Segmented Data Files:
an I/O Standard

William Symes

CRPC-TR91179
May, 1991

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892






Segmented Data Files: an I/O Standard

William W. Symes

Department of Mathematical Sciences
Rice University

Houston, Texas

Contents
1 Segmented I/O 3
2 Installation 13

3 Using Segmented I/O 15






introduction

This document describes a file structure for disk storage of numerical data
sets, a corresponding incore storage structure, and a means of translation
between the two. The guiding principle of this standard is that data files
should contain within them all dimensional and other information necessary
to interpret them properly. The standard encompasses simple ASCII files,
MATLAB .mat files, and many of the data formats used in geophysical data
processing.

[ wrote the procedures in C, with a Fortran interface so that the pack-
age is callable from either language. I provided an option for XDR en-
coding/decoding to generate portable binary archival files. I also provided a
parallel set of routines for reading and writing . tmp files, which are byte-level
images of the in-core structure. Since these .tmp files require no translation
they are suitable for fast storage and retrieval of temporary datasets.

To use the package you need to:

1. understand the notion of segmented data file, and how such files are
defined by specification files; build spec files for the disk and incore
formats you wish to use, or borrow them from somewhere;

2. install the source and include files described below in your source di-
rectories;

3. insert appropriate calls in your code to open, read, write and close files
using the procedures in the package.

The-sections below take on each of these points in turn.






1 Segmented I/O

Data Files

A segmented data file is a standard way of storing an array of numerical
data broken up into subarrays. The defining characteristic of the standard
is that the dimensional and other information needed to read and interpret
the data is included in the file, along with the data, in the form of auxiliary
subarrays called “headers”. The headers are arranged heirarchically, so that
information applying to a number of subarrays may be placed just once,
before all of its subject data subarrays occur in the file.

A good example of this segmented file structure is the MATLAB .mat
binary file, as described in the MATLAB manual (version 3.5) under “Load
and Save”. MATLAB places the information describing the matrix (the
numbers of rows and columns, plus some other data necessary to load the
matrix into MATLAB properly) at the beginning of the file. A matrix may be
viewed as the collection of its columns, in order; every column has the same
number of rows. To read a column, you need to know how many data words it
contains, i.e. its size (= the number of rows). You can place that information
either at the head of each column, or at the beginning of the file, since it
applies to all of the columns. MATLAB chooses the second alternative. Of
course, to read the matrix column-by-column you also need to know the
number of columns. Once again, you could either place this information at
the head of each column, or you could place it at the beginning of the file
— either way, you can keep track of where you are in the file (matrix), and
know when to stop, without relying on an EOF or other system-dependent
device.

You could envision a file consisting of a number of matrices, perhaps of
different sizes. Then you need to know the number of matrices in the file
(“2D slices”), the number of columns in each matrix (“1D slices”), and the
number of rows in each column (“size of 1D slice”). All of this information
can be placed anywhere, so long as you read it before you need it. If the
information is local to a given level or dimension of data, it can’t be placed
“higher” in the file. For example, if the columns have variable lengths (not
allowed in MATLAB!), that information is local to 1D slices (columns) and



cannot sensibly be stored at the beginning of the file. The sizes of slices
of various levels or dimensions comprise just some of the information which
might be necessary to read, or properly interpret, a file. For example, to
interpret sampled data, you need to know the sample rates or increments, so
this information should be present in headers as well.

The organization of a file by level, or dimension, induces a tree structure,
with the node at the top representing the entire file, nodes at all levels repre-
senting possible locations of headers, and nodes at the bottom representing
the location of 1D (lowest level) headers and data slices. So a 3D (3 level)
segmented file might be represented like this:

(3)
/\
/ \
(2) (2)
/| / 1\
/7N
(1) (1) ) (1)

The numbers in parentheses designate levels (I use “dimension” as a synonym
for “level” in this document, as it’s appropriate for data sets generated by
sampling functions of several variables on a regular, hypercubical grid).

In reading or writing a segmented file, you start at the top of the above
picture, traveling down the left branch (say), collecting information from the
headers as you go. You read data when you come the bottom (level 1). You
can read slices at any level: for example, you could read the first 2D slice,
composed of the first two 1D slices, then read the second 2D slice, composed
of the last three 1D slices (in this example). As you read your way through
the data, you move up a level in the tree and read the header at the next
level, when you come to the last slice at the current level. For example, after
reading the second 1D slice above, you must move up to level 2 and read
the second header at that level, which should for instance tell that you have
three 1D slices to read inside that 2D slice.

All of this is done without any worry on your part by the software. There
are some restrictions, of course. Headers may have any length, including zero
(i.e. no header at some level), but all headers at the same level must have the

4



same size and structure. That is, the headers (though not the data itself)
form a hypercubical data set. The header information can be distributed
almost arbitarily, except that by the time you get to the bottom of a branch
you must have encountered all the information necessary to read the data.
Also information local to a given level must be embedded in the header at
that level or lower. In the example above, the number of 1D slices in a
2D slice can be stated in the header at level 1 or level 2, but not in the
header at level 3. Header entries may have any numerical type (amongst
those recognised by C — short, ordinary, or long integers, single and double
precision floating point numbers), and numerical types of header entries can
be mixed arbitrarily (but the mix is the same for every header at a given
level). The data can have any numerical type, but only one numerical type
is allowed in a given file type. For example all .mat files defined under
the segmented i/o standard contain only double-precision data (which is
MATLAB’s default. though other numerical types are supported as non-
default choices by MATLAB). At some point in the future it may become
desirable to allow C structures as header or data items, but at present I
haven’t done so (with one exception for MATLAB, as explained below).

On disk, each file occupies (more or less) a linear block of storage. For
flexibility, for use in a future database project, and to accomodate some
existing formats (notably SEGY), each file begins with a tezt block of size >
0 bytes. As explained below, each file type defined under the standard has a
definite dimension d. Each k-dimensional slice, k = 1, ..., d, has a header the
entries of which may have any numerical type (short, long, float, double).
The 1D slices (traces after the geophysical usage) consist of header segments
followed by data segments, thus:

[ 1D header | data (n; samples) |

The data may have any numerical type, but all data samples in the file
must have the same numerical type.

A 2D slice (record) thus looks like:

[ 2D hdr | trace 1 | trace 2 | ... | trace n; |

and a 3D slice like



| 3D hdr [ record 1 [ record 2 | ... [record n; |

The file looks like

 text block [ dD hdr |d=1slicel]... Td—1 slice ng |

Specification Files

In order to accomodate a number of existing formats (MATLAB .mat files,
SEGY standard) I chose to encode the file type name in a suffix to the file
name, rather than inside the file itself. Thus each segmented data file name
has the form

name.type

where by convention the prefix name has no embedded blanks or periods.
The suffix type is the file type name, and must be the name of a specification
(“spec”) file containing the type specification.

The method I've developed for defining file types under the segmented i/o
standard is really a small high level language, with extremely limited syntax
and vocabulary. Specification files completely specify a file type implemented
under the standard, as well as the information needed to translate it into in-
core representation. All specification files should be located in a “defaults”
directory, the full pathname of which is given in “#define” statement in
the file iodefine.h (more on this in the Installaation section, below). Each
piece of information necessary for correct read/write and interpretation of a
record file of type type must either be coded in the specification file type
explicitly, or type must tell the i/o procedures where to look for it in the
various headers. Three types of information must be present in a specification

file:

e dimensional information necessary to read/write the file: the data di-
mension d, and the size of the text block in bytes (this may be fixed of
length > 0 bytes, or variable, as explained below);



e information necessary to type correctly the headers and data: the nu-
merical type of each header word and the numerical type of the data
samples;

e the meanings of header words, i.e. the assignment of these words to
header entries in the in-core structure, and to the remaining items (par-
ticularly the sizes datasize[k] of the k-dimensional slices) necessary
for i/o.

The last item (in-core meanings of out-of-core header entries) is coded
by means of specification strings, which are intelligible both to the program-
mer and to the i/o procedures In fact the entire specification file stucture is
designed to be human-readable.

Some items must be present in the specification file, others are optional.
The syntax of the statements is simple and mostly plain English; assignments
of numerical or character value are indicated with “=", whereas a colon sep-
arates an item from the statement of its header location (in effect a pointer).
The order in which the various items are listed is immaterial (but may affect
readability).

e Mandatory header entries:

1. encoding = ascii, binary or xdr

2. numerical type of data samples, like so:
data type = <type> where <type> is one of the strings: short,
int, long, char, float, double

3. size of text block: either the character string variable or the
character string fixed; in the latter case followed by

4. length of text block = <length in bytes>
5. data dimension;

6. numerical types of each header entry, in sequence, like so:
type: dimension k entry j = <type>



7. header locations of the sizes datasize [k] in each dimension %
(note that in order to read the file, datasize [k] must be located
in the header at level > k); locations are coded in English, like so:
size k: dimension j entry i

e Optional header entries:

These are all in the form of variable names followed by location pointers
as in the last example above:
variablename: dimension k entry j

Example

A simple 3D file structure along the lines of the tree example depicted above,
with space for a variable-length comment section, would be specified by the
following specification file:

data dimension = 3

encoding = ascii

size of text block = variable
data type = float

type: dimension 3 entry 1 = int
type: dimension 2 entry 1 = int
type: dimension 3 entry 2 float
type: dimension 1 entry 1 = int
type: dimension 2 entry 2 = float
type: dimension 1 entry 3 = float
type: dimension 1 entry 4 = float
type: dimension 1 entry 5§ = float
type: dimension 1 entry 6 = float
type: dimension 1 entry 7 = float

size 1: dimension 1 entry 1

size 2: dimension 2 entry 1

size 3: dimension 3 entry 1

number of shot records: dimension 3 entry 1
number of samples per trace: dimension 1 entry 1
sample interval: dimension 1 entry 2

8



trace offset: dimension 1 entry 3
number of traces per shot: dimension 2 entry 1
shot location: dimension 2 entry 2

This example illustrates several important features. All of the mandatory
entries are present. The text block is specified as having variable length; when
it is read or written, its end will be signified by the string #. Several of the
optional header entries are in fact the same as some of the mandatory ones,
but are assigned to additional specifications. These specifications connect
the disk file header entries to in-core header entries by the i/o translation
procedures, as described below. Thus it is presumed that the specifications
listed are amongst those passed to the i/o procedures by the calling pro-
gram, together with the corresponding indices in the in-core headers. Eight
optional header entries are defined by specification strings. Several more
header entries at dimension 1 (i.e. trace header entries) are declared but not
associated with a specification. That is, these represent unused header slots.
Note that the list of header declarations implicitly determines the length of
each header in bytes, so it is important that every header entry actually
present in the file be correctly declared, whether it is assigned a meaning
in the current file type definition or not. Also note that several file types
could use the same header declaration list, assigning specifications to various
subsets of the available header entries.

For the reader’s amusement, here is the spec file for the MATLAB .mat
structure:

data dimension = 2

encoding = binary

size of text block = fixed

length of text block = 0

data type = double

type: dimension 2 entry 1 = mattype

type: dimension 2 entry 2 = int
type: dimension 2 entry 3 = int
type: dimension 2 entry 4 = int
type: dimension 2 entry 5 = matstring

size 1: dimension 2 entry 2



size 2: dimension 2 entry 3
MATLABtype: dimension 2 entry 1
mrows: dimension 2 entry 2
ncols: dimension 2 entry 3

Note that there are no level 1 header entries.

Because mat files don’t quite fit the picture developed so far, I had to
specify two special types of header entry. mattype is an int with always
the same value for a given class of machine (in case of Suns and others
with Motorola byte-order, double precision data, the value must always be
1000). It is ignored on reads and always written with the correct value
on writes. This seemed reasonable because I always use segmented i/o in
conjunction with MATLAB on Suns, but is obviously a kludge. Also present
in the MATLAB 2D header are a string (the name MATLAB assigns to the
data array when it’s loaded) and its length in bytes (inlcuding the trailing
NULL). I have also hard-coded this item as an informal “structure” mat string.
Compare the description of .mat file structure in the MATLAB manual.

If such exceptions arise in the future it will be possible to accomodate
them in the code in a less ad-hoc way, but it didn’t seem worth it at the
moment.

Incore Data Structure

A very important part of the segmented approach to i/o is that incore data
sets are also stored as segmented “files”, with all relevant dimensional and
interpretive information in header segments. To simplify the manipulation
of incore data sets, I have elected to store all incore data - both header
entries and data samples - as a single numerical type. Currently I use single
precision floating point numbers (i.e. real or real*4 in FORTRAN, float in
C). The format for incore storage is given by another specification file, similar
in form to those specifying disk files, named incore and stored in the same
defaults directory as the other specification files. The formats common
in exploration seismology motivated the definition of the in-core style: it
is highly redundant, with all of the header information (data dimensions,
sample rates, and the like) collected in trace (1D slice) headers, rather than

10



spread in an arbitrary way amongst the dimensions. This redundant design
simplifies the coding of out-of-core procedures, since all necessary information
is available in every record (in fact, in every trace!).

Thus each incore record looks exactly like an out-of-core record (2D slice
- see above), with a zero-length 2D header.

The incore specification file is application-dependent: it is a list of de-
scriptive strings together with their indices in the incore trace header. It
defines the interface between arbitrary segmented disk files and the incore
structure used in a particular application. On each read transaction, the
incore header entries are collected from the various headers of the disk file,
and conversely on each write transaction.

Here is an example of an incore file suitable for use with the simple disk
file type for storage of a 3D data cube explained in the previous section:

number of shot records: 1
number of traces per shot: 2
number of samples per trace: 3
sample interval: 4

trace interval: 5

shot interval: 6

shot location: 7

trace offset: 8

NOTE: this is NOT the incore file contained in the sample directory
export_io/data. The incore file included there is instead a longer one
which I developed for representing seismic shot order data.

Programs using this standard should also be provided with a means to
associate a parameter to each header index, uniformly throughout the pro-
gram. At the moment, I write FORTRAN codes using this standard, so a
convenient way to associate parameters to the header indices is through and
“include” file containing a FORTRAN parameter statement. One that would
work for the in-core structure just defined would look like this:

integer nshots, ntraces, nsamples, tsample,
& xtraceint, xshotint, xshot, x

11



& lennheader

parameter (nshots = 1,
ntraces =
nsamples
tsample
xtraceint
xshotint
xshot
xtrace
lenheader =

- -

-

- -

|
0 0 N O U b WN

RP RP RP RPRPRP RP B
N’ -

Note the inclusion of the variable 1enheader giving the number of header
entries in each (incore) trace. This information must be explicitly available
in order to do memory offset calculations: the length of each in-core trace
segment is lenheader + the number of data samples (i.e datasize[1] )

A VERY IMPORTANT REMARK: note that the files tracehdr.h and
incore MUST be consistent: if you change one, you must change the other.
[ have gotten into trouble this way, so watch out.

If all code making use of the incore structure were written in C, a neater
solution would be possible: the functions of the two files just described could
be combined into a single C header file. Then the possibility of inconsistent
definitions of incore header entries would be avoided in the nicest possible
way. For example, in ANSI C the information in the two files just listed is
contained in the following incore.h file:

/* number of shot records */

/* number of traces per shot */
/* number of samples per trace */
/* sample interval */

/* trace interval */

" /* shot interval */

/* shot location */

/* trace offset */

/* trace header length (words) */

const int nshots
const int ntraces
const int nsamples
const int tsample
const int xtraceint
const int xshotint
const int xshot
const int xtrace
const int lenheader

0 00 NG WD =

This file can be read as a text file to connect the specification strings
(i.e. the comments) to the numerical values of the indices, and used also as

12



an include file wherever the parameter names (now treated as C symbolic
constants) are needed. This is doubtless the right long-term solution, but I
don’t see how to implement it cross-linguistically while keeping the indices
as parameters (thus safeguarding against inadvertant assignments).

At the moment, Fortran/C incompatibility forces the use of a parallel
trace header file for the C routines, declaring the small part of the incore trace
headers needed for C i/o as C symbolic constants. I have taken to calling
the Fortran trace header file tracehdr.h, and its C analogue tracehdr.c.h.

2 Installation

Somewhere in your source directories you should place the directory export_io
(see me for full path name), which contains:

e io.c, which contains the basic i/o routines;
e io_tmp.c, which contains the .tmp i/o routines;

® io.h tracehdrc.h and iodefine.h, necessary include files for the C
part of the package;

e tracehdr.h, ram.h, and system.h, necessary include files for the For-
tran interface;

e io_f.c and several *.f files, which constitute the Fortran interface;
® copy.c, a main program file for copying segmented files;
e fcopy.f,its FORTRAN analogue;

a makefile.

You must decide where to keep your spec files, i.e. make a directory, and
set the enviroment variable SEG_DEFAULTS to reflect your choice. That is,
you must issue the command

setenv SEG_DEFAULTS “full path name for spec file directory”

13



This line is probably best added to your .cshrec file in your home direc-
tory.

The directory export_io contains a data subdirectory, which includes
some example spec files and data sets. I keep my spec files in a separate
directory.

Note that io_f.c and io_tmp.c come in two flavors. In one the procedure
names are declared in caps (-cap) and in the other the procedure names are
declared with appended underbars (_udb). This is to allow various systems to
implement Fortran/C calls; for example the Suns want an underbar, while the
Stardent demands caps. More modifications may be necessary; for example
in Vax Fortran, C routine name must have an underbar prepended in calls
from Fortran.

You must compile these routines, and stow the object files somewhere
useful. I like to make a user library to keep them in. Here is a Makefile
fragment which would work on Sun4 machines, and is included in export_io.
It also makes the programs copy and fcopy.

.IGNORE:

F_SUBS = frecio.f
C_SUBS = io.c io_f_udb.c io_tmp_udb.c

FC = £77 -u -cg89 -c

cC = cc -cg89 -c

IOLIB = iolib.a

BLAS = /usr/local/lib/libblas.a

iolib: $(F_SUBS) $(C_SUBS)
$(FC) $(F_suBs)
$(cc) $(c_suBs)
ar vr iolib.a *.o
ranlib iolib.a
m *.o

copy: copy.c iolib.a
cc -o copy copy.c $(IOLIB)

mv copy data

14



fcopy: fcopy.f iolib.a

£77 -u -cg89 -o fcopy fcopy.f $(IOLIB) $(BLAS)
mv fcopy data

This makefile assumes that you've stowed the include files in the same
directory as the source files, and that the “make” is running there.

3 Using Segmented I/0

The essential operations are opening, closing, reading, and writing files with
the package. These can be accomplished from either Fortran or C. I will
cover Fortran first.

The Fortran Interface

I have provided Fortran interface routines that read and write records, i.e.
(nominally) 2D slices. This does not prevent you from reading and writing
1D data sets: just as a vector may be viewed as either a column vector or an
(n x 1) matrix, a 1D data set may be viewed as a 2D data set with only one
1D slice. It does prevent you from reading and writing data with 1D slices
of varying length.

To use any of the Fortran routines in this package you must first call
IOINIT, which initializes variables and arrays used throughout the package.
For example, the provision of unit numbers is handled automatically, and a
table of current unit numbers is kept in a common block in system.h and
initialized by IOINIT.

To open a file for reading or writing, you insert a call to FILEOPEN, the
comment section of which is displayed here:

C=S===s============== = =s===== ====
c SUBROUTINE FILEOPEN
c

15



Purpose: opens data files for either native binary image
of in-core data, in-core storage as a file image,
archival segmented binary i/o, HDR header definition,

or CFL (Rice Geophysics) unformatted Fortran i/o.

Must be preceded by a call to SYSTSET.

Arguments
name ==> Filename. MUST be in the form ’name.type’,
where ’type’ is one of:
’cfl’ = Rice Geophysics (FORTRAN unformatted):

’hdr’ = current in-core header file (ascii);
’ram’ = in-core file;
‘tmp’ = native binary image of incore record

{any other string}
reserved for such things; defined by
a macro in SRC/GENERIC/H/IODEFINE.H
(for archival segmented i/o in C).

iounit <-- returns unit number (file pointer)

v --> 1 = read; 2 = write

ier <-- error flag; = 0 for normal completion
= === ===

O('\'OOOOOOOOOOOOQOOOOOOOO

subroutine fileopen(name,iounit,rw,ier)

Thus you pass the name of the file to be opened (name), and the read/write
flag rw, = 1 for a read and = 2 for a write. You get in return a “unit num-
ber” to which the file has been attached. Note that this is only a real Fortran
unit number if you have opened a CFL file (which occurs through the Fortran
i/o system). Otherwise you have opened a file through the C i/o system,
and iounit is actually an index into an array of file pointers or descriptors.
Moral: don’t use iounit as a Fortran unit number; only use it in connection
to other calls to the segmented i/o package.

To read a record from the file opened for reading (rw = 1) on iounit into
the array buf, you use FGETREC:

16

one of the spec files in the directory



SUBROUTINE FGETREC

WWS, 30.4.90

iounit -—==> unit number in segmented i/o system
ntotal --=> total storage available in array {buf}
buf <==> array into which record is to be read
ier === error flag; = 0 on successful completion

Purpose: extracts a record from a file, writes
it to the buffer {buf}.

Use: must be preceded by a call to FILEOPEN,
to open the file appropriately. Should be followed
(when all data is read) by call to FILECLS.

O 0000 0 0 0 000000000

subroutine fgetrec(iounit, ntotal, buf, ier)

The input ntotal is included to safeguard against overwriting array bound-
aries. On return, ntotal = number of real*4’s read.

To write a record of from the array buf to the file opened for writing (rw
= 2) on iounit, use FPUTREC:

3 23 32 22 2 32 Pt g4 ittt P+ P+ - -+ + + + + + + + + + + -+ 1+ + 3

c

¢ SUBROUTINE FPUTREC

c

c WWS, 30.4.90

¢ revised 31.8.90

¢ revised 20.2.91

c

¢ Purpose: writes a record of ntotal words from the buffer

17



¢ buf to the file at unit number iounit.

subroutine fputrec(iounit, ntotal, buf, ier)

On return, ntotal is the number of words written. The actual write is
governed by the header structure in the array buf — i.e. buf cannot be
merely a data array; it must actually be a 2D slice in the incore structure.
Finally, you can win the Good Housekeeping seal of approval by politely
closing your files when you’re done. Amongst other things, this frees up the
unit number iounit for re-use.

cE==== = = At 44343t 1+

c SUBROUTINE FILECLS

c

c Purpose - gee, I don’t know, let me guess.
c

c= == == ===

c
subroutine filecls(iounit,ier)

An Example: FCOPY

The modules described in the previous section are all used in the program
fcopy, which is the FORTRAN analogue of the program copy, and is used
in exactly the same way:

fcopy <source filename> <target filename>

Study of this source file should clarify the use of the FORTRAN interface.

18



FCOPY: Fortran record-based copy using Segmented I/0
program fcopy

workspace for command line query
integer numargs, iargc

filenames, lengths, unit numbers, read/write flag

character*80 name_in, name_out
integer size_in, size_out, unit_in, unit_out, rw

buffer for data, length
integer max, ntotal
parameter (max=1000000)
real buf (max)

max number of records permitted

integer maxrec
parameter (maxrec=300)

error flag, record counter, query reply, verbosity flag

integer ier, irec, iverdb
character yn

include files
include ’system.h’

include ’tracehdr.h’

19



call ioinit(ier)

if (ier.ne.0) then
write(ipout,*)’ Error: FCOPY from IOINIT’
stop

end if

numargs = iargc()

if (numargs.ne.2) then
write(ipout,*)’ usage:’
write(ipout,*)’ fcopy <source filename> <target filename>’
stop

end if

call getblank80(name_in)
call getblank80(name_out)

call getarg(l, name_in)
call getarg(2, name_out)

size_in = index(name_in,’ ’) - 1
size_out = index(name_out,’ ’) - 1

vrite(ipout,*)’ copy ’,name_in(1:size_in),
& ’ to ’,name_out(1:size_out),’ ? (y/n)’
read(ipin,*)yn

if (yn.eq.’y’) then
c
C *** open name_in
c

rw=1

20



C **%x

call fileopen(name_in,unit_in,rw,ier)

if (ier.ne.0) then
write(ipout,*)’ Error: FCOPY from FILEOPEN’
write(ipout,*)’ file: ’,name_in(1:size_in)
write(ipout,*)’ ier = ’,ier
stop

end if

open name_out

rw=2

call fileopen(name_out,unit_out,rw,ier)

if (ier.ne.0) then
write(ipout,*)’ Error: FCOPY from FILEOPEN’
write(ipout,*)’ file: ’,name_out(1:size_out)
write(ipout,*)’ ier = ’,ier
stop

end if

do 500 irec=1,maxrec

if (iverb.eq.1) then
write(ipout,*)’ FCOPY: record = ’,irec
write(ipout,*)’ FCOPY ---> FGETREC’
end if

ntotal = max

call fgetrec(unit_in, ntotal, buf, ier)

if (ier.ne.0) then
write(ipout,*)’ Error: FCOPY from FGETREC’
write(ipout,*)’ ier = ’,ier
stop

end if

if (iverb.eq.1) then
write(ipout,*)’ FCOPY ---> FPUTREC’

end if

21



call fputrec(unit_out, ntotal, buf, ier)
if (ier.ne.0) then
write(ipout,*)’ Error: FCOPY from FPUTREC’

write(ipout,*)’ ier = ’,ier
stop
end if
c
if (irec.ge.maxrec) then
write(ipout,*)’ You cretin! You attempted to’
write(ipout,*)’ play BLAS with more than ’,maxrec
vrite(ipout,*)’ records at once. That’'’s sheer,’
write(ipout,*)’ unmitigated greed, and you ought’
write(ipout,*)’ to be ashamed of yourself. I’’m ’
write(ipout,*)’ closing all of your files RIGHT NOW!!!’
go to 300
c
c **x NOTE THE (TYPICAL) USE OF A HEADER ENTRY AS DIMENSIONAL
c INFORMATION IN THE FOLLOWING STATEMENT, WHICH CHECKS TO
c SEE IF WE’VE JUST COPIED THE LAST RECORD:
c
else if (irec.ge.nint(buf(nshots))) then
go to 300
end if
c
500 continue
c
300 continue
c

call filecls(unit_in,ier)
call filecls(unit_out,ier)
if (ier.ne.0) then
write(ipout,*)’ WATCH OUT! one of your files didn’’t close’
end if

end if

22



stop
end
c
3% ek o e o b ok ok o ook 3 ok e Kk ok 3ok 3 ol 3k ok ek o 3 o ok ok ok o ok ok ok o 3k oK K3k Sk s ke e o e ok e 3k ok ko ok sk ok sk 3k ok ok ok ok o ok ok K
c
subroutine getblank80(blank80)
character*80 blank80
integer i
do 1 i=1,80
blank80(i:i)=’
1 continue
return
end

23



~









