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Abstract

Recently, Ye et al. [15] proposed a large step modification of the Mizuno-Todd-Ye
predictor-corrector interior-point algorithm for linear programming. They demon-
strated that the large-step algorithm maintains the O(v/nL)-iteration complexity
while exhibiting superlinear convergence of the duality gap to zero under the assump-
tion that the iteration sequence converges, and quadratic convergence of the duality
gap to zero under the assumption of nondegeneracy. In this paper we establish the
quadratic convergence result without any assumption concerning the convergence of
the iteration sequence or nondegeneracy. This surprising result, to our knowledge,
i1s the first instance of polynomiality and superlinear (or quadratic) convergence for
an interior-point algorithm which does not assume the convergence of the iteration
sequence or nondegeneracy.
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1. Introduction

Consider the primal linear program (LP):

min ¢’z

st. Ar =b, >0,

and its dual (LD):
max b7y

st. ATy+s = ¢, s>0,

where A € R™*", ¢ € R", and b € R™. We say that s is feasible for (LD) if there
exists y such that (y,s) is feasible for (LD). Recall that a feasible point is said to be
strictly feasible if it is feasible and positive. We say that (z,s) is a (strictly) feasible
pair for (LP) and (LD) if z is (strictly) feasible for (LP) and s is (strictly) feasible for
(LD). It is well-known that for a feasible pair (z,s) the duality gap is given by z7s.

Hence a feasible pair (z*,s*) is optimal if and only if
zjs; =0 for j=1,2,.. n.

Moreover, consider a sequence of strictly feasible pairs {(z*,s*)} such that the
duality gap sequence (z*)Ts* — 0. Then we say that this duality gap sequence

converges Q-superlinearly to zero if

E+1\T k+1
lim () s =0,
k—o00 (:L'k)Ts"
and Q-quadratically to zero if
(zk‘"l )Tsk+1
lim sup < +o0.

koo ((z%)Tsk)2
In the context of the present work it is important to emphasize that the notions of
convergence, superlinear convergence, or quadratic convergence of the duality gap
sequence in no way require the convergence of the iteration sequence {(z*, s*)}. of
course, from Hoffman’s lemma [4] it follows that in a particular sense the iteration

sequence converges to the optimal solution set with the corresponding R-rate.
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Recently, there has been an exciting outbreak of activity in the area of construct-
ing primal-dual interior-point algorithms for either the linear programming problem
(LP), or the linear complementarity problem (LCP) with a strict complementarity
solution, that are demonstrably superlinearly or quadratically convergent. For LP,
these works include Zhang et al. [16], [17], Ye et al. [15] and McShane (8]. For LCP,
these works include Zhang et al. (18], Kojima et al. [6], and Ji et al. (5].

For the moment assume that the iteration sequence {(z*, s*)} has been generated

by an interior-point algorithm. Consider the following assumptions:
A0 a strictly feasible pair (29, s°) exists;

Al the iteration sequence {(z*,s*)} converges;

A2 the linear program is nondegenerate.

We intend A0 and A1l to apply to both LP and LCP. It is known that A2 implies Al
when the duality gap converges to zero. Note that A0 is assumed by all of the existing
primal-dual interior-point algorithms. Concerning the results mentioned above, all of
the superlinear convergence results assumed A1; while all of the quadratic convergence
results assumed A2. Perhaps the most striking theoretical results obtained so far can

be cataloged as follows:

- O(nL) iteration complexity and superlinear convergence assuming A1l (Zhang and
Tapia [16] for LP and Ji et al. [5] for LCP) or quadratic convergence assuming
A2 (Zhang and Tapia [16] for LP).

- O(y/nL) iteration complexity and superlinear convergence assuming Al (Ye et
al. [15] and McShane [8] for LP) or quadratic convergence assuming A2 (Ye et
al. [15] for LP).

In these bounds L represents the data length of the problem being solved.

Certainly, the global property of polynomiality and the local property of super-
linearity are desirable. However, the degree to which Al is restrictive is an open
question at this time. Moreover, A2 is not at all realistic, since most real-world LP

problems are degenerate.






In what follows we consider the large-step modification of the Mizuno-Todd-Ye
predictor-corrector algorithm suggested by Ye et al. [15]. We show that this O(v/nL)
iteration complexity algorithm actually gives quadratic convergence of the duality gap
to zero without assuming either Al or A2. (Of course we must assume AQ as usual.)

In Section 2 we review the large-step algorithm and collect several previously
established estimates. Section 3 contains several technical results. Our majn con-
vergence result is given in Section 4, and a summary and concluding remarks are

contained in Section 5.

2. The Predictor-Corrector Algorithm

In this section, we briefly describe the predictor-corrector LP algorithm [10]. We
employ the notation X = diag(z), S = diag(s), etc. and let Q denote the collection
of all strictly feasible pairs (z,s). Consider the neighborhood

N(a) ={(z,s) € Q: || Xs/u—e| < a},

where ||.|| represents the I, norm, u = zTs/n, e is the vector of all ones, and a is a

constant between 0 and 1.

To begin with choose a constant 0 < 8 < 1/4 (a typical choice would be 1 /4).
All search directions d;, d,, and dy will be defined as solutions of the following system

of linear equations (Kojima et al. [7])
Xdys + Sd; = yue — X s
Ad. =0 (1)
ATd, +d, =0.

A typical iteration of the algorithm proceeds as follows. Given (z*,sF) e N(B),
we solve the system (1) with (z,s) = (z*,s%) and ¥ = 0. Denote the resulting

directions by d¥ and d¥. For some step length 8 > 0 let

z(0) = z* + 8d%, s(8) = s* + 6dF,
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and p(8) = z(6)Ts(6)/n. This is the predictor step. The specific choice for § will be

stated after we consider the following lemma that is essentially due to Mizuno et al.
[10].

Lemma 2.1. If there exists a positive 8% < 1 such that
[ X(8)s(6)/u(f) —e| <a<1 forall 0<6<8*, (2)

then (z(8*%), s(6%)) € M(a).

The proof of Lemma 2.1 follows directly from a continuity argument. Lemma 2.1
basically says that the strict feasibility of (z(8*), 3(8%)) is guaranteed as long as (2) is
satisfled. Thus, we can choose the largest step length 6* < 1 such that (2) is satisfied
for a = 243, and let

#* = 2(6*) and 3* = s(6).

Now we solve the system (1) with (z,s) = (2*,35*) € M(28), p = (2%)T 5% /n,
and v = 1. Let zF*! = #¥ 4 d_ and s¥*! = ¥ + d,. It has been proved that
(z**1,5%+1) € N'(8) (Lemma 3 [10]). This is the corrector step.

We are now in a position to state the algorithm
Algorithm (Large-step predictor-corrector)

By the large-step predictor-corrector algorithm we mean the Mizuno-Todd-Ye

algorithm defined above with the step length given by the largest 8% satisfying the
conditions of Lemma 2.1 with 0 < 8 < 1/4 and a = 28.

The choice of 6% in the algorithm requires one to find the roots of a quartic
polynomial. From the proof of our main result we will see that the choice for 8* need
not be this involved and it suffices to choose #* as the lower bound given in Lemma
2.2 below, as was the case in Ye et al. [15]. These comments will be stated formally

as a corollary to our main theorem.

Observe that the algorithm generates a sequence of feasible pairs satisfying

IX*s*/u* — el < B (3.1)
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and

(@FH)Tsk+ = (25)T5% = (1 - 6%)(c*)Ts*. (3.2)
For convenience, in what follows let
6 = Dkdk /u*.
From Mizuno et al. [10] (Lemmas 1, 2, and 4) we have that
165 < v2n/4, (4.1)

andfor0 < 3 <1/4

.1 1y
6* 2mln{§,(8”6k“)1 2}. (4.2)

Thus, these inequalities together with (3.2) imply that the iteration complexity of
the large-step algorithm is O(y/nL). Note that the algorithm requires that the linear
system (1) be solved twice at each iteration.

From relation (3.2), we see that if (1 — §¥) — 0 then the duality gap (zF)Ts*
converges to zero Q-superlinearly. Moreover, if (1—6*%) = O((z*)7s*) then the duality
gap converges to zero Q-quadratically. In our convergence-rate analysis, as opposed
to our complexity analysis, the big O notation represents a quantity that may or
may not depend on n or L, the problem data, however this dependence will not be
explicitly stated. The above lower bound in (4.2) for %, due to Mizuno et al., is not
sufficient to demonstrate superlinear convergence since it is at most 1 /2. Thus, Ye et
al. [15] derived the following lower bound for *.

Lemma 2.2. If 6% is the largest 6* satisfying the conditions of Lemma 2.1 with
a = 20, then
elc

2
> :
T V1+4lI6kl/8 +1

Using the bound given in Lemma 2.2, Ye et al. [15] have proved that the predictor-
corrector algorithm maintains the O(\/nL) iteration complexity, and also gives super-
linear convergence under assumption Al or quadratic convergence under assumption
A2. In the next section we will show how to remove these assumptions and actually

obtain quadratic convergence for general LP problems.
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3. Technical Results

At the kth predictor step if % is the largest §* satisfying the conditions of Lemma
2.1 with a = 243, then

2

V1+4)|65/8+1
_ V1+4|é*/8 -1

VT +4)65/8 +1
_ _4|lé%|i/8
(V1+4[85/8 + 1)
< 116511/8. (5)

1-¢F<1-

Our goal is to prove that ||6¥|| = O((z¥)Ts*) without using assumption Al or A2.

We first introduce several technical lemmas. For simplicity, we drop the index k

and recall the linear system during the predictor step
Xd’ + Sdz = —XS

Ad; =0 (6)
ATd, +d, =0.

Let u = zTs/n and z = Xs. Then from (3.1) we must have
(l—a)p<zj<(1+a)u for j=1,2,..,n. (7)

Define D = X'/25-1/2 and denote by II;, the orthogonal projection onto the linear
subspace L of R". Denote by N(AD) and R(DAT) the null space of AD and the
range of DAT, respectively. We shall estimate ldz|| and ||d,||. Our present objective
is to demonstrate that ||d;|| = O(x) and ||d,|| = O(p).

We start by characterizing the solution to (6).
Lemma 3.1. If d; and d, are obtained from the linear system (6), then
d: = —DIINapyr,

d, = —D—IHR(DAT)I‘,
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where r = Z1/2¢,
Proof. The proof is straightforward, e.g., see Adler and Monteiro (1]. |

It is well known that for every linear program, a unique partition 4 = (B, N)

exists such that the primal optimal facet is given by
Q,={zp: Brp=b, zp >0}
and the dual optimal facet is given by
Qa={(y,sn): c—BTy=0, sy =cn —NTy > 0}.

Strictly feasible solutions zp > 0 and sy > 0 exist on these optimal facets, respec-
tively, and both facets are bounded under assumption AQ. Here, we also use B and

N to denote the partitioned column index sets. For all k, relation (3.1) implies that
E<zf<1/¢ for jeB (8.1)
and
£<s§<1/¢ for jeN, (8.2)
where § < 1 is a fixed positive number that is independent of k (Giiler and Ye [3]).

Lemma 3.2. If d; and d, are obtained from the linear system (6) and u = zTs/n,
then

I(dz)n |l = O() and |I(ds)ll = O(n).

Proof. From Lemma 3.1, we obtain
ID™d: |l < ITnap) 7l
< Irll = O(V/m).
We have from relations (7) and (8)
(dz)n Il = |DnDy' (dz)w ||
< IDNIIIDR (d2)w |
< IDNIIO(VE)
= I1Z¥*s5 10(vR)
= O(Vr)O(VE) = O(p).
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This proves that ||(d;)n|| = O(u). The proof that l(ds)B|| = O() is similar. |
The proofs of ||(d;)s|| = O(u) and ||(d,)n|| = O(x) are more involved. Towards

this end, we first note

T+ d;- = DHR(DAT)T,
(9)
s+d, = D-IHN(AD)T.

This is because from the first equation of (6) we have

S(z+d;) = -Xd,
X(s+d,) = -5d;.

Thus,
z+d; = —(XS1)d, = —-D%,

s+dy=—-(SX"")d, = -D7%4,,
which gives relation (9).

The following lemma is essentially due to Adler and Monteiro (1] (also see Son-
nevend et al. [11] and Witzgall et al. [13)).

Lemma 3.3. If d; and d, are obtained from the linear system (6), then (d;)p is

the solution to the (weighted) least-squares problem

min (1/2)[ D' ul]

(10.1)
s.t. Bu = —N(d,)n,
and (d,)v = —NTd, where d, is a solution to the (weighted) least-squares problem
min (1/2)||DyNTv||?
v ( (10.2)
st. BTy = —(ds)B.
Proof. From (9), we see that
zp + (d:)B € R(D%BT). (11)

Since s = 0 for all optimal s*, we must have cg € R(BT). Thus,

sp = cpg — BTy e R(BT),
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which implies that
zp = D)sp € R(D4BT). (12)

From (11) and (12) we have
(d:)B € R(DgBT).

Moreover, (d.)p satisfies the equation
B(d:)p = —N(d:)n.

Thus, (d. ) p satisfies the Karush-Kuhn-Tucker conditions for the least squares problem
(10.1).
Since AD?*(s +d,) = —Ad; = 0 and AD?s = Az = b, it follows that

—b= AD?d, = BD%(d,)p + ND%(d,)n. (13)

Also, since 2}y = 0 for all optimal z*, we have Bzy = bimplying b € R(B). Therefore,

relation (13) implies
ND}YNTd, = —-ND%(d,)n € R(B).
Moreover, d, satisfies the equation
BTd, = —(d,)s.

Thus, dy satisfies the Karush-Kuhn-Tucker conditions for the least squares problem

(10.2). [

Theorem 3.1. If d; and d, are obtained from the linear system (6) and u = zTs/n,

then
(dz)Bll = O(p) and ||(ds)n|l = O(p).

Proof. Since the least-squares problem (10.1) is always feasible, there must be a

feasible @ such that
llall = O(li(dz) w11,
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which together with Lemma 3.2 implies

lall = O(w).
Furthermore, from Lemma 3.3 and relations (7) and (8)

(dz)Bll = ||DeD3'(d:)s]||
< IDsll|D5" (d:)sl|
< | DsllID5 4l
< | DaID5 l|al
= 125" X5l Z5* X5 Il
< Izz' " xsllzy x5 Il
= O(|lall) = O().

Similarly, we can prove the second statement of the theorem. |

4. Quadratic Convergence without Assumption A1 or A2

Theorem 3.1 indicates that at the kth predictor step, d* and d* satisfy
I(d2)5ll = O(4*) and ||(d*)w|l = O(u*) (14)

where pf = (2%)Ts* /n. We are now in a position to state our main result.

Theorem 4.1. Let {(z*,5*)} be the sequence generated by the Algorithm. Then,
with constants 0 < # <1/4 and a = 23

(i) the Algorithm has iteration complexity O(/nL);
(i) 1-6* = O((z*)Ts*);
(iii) (z*)Ts* - 0 Q-quadratically.
Proof. The proof of (i), i.e., the O(y/nL)-iteration complexity of the algorithm follows
from inequalities (3.2), (4.1) and Lemma 2.2, which give

2

V1+v2r/8+1

11

(F )Tkl < (1 = )(z*)T sk,






This also establishes
. k_
klg{.lo ut =0.

For every j, at the kth predictor step (i.e. v = 0), it follows from system (1) that

(d2); . (d5)i _ _,
zk sk ’
J J

From (8) and (14) we have

iy |
(l'f)] =0(u*) for jeB
and
dby, .
(—;,?)—’ =O0(u*) for jeN.
]

Relation (16) implies that

dk .
lim (—‘k)—’=0 for je€B

and .
dk).
lim #=0 for j€N,
k—oo Sj

which together with (15) implies that

ky.
lim (—d’kl=—1 for j€eB
k—oo Sj

and

kY.
lim(i’,c)—":—l for jeN

Thusl, relations (16) and (17) imply that for sufficiently large k

(df),(d¥),

k ok
xjsj

Furthermore, note from (3.1) that

(1-Bp* <zisf <1+ B)p* for j=1,2,...n.

12

J=12,..n.

=0(u*) for j=1,2,...n.

(15)

(16.1)

(16.2)

(17.1)

(17.2)

(18)

(19)






Therefore, inequalities (18) and (19) imply that
1651l = IDZd5 /¥l = O(l|(X*S*) ™ DEd|l) < O(vmuk) = O((*)Ts*),

which together with (5) establishes (ii). From (3.2) we see that (ii) implies (ii). This
proves the theorem. |

Interestingly, the behavior of (X k)=1d% and (S* )~'d* in our Theorem was dis-
cussed by Tapia [12] in (1980) for complementarity problems where the strict comple-
mentarity solution is unique. He used these two vectors as the basis of an indicator
theory for identifying variables which are zero at the solution. See also El-Bakry et
al. [2]. These two vectors were also used by Mehrotra and Ye [9] as a criterion for

identifying the partition B and N.

The following corollary formally states that we do not need to choose the largest
step in the predictor step, but only a sufficiently large step. Thus, we are no longer

required to find the zeros of a quartic polynomial.

Corollary 4.1. If the predictor-corrector algorithm is adapted with 6* given by the
lower bound in Lemma 2.2, then Theorem 4.1 also holds for the modified algorithm.
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5. Summary and Concluding Remarks

Recently, Mizuno et al. [10] proposed a predictor-corrector interior-point algorithm
for linear programming. They demonstrated that the algorithm possessed O(v/nL)
iteration complexity. More recently, Ye et al. [15] proposed a large-step modifica-
tion of the algorithm and proved that the large-step algorithm, while maintaining
O(v/nL) iteration complexity, exhibited superlinear convergence of the duality gap
sequence to zero under the assumption that the iteration sequence convergéd, and
exhibited quadratic convergence of the duality gap sequence to zero under the as-
sumption of nondegeneracy. In this paper we have established the surprising result
that the large-step predictor-corrector algorithm actually exhibits quadratic conver-
gence of the duality gap to zero without the assumption of nondegeneracy or even
the assumption that the iteration sequence converges. This result is the first instance
of a demonstration of polynomiality and superlinear (or quadratic) convergence for
an interior-point method which does not assume the convergence of the iteration
sequence or nondegeneracy. We note that each iteration in the predictor-corrector
algorithm requires the solutions of two linear systems—one in the predictor step and

one in the corrector step.

Although the iteration sequence {(z*,s¥)} may not be convergent, it is a conse-
quence of Hoffman’s lemma [4] that the sequence {z*} converges R-quadratically to
the primal optimal set Q,. The same is true for the sequence {s*} if we write the

dual linear program and its optimal solution set in terms of s alone.

While seemingly quadratic convergence has often been observed in practice for
primal-dual interior-point methods applied to degenerate problems, its effectiveness
is comprorﬁised by the use of finite-precision arithmetic to solve the necessarily ill-
conditioned linear systems. Hence our current result may have only theoretical value.
In this context the finite termination procedures of Ye [14] and Mehrotra and Ye 9]
are of value in obtaining an optimal solution.

It has been observed in practice that the O(/nL) algorithms are generally less
effective than are some of the O(nL) algorithms (or other non-polynomial algorithms).
Zhang, Tapia and Dennis [17] argued that several of these O(\/nL) algorithms possess

14






particularly poor Q-convergence properties, i.e., they exhibit Q-linear convergence
with convergence constants near 1 for large n. Therefore, some researchers may have
embraced the belief that the O(\/nL) were less effective because none of them could
achieve superlinear convergence. Now, we have constructed an O(v/nL) algorithm
that has superior (actually optimal) asymptotic convergence when compared to the
O(nL) algorithms for degenerate problems. I, perchance, numerical experimentation
still favors the O(nL) algorithms, then we must conclude that their advantage is not

due to their asymptotic behavior, but to some other, as yet unexplained, phenomenon.
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