming languages, control abstraction mechanisms are heavily influenced by
the underlying machine hardware architecture. Most programming languages were dével-
oped several decades ago when machine architectures were dominated by single processor
schemes. These kinds of computers can execute only a single statement at a time. The
execution of program statements is restricted to a temporal axis. Hence, people spend
most of their efforts on design and implementation of control structures to specify the
order in which statements are to be executed. Figure 1 shows an example. Typical repeti-
tion structures include do in Fortran, for and while in Pascal and C, etc. We call them a

do-family.

1=

doi=1,4 time
(

space

Figure 1: do

As the multiprocessor architectures were gradually developed, the execution of programs
shows a more complicated picture. At this stage, more than one program statement can
be processed at the same time. The program flow must then be defined at both temporal
and spatial axes. It brought out a demand for new control structures in programming lan-

guages. Since the do-family control structures have been well defined in most programming

2

languages and their usage has been widespread, introducing a family of conceptually new
control structures and rewriting numerous existing programs certainly was not a task that
could be accomplished in a short time. Instead, people conducted a tremendous amount of
work to utilize the do-family control structures, to make restructured sequential programs

survive on new parallel architecture machines.

One major step of this task is to embed a do loop originally written for temporal repeti-
tion in the spatial axis. With dependency analysis, some sequential loops may be found to
be parallelizable. The loop without dependency between iterations can be restructured into
a doall loop [1]. An important feature of the doall loop is that no information is exchanged
between the iterations of the loop. Every iteration can be executed simultaneously without

synchronization. The do statement in Figure 2 is one that can be transferred into a doall

statement.
A
doi=1,4 time
a(i) = b(i) .
b(i) = c(i) i=l =2 i=3 i=4
end do l [| l
; —

space

Figure 2: doall

Other loops may have dependencies but some iterations can be executed in parallel.
They can be restructured into doacross loops [2]. In a doacross loop data dependencies
allow for partial overlap of successive iterations during execution. An iteration may have
to wait during its execution for a previous iteration in order to satisfy dependencies. The

user or compiler must insert some synchronization primitives, such as await, to preserve

ordering of he loop for correct execution sequence. In Figure 3, the do statement cannot
be simply converted into a doall statement. Instead, it can be embedded in the spatial axis

with some temporal constrains, forming a doacross statement.

A

1=4
i=3
doi=1,4 time =2 ‘
a(i) = a(i-1) =1
b(i) = a(i)
end do
space >

Figure 3: doacross

Although doall and doacross paved the way to restructuring the do-family struétures
in the existing sequential programs for parallel machine utilization, we can hardly expect
them to become an ultimate methodology to solve control abstraction on parallel machines.
Doall assumes every iteration is independent, however, many loops have dependencies in
it. Doacross allows dependencies among iterations, but does not provide a clear picture of

the temporal-spatial structure.

The development of new control structures for the latest generation of parallel machines
becomes of great interest. That is, in addition to the well-established temporal control
structures in do—family, another family of control structures needs to be introduced for
representation in spatial domains, which can be defined as forall-family. The potential
qsefulness of spatial control structures relies in part on the successful experience with CM
Fortran [3]. There are at least two reasons to consider parallelism in space as a language
design issue. First and foremost, it provides a new method of expression. A program is

written to simulate the real world, and the universe exists in space and time. Many problem

domains lend themselves naturally to parallelism. Therefore, languages should provide the
framework for creating problem solutions that use the concept of parallelism, regardless of
how the program will actually be executed. The second reason to discuss parallelism is that
parallel machines are now becoming readily available, thus creating the need for languages
that allow users access to that hardware capability. Such kind of spatial control structures
are attractive to the user, as they allow a cleaner and shorter representation of application
problems. Users can reliably understand what parallelism will be exploited. These control
structures improve the readability and writability of a programming language. They are
also helpful to the compiler, as the use of spatial control structures makes it easier and

more efficient to exploit parallelism as well as to improve performance.

The IVTRAN language might be the early one to provide a spatial control structure,

named as do for all statement [4, 5]. Here is an example:

do label for all (i,j) / 1..N1 .across. 1..N2
statements
label continue

All instances in the do for all can be executed in parallel. The body of the do for all
constructs can be a block of statements, conditional statements, and do loops. Subroutine
and function calls can appear within the body of the do for all. However, the do for
all cannot be nested, and only limited conditional statements can be used. The array

subscripts in a do for all are constrained to the simple linear expression of the indices.

The forall construct, proposed for Fortran 8X [6], is similar to the do for all. The forall
construct was adopted in CM Fortran [3]. The body of a forall statement must be a single
assignment statement. No nested forall statements, conditional statements, do loops, or
subroutine calls are allowed in the forall body. Only some intrinsic functions can appear

in the forall body. The forall defined in Fortran D (7] allows multiple statements, but not

5

dependencies between these statements.

We discuss the following problems in this paper:

e How can a temporal-spatial structure be constructed with do and forall?

e Which definition of the forall statement can maximize the expressive power?

In Section 2, we present the temporal-spatial structure and introduce the temporal synchro-
nization separator. In Section 3, the control structure hierarchy is described. Comparison
of different forall statements is presented in Section 4, followed by a discussion of open

problems in Section 5.

2. The Temporal and Spatial Representation

In a traditional programming language, the control structures are emphasized in the
order of execution, that is, in the temporal logic of programs. For a modern language design,
in addition to the temporal axes, we need to expand control structures to the spatial axis

as well, since the underlying machine architecture is no longer only a single processor.

For the underlying machine architecture, we use an idealized parallel computer known
as the PRAM (parallel random-access machine) [8]. There are a number of processors
working synchronously and communicating through the common random-access memory,
forming a space region in the computer system. Now, lets consider the time-space aspects
from a more fundamental, or perhaps philosophical, point of view. The space in a problem
can be directly mapped into the space in a computer. Then as in nature, each processor

evolves different elements in problem space. In this case, we have a rather clean association:

Space in Problem — Space in PRAM
Time in Problem — Time in PRAM

6

This association is particularly precise in the case when each processor holds a single element
in problem space. In the normal case, where each processor holds and evolves a number of
elements, then we have an intermediate situation. That is, we have partially mapped the

spatial extent of the problem into a temporal extent in the computer implementation:

Space in Problem — Space and Time in PRAM
Time in Problem — Time in PRAM

Here we see the space in a problem can be mapped into the time in a PRAM. However, on

the other hand, the time in a problem cannot be mapped into the space in a PRAM [9].

Next, we will briefly describe specifications of a language with both temporal and spatial
control structures. We start with a set of elementary statements, denoted as S, which in-
cludes most single statements, such as the assignment statement, the conditional statement,
etc. Before discussing a temporal-spatial structure, we construct a temporal structure and
a spatial structure. We need to define a temporal separator and a spatial separator to
group statements together on the temporal axis and on the spatial axis, respectively. The

temporal separator and spatial separator are denoted by ‘,’ and ‘||’, respectively.
Temporal Separator ¢,’

Sequential composition of statements S; and S is expressed by using the comma as a
separator:

SI’SQ

where S;,S; € S. As a convention, this separator clearly specifies the execution flow of two
statements. That is, the execution of S; must be ahead of S in a temporal axis. In some
languages, such as Fortran, sequential composition is expressed by line separation, rather

than by an explicit symbol, such as a comma.

We could group finite number of statements together by using the temporal separator
‘,’ to specify a temporal compound statement. The syntax format of temporal compound

statement Stc is given as follows:

Stre —

S
| § ') Src

where S € S.
Spatial Separator ‘||’

Compositing statements on the spatial axis can take the form:
Sill S2

where S;,5, € S. The spatial separator allows the statements S; and S, to execute in

parallel. Considering a spatial axis, the two statements are at different spatial points.

We could also group a finite number of statements together by using the spatial separa-
tor ‘||’ to specify a spatial compound statement. The syntax format of a spatial compound

statement Ssc is given as follows:

Ss¢ — S
| S " Ssc

where S € S. Spatial compound statements are equivalent to the cobegin ...coend

construct provided by other languages [10].

Notice that there is an essential difference between Stc and Ssc. Exchanging any two
statements in Sgc does not affect its semantic meaning, whereas the exchange in St¢ can
produce a totally different effect. That difference is due to the natural characteristics of

the temporal logic and the spatial logic.

Now we can extend the elementary statement set to include both St¢ and Sgc. In this

way, we can integrate statements in any combination of temporal and spatial constructs.

8

The nested temporal-spatial statements shown below are simple combinations of temporal

and spatial structures:

Se = {{S1|S2}, {Sal|Sa}}
Sy = {{S1, Sa}ll{S2, Sa}}

Statement S, specifies a temporal composition of two spatial structures in which neither
Ss nor Sy can be executed until both Sy and S; complete their execution. However, it does
not specify the relation between different spatial points. When the user wants S; and S3
to be executed in the same spatial point because of some storage preference, the statement

alignment can be used. This will be discussed later.

Statement S, specifies a spatial composition of two temporal structures in which S and
S, can be executed in parallel with S; and S3, yet there is no interaction between 51,53
and S,, S,. However, in many circumstances we need to express not only parallel actions
at different spatial points, but also interactions between them. In this time-space system,
a temporal separator ‘,’ only defines the sequence of two events at the same spatial point.
The relative time in the time-space system can only be defined by interactions between
different spatial points. If two points do not interact, it is not necessary that they be

synchronized because of the lack of synchronization would be not observable.

A new temporal separator is defined to specify a synchronization between spatial points

at certain temporal points. We called the separator a temporal synchronization separator.
Temporal Synchronization separator ‘;’

Two statements can be composited in the form

S1;5 Se

where S5y, 52 € S. The structure of temporal compound statements is expanded into

Stc — S
| § '/ Src
| S ' Sre

where S € S. Here, the symbol ‘;’ is a delimiter that acts logically like a time stamp.
The nth ;" stands for the nth time step. All executions at different spatial points must
synchronize at each time step. This is similar to a barrier [11, 12]. Semantically, every
‘,” only defines the execution order inside of Src, while every ;’ defines the execution
sequence between different spatial points. To clarify this, suppose we have two compound
statements, Stc, and Stc,, which are composited by a spatial separator ’||’, both including

‘;’. For convenience, we call all statements before

one temporal synchronization separator
;7 in Stc, as A;, and the rest in Stc, as A;. Similarly, we call all statements before ;" in
Stc, as By, and the rest in St¢, as B2. Thus, execution of any statement in A, has to wait
for not only completion of all statements in 4; but also all statements in B,. Some rules

of using the temporal synchronization separator will be discussed later in this section.
Temporal Repetition Statement: Do

Temporal repetition control structures provided in most languages allow us to spec-
ify looping over a finite set of statements. The dofamily constructs are typical temporal

repetition statements.
Str — 'do’ DoTemplet
S
'enddo’
| 'do’ DoTemplet
S 1.0
1)
‘enddo’
where S € §. By default, Str is equivalent to a temporal compound statement separated
by commas. If we need to use temporal synchronization separators, the statement S must

be explicitly followed by a ;.

10

Spatial Repetition Statement: Forall

The forall statement is a spatial repetition statement:

Ssp — 'forall! ForallTemplet
S
'endforall’

where S € S. It is equivalent to a spatial compound statement separated by ’||’.

The elementary statement set is extended to include Str and Ssgr. With the compound
and repetition statements available for both temporal and spatial domains, we can easily
express various computation patterns on the time-space. The following examples show some
combinations that form simple temporal-spatial structures. The hierarchical temporal-

spatial structure will be discussed in the next section.

(1) Spatial compound statement in the do loop:

do 1 =
a(i)
enddo

1, N
= I v@) = ...

(2) Temporal compound statement in the forall statement:

forall (i =1 : N)

si: a(i) = ... ,

s2: b@i) = ... ;

s3: c(i) = b(@i-1) + ...
endforall

In this example, s2 can be executed even if every sl at the other spatial points has not
finished its execution. However, s3 must wait for completion of all s2 statements. Thus,
the statements in a forall body can be partially synchronous, allowing multiple statements

with dependencies.

11

(3) Forall statement in the do loop:

doi=1:N
forall (j =1 : N)
a(i,j) = ...
endforall
enddo

(4) Do loop in the forall statement:

forall (i =1 : N)
do j=1, N
a(i,j) = ... ;
end do
endforall

In this example, each iteration of the do loop is synchronous. If the temporal synchroniza-

tion separator ‘;’ were not presented, execution at each spatial point would be independent.
Rules of Applying the Temporal Synchronization Separator *;”

When some dependencies between the statements at different spatial points exist in
a forall body, a temporal synchronization separator “;” must be used to ensure the right
sequence of execution. The dependencies can be classified into data dependencies, storage

dependencies, and control dependencies.

a) Data dependency:

The following example shows a data dependency between two statements:

forall (i = 1:N)
x(i) = ... ;
= x(i+1)
endforall

12

b) Storage dependencies:

There are two types of storage dependencies: anti-dependency and output dependency,

shown by the following examples:

forall (i = 1:N)
= x(i+1);
x(i) = ..
endforall

forall (i = 1:N)
x(i+1) = ... ;
x(i) = ...

endforall

c) Control dependency:

In the following example, execution of a statement depends on a condition:

forall (i = 1:N)
tmp(i) = x(i+1);
if (tmp(i) == 0) then
x(i) = ...
end if
endforall

When any one of the above dependencies exists, the user must insert a temporal syn-
chronization separator. It also means that the user has control of eliminating unnecessary
synchronizations. In other words, the user should use a temporal synchronization separa-
tor if, and only if, such a dependency exists, to avoid unnecessary synchronization. Fur-
thermore, the number of synchronization separators can be reduced in some overlapping
dependencies. For example, in the following forall statement, there is an anti-dependency

between sl and s3 and a data dependency between s2 and s3. Instead of using two syn-

13

chronization separators after s1 and s2, we can use only one synchronization separator

after s2:

forall (i = 1:N)

si: v = x(i+1)

s2: y@i) = ... ;

s3: x(i) = y(i-1)
endforall

Many-to-One Operation: Reduction

There are three types of operations in a spatial domain: many-to-many, one-to-many,
and many-to-one. (The one-to-one operation is a sequential operation.) The many-to-
many operation is a parallel operation and can be constructed by a forall statement. The

following forall statement is an example:

forall (i=1:N-1)
a(i) = a(i+1)
endforall

The one-to-many operation — the broadcasting operation — can also be carried out with

a forall statement without any special operator, such as:

forall (i=1:N-1)
a(i) = x
endforall

and as a multicasting operation:

forall (i=1:N-1)
a(i) = a(i/c)
endforall

14

On the other hand, special operators are required for many-to-one operations — the

reduction operations. As an example, the following forall statement provides a sum reduc-

tion over a(i) and assigns the result to a scalar variable, with ‘+="as a sum reduction

operator:

forall (i=1:N)
x += a(i)
endforall

The following example is a multiple reduction operation:

forall (i=1:N)
b(i/c) += a(i)
endforall

Table 1 lists some possible reduction operators.

Table 1: The Reduction Operators

+= Sum of values
*= Product of values
&= Logical AND

= Logical OR

= Logical XOR
<? = | Minimum of values
>? = | Maximum of values

A reduction operator can also be used as a unary operator, as shown in the following

example:
x = (+= a(1:N))
Using the reduction operators as unary operators, we can provide a special type of the
reduction operation — the scan function. The following statement is an example for scan

with sum:
15

forall (i=1:N)
b(i) = (+= a(1:1))
endforall

Using reduction operators but reduction intrinsics allows reduction operations in the

forall body.

3. Control Structure Hierarchy

The temporal and spatial constructs can be nested in any combination. That is, the
temporal constructs can be nested to form a nested temporal structure. Similarly, the
spatial constructs can be nested to form a nested spatial structure. As production rules are
applied one by one, we rewrite syntax-correct nesting of temporal and spatial constructs
to obtain a single compound statement. Every time we apply S — Stc or § — Stg, we
consider it as a temporal reduction level, £LT; then when we apply S — Ssc or S — Ssg,
we consider it as a spatial reduction level, £5. Thus, for any reduced single statement S,
we can find out a sequence of reduction levels, £oL;...L, where Lo is the outmost level.
This sequence describes the multiple level nests of temporal and spatial constructs. In this
sequence, there could be some consecutive reduction levels that are the same type of cT

(or L), which form a time complex, CT (or a space complex C?):
cT = LT /{£5|\ n}
¢S = L5 /{LT|\ n}

As a result, we obtain a sequence of CT and C5 ordered alternatively, called as temporal-

spatial complex sequence C, starting with either CT or CS:
C = {C5|e}{CTCs}" | {cTle}{CoCT}

A hierarchical structure can be formed with nested temporal and spatial structures, as

shown below:

spatial
temporal
spatial
temporal

We call the number of complexes in a sequence the rank. If the rank is smaller than or
equal to two, we then call it the first-oder time-space, otherwise it will be the high-order
time-space. The traditional languages, such as Fortran77, C, and Pascal, have only the

¢

temporal constructs. In these kind of languages, the temporal separator ,) and the tem-
poral synchronization separator ‘;’ have the same meaning, since no any spatial construct

presented.

The languages with the array features present one type of first-order temporal-spatial
structure, CTCS, since the array operation is a flat spatial construct. The languages with
the single-statement forall, such as CM Fortran, are the same since no temporal construct
is allowed in the forall body. Fortran D does allow multiple statements but not dependency
between these statements in the forall body. That is, there is no temporal synchronization

o)

separator ‘;’ between the multiple statements and no temporal structure allowed in the

forall body.

By introducing the temporal synchronization separator, we allow the other type of

first-order temporal-spatial structure, C5CT, and the high-order temporal-spatial structure.

The following example shows a three-level temporal structure in a spatial structure:

forall (i =1 : N)
do j=1, N

endforall

17

The following example shows a one-level temporal structure in a two-level spatial struc-

ture:

forall (i =1 : N)
forall (j =1 : N)
a(i,j) = ... ;
b(i,j) = ...
endforall
endforall

which is equivalent to:

forall (i =1 : N, j=1:N)
a(i,j) = ... ;
b(i,j)
endforall

As with the temporal synchronization separator in complex Cf, its scope is applied to
its left spatial complex C{_,, if exists. It will not synchronize any parallel action beyond

the scope. Consider the following example:

forall (i =1 : N)
do j=1, N
a(i,j) = ... ;
forall (k =1 : N)
si: b(i,j,k) = ... ;
c(i,j,k) = ...
endforall;
enddo;
d(i)= ...
endforall

In this example, the temporal synchronization separator in s only synchronizes the inner

18

forall statement but not the outer one.

4. Study of Different Forall Statements

There exist different syntax and semantic definitions of the forall statement, from the
single-statement forall to the multiple-statement forall, and the most tightly synchronous
forall to the most loosely synchronous forall. We may classify them into three types of forall
statements: the single-statement forall, the multiple-statement tightly-synchronous forall,
and the multiple-statement loosely-synchronous forall. The single-statement forall has only
one statement in the forall body, so there is no any inter-statement dependency and no
need of synchronization. However, the user may be forced to write many single-statement
foralls with complex headers. A typical single-statement forall has been implemented in
CM Fortran [3]. The following code written in CM Fortran for a search tree algorithm

illustrates the use of the single-statement forall:

pPp = tree
mask = .FALSE.
mask = (pp(1:len) .NE. NIL) .AND. (key(i:lem) .NE. k(pp(i:len)))
do while (ANY(mask))
forall (i=1:len, mask(i) .AND. (key(i) .LT. k(pp(i))))

& q1(i) = 1(pp(i))
forall (i=1:len, mask(i) .AND. (key(i) .GE. k(pp(i))))
& q1(i) = r(pp(i))
forall (i=1:len, mask(i))
& pp(i) = q1(i)
mask = (pp(1:len) .NE. NIL) .AND. (key(i:len) .NE. k(pp(1:len)))
end do

Note that array gl is necessary for buffering the intermediate values in the first forall
to avoid incorrect results in the second forall. From this small example, the header is

complicated. For a large application, the header could be extremely tedious to manage and

19

a multiple statement forall becomes necessary. The above example can be rewritten with

the multiple statement forall as follows, eliminating repeated headers:

PP = tree
mask = .FALSE.
mask = (pp(1:len) .NE. NIL) .AND. (key(1:len) .NE. k(pp(i:lemn)))
do while (ANY(mask))
forall (i=1:len)
if (mask(i)) then
if ((key(i) .LT. k(pp(i)))) then
pp(i) = 1(pp(i))

else
pp(i) = r(pp(i))
end if
end if
endforall
mask = (pp(l:len) .NE. NIL) .AND. (key(i:len) .NE. k(pp(l:len)))

end do

Next, we will discuss different semantics for the multiple-statement forall. The tightly
synchronous forall synchronizes at each statement. For each statement, the entire rhs is
completely evaluated before any stores take place. It is equivalent to many single-statement
foralls. This type of forall often introduces extra synchronization points. For example, the
following tightly synchronous forall statement must make many synchronizations between

statements and between the rhs and the lhs:

forall (i = 1:N)
x(i) = ...
= x(1i)
= x(i+1)
endforall

With a temporal synchronization separator provided, only one synchronization is nec-

essary:

20

forall (i = 1:N)
x(i) = ... ;
- x(i),
. .. x(i+1)
endforall

The loosely synchronous forall synchronizes only at the end of the forall statement.
It is equivalent to the forall with a temporal separator “,” at the end of each statement.
However, if there is a inter-statement data dependency in the forall body, we must split it

into two foralls. For example, the above code must be written as two forall statements:

forall (1 = 1:N)
x(1) = ...
endforall

forall (i = 1:N)
= x(1i)
= x(i+1)
endforall

Next, we consider the multiple statement forall with both the temporal separator “,”

and the temporal synchronization separator “;”. There are several reasons for introducing

this forall:

a) Expressive power. Compared to the single-statement forall, the multiple-statement
forall is powerful in expressing real application problems. The temporal-spatial structures
can be clearly described by the forall statement with the temporal synchronization separa-

tor, giving the user a flexible control of synchronization.

b) Readability and Writability. One of the most important criteria for judging a
programming language is the ease with which programs can be read and understood. Most

of the language characteristics that affect readability also affect writability. The degree

21

of abstraction allowed by a programming language and the naturalness of its expression
are therefore very important to its writability. The multiple statement forall increases
readability and writability drastically. If only single-statement foralls are permitted, the
user may have to write many forall statements with repeated headers, which are also hard
to understand. Similarly, for the loosely synchronous forall, the user has to break one
forall into many smaller foralls to achieve synchronizations. However, with the temporal
synchronization separator, the user can indicate where a synchronization should happen.
Also, with the temporal synchronization separator, users can quickly identify existing de-
pendencies. Furthermore, the number of temporal synchronization separators used may be

an indication of how well a parallel program was written.

¢) Synchronizations. One may suggest a smart compiler that can recognize the de-
pendency between statements and add the synchronization automatically. It might be
extremely difficult to identify all dependencies. In the case that the compiler cannot de-
termine whether there is a dependency, it must assume so and add a synchronization for

safety, which results in unnecessary synchronizations.

d) Efficiency. For the efficiency issue, we consider the cost of compiling programs as
well as the cost of executing programs. Executing many forall statements with repeated
headers is inefficient. Furthermore, when there are many unnecessary synchronizations, as

mentioned above, communication costs may incur high overhead.

5. Discussion

There are some issues remaining to be studied. One of these is alignment. We have
provided synchronization between two spatial constructs so that the two constructs can be
aligned with the same temporal axis. At times, code alignment may need to be provided

between temporal constructs so that the two constructs can be aligned with the same spatial

22

axis. This is different from the data alignment. The data alignment gives the relationship
between different data arrays, but the code alignment establishes a relationship between

different computations. The code alignment can take the form of a compiler directive.

Another problem remaining to be solved is the synchronization within a single state-
ment. As an example, the following statement has dependencies between different spatial

points:

forall (i =1 : N)
x(i) = x(i-1)
endforall

Without synchronization between the ris and the lhs, the execution result becomes unde-

terministic. This statement can be split in two with a temporary array as shown below:

forall (i =1 : N)
tmp(i) = x(i-1);
x(i) = tmp(i)

endforall

The other solution is to define a synchronous statement. In a synchronous statement,
all computations in the rhs will be completely evaluated before any store in the lhs takes

place.

Next, we discuss implementation of control structures, especially for temporal synchro-
nization separators. The temporal synchronization separator can be implemented with
barriers on shared memory machines. The barrier is a strong implementation of the tem-
poral synchronization separator, and it may be more severe than is actually necessary. It
may be relaxed by using more focused schemes of synchronization, such as full/empty bit.
For a distributed memory machine, the temporal synchronization separator can be imple-

mented with message-passing barriers involving some kinds of global communication, such

23

as reduction or broadcasting. A simple reduction or broadcasting cannot guarantee that
there is no overlap between the execution of the codes before and after the barrier. Instead,
we should use a combination of a reduction and a broadcasting to meet the requirement of
a message-passing barrier. Another method is to use the combine function [13]. Similar to
shared memory systems, the implementation of temporal synchronization separators could
also be relaxed. More specifically, when computation is static, that is, the dependencies are
known at the compiler-time, temporal synchronization separators can be developed with
focused message-passing instead of a barrier. However, if the computation is dynamic and
a data-request scheme must be used, a strong barrier implementation is necessary. An

example of this implementation is the inspector-executor pair [14, 15].

We have described two major control structures, do-family and the forall-family. The
general format and semantics of the temporal and spatial control structures, and the hierar-
chical structures have been discussed. We will integrate these structures to our Fortran90D
language and develop a compiler to compile them for distributed memory machines. With
such a compiler available, we will be able to test various application problems written in

Fortran90D and evaluate design issues of the language constructs.

Acknowledgments

The authors thank Diane Purser for her editorial efforts. The generous support of the
Center for Research on Parallel Computation is gratefully acknowledged. This work was
supported in part by the National Science Foundation under Grant No. CCR9109114 and
Cooperative Agreement No. CCR-8809165 - the Government has certain rights in this

material.

24

References

[1]

(2]

&

[4]

[5]

[6]

[7]

(8]

(9]

M. D. Guzzi, D. A. Padua, J. P. Hoeflinger, and D. H. Lawrie. Cedar Fortran and
other vector and parallel Fortran dialects. In Supercomputing ’88, pages 114-121,
November 1988.

C. D. Polychronopoulos, D. J. Kuck, and D. A. Padua. Execution of parallel loops on

parallel multiprocessor systems. In Int’l Conf. on Parallel Processing, August 1986.

E. Albert, J.D. Lukas, and G.L. Steele. Data parallel computers and the FORALL
statement. In Proceedings of the 3rd Symposium on the Frontiers of Massively Com-

putation, pages 390-396, College Park, Maryland, October 1990.

R. Millstein. Control structure in Illiac IV Fortran. Communications of ACM,
16(10):621-627, October 1973. '

Massachusetts Computer Associates (COMPASS), Wakefield, Massachusetts. V-
TRAN Manual, TR CADD-7501-2811, January 1975.

Michael Metcalf and John Reid. Fortran 8z Ezplained. Clarendon Press, Oxford, 1986.

G.C. Fox, S. Hiranadani, K. Kennedy, C. Koelbel, U. Kremer, C.W. Tseng, and M.Y.
Wu. Fortran D language specifications. Technical Report COMP TR90-141, Rice
University, December 1990.

A. Gibbons and W. Rytter, editors. Efficient Parallel Algorithms. Cambridge Univer-
sity Press, 1988.

G.C. Fox. Domain Decomposition in Distributed and Shared Memory Environments

- I: A Uniform Decomposition and Performance Analysis for the NCUBE and JPL

25

Mark I1Ifp Hypercube. volume 297 of Lecture Notes in Computer Science, pages 1042
1073. Springer-Verlag, New York, 1987. Supercomputing, ed. E. N. Houstis, T. S.
Papatheodorou, and C. D. Polychronopoulos.

[10] E. W. Dijkstra. Solution of a problem in concurrent programming control. Commu-

nications of ACM, 8(5):569, September 1965.

[11] A. K. Jordan. A special purpose architecture for finite element analysis. In Proc. of

Int. Conf. on Parallel Processing, pages 263-266, 1978.

[12] G. R. Andrews. Concurrent Programming: Principles and Practice. The Ben-
jamin/Cummings Publishing Comp., Inc., 1991.

[13] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W.

Walker. Solving Problems on Concurrent Processors, volume I. Prentice-Hall, 1988.

[14] J. Saltz, R. Mirchandaney, and K. Crowley. Runtime parallelization and scheduling of
loops. In Proceedings of the 1st Symposium on Parallel Algorithms and Architectures,

1989.

[15] C. Koelbel, P. Mehrotra, J. Saltz, and S. Berryman. Parallel loops on distributed
machines. In Proceedings of the 5th Distributed Memory Computing Conference, April
1990.

