An Interior-point Method with Polynomial
Complexity and Superlinear Convergence for
Linear Complementarity Problems

Jun Ji
F. Potra
R.A Tapia
Y. Zhang

CRPC-TR91170
July, 1991

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892






An Interior-Point Method with Polynomial
Complexity and Superlinear Convergence for

Linear Complementarity Problems

Jun Ji } Florian Potra | Richard Tapia *and Yin Zhang $

July, 1991

Key Words: Linear programming, quadratic programming, linear complementarity
problems, primal-dual interior-point algorithms, polynomiality, superlinear convergence.

Abbreviated Title: Interior-Point Methods for Linear Complementarity Problems

*Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242
'Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242 and visiting member of

the Center for Research on Parallel Computation, Rice University, Houston, Texas, 77251-1892. Research

supported in part by NSF Coop. Agr. No. CCR-8809615.
tDepartment of Mathematical Sciences and the Center for Research on Parallel Computation, Rice

University, Houston, Texas, 77251-1892. Research supported in part by NSF Coop. Agr. No. CCR-

8809615, AFOSR 89-0363, DOE DEFG05-86ER25017 and ARO 9DA AL03-90-G-0093.
$Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore,

MD 21228 and visiting member of the Center for Research on Parallel Computation, Rice University,
Houston, Texas, 77251-1892. Research supported in part by NSF Grant DMS-9102761 and NSF Coop.
Agr. No. CCR-8809615.






Abstract
For linear programming, a primal-dual interior-point algorithm was recently
constructed by Zhang and Tapia that achieves both polynomial complexity and
Q-superlinear convergence (Q-quadratic in the nondegenerate case). In this pa-
per, we extend their results to quadratic programming and linear complementarity

problems.

1 Introduction

Primal-dual interior-point algorithms, originally introduced by Megiddo [10] in 1986 for
linear programming, have a close connection to Newton’s method. Exploiting this con-
nection, Zhang, Tapia and Dennis [16] established sufficient conditions for primal-dual
algorithms to achieve superlinear convergence for linear programming (LP). Zhang, Tapia
and Potra [17] extended these results to quadratic programming (QP) and linear com-
plementarity problems (LCP). Recently, Zhang and Tapia [18] constructed a primal-dual
algorithm that exhibits both polynomial complexity and @-superlinear convergence (Q-
quadratic in the nondegenerate case). More recently, Kojima, Kurita and Mizuno [2]
proposed rules for choosing parameters in primal-dual algorithms, and showed that for
LCP one set of rules leads to both global convergence (but not necessarily polynomial)
and superlinear convergence.

In this paper, we extend the Zhang-Tapia algorithm [18] from LP to QP and LCP,
and prove the same theoretical properties, i.e., polynomial complexity and superlinear
convergence, for the extended algorithm.

We take a unified approach towards linear programming quadratic programming and
linear complementarity problems. The basis of this unified approach is the following

nonlinear system with nonnegativity restrictions on the variables

M Ny—h
Fla,y) = ”’;Yy =0, (z,9) 20, (L.1)
e



where z,y,h,e € R, M,N € R™", X = diag(z), Y = diag(y) and e has all components
equal to one.

Problem (1.1) is sufficiently general to include linear complementarity problems,
quadratic programming problems and linear programming problems. To begin with,
observe that if V = —1I, then this problem is the standard linear complementarity prob-

lem. Consider the following equality constrained quadratic programming problem

minimize Tz + %:z:TQz
subject to Az = b, (1.2)

z2>0,

where c,z € R*, b€ R™, A € R™*"(m < n) and has full row rank, and Q € R™*". If Q
is symmetric and positive semi-definite on the null space of A; then QP (1.2) is a convex
program and the first order optimality conditions are both necessary and sufficient for

optimality. The first-order conditions for (1.2) can be transformed into the form of (1.1),

and h=( b ), (1.3)
Bc

where B € R(™™)*" is any matrix such that the columns of BT form a basis for the

as was shown in [17], with

M= ,N:

-BQ B

null space of A. When Q = 0, the quadratic programming problem (1.2) reduces to the
standard form linear programming problem.

A direct calculation shows that

M N
Y X

F'(z,y) = . (1.4)

The feasibility set of problem (1.1) is:
F = {(zyy) T,y € Ru,Mz + Ny = h,(z',y) > 0}

Moreover, a feasible pair (z,y) € F is said to be strictly feasible if it is positive.
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Throughout this paper, whenever we consider LCP, we assume that the matrix M
s positive semi-definite; and whenever we consider QP, we assume that the matrix Q is
symmetric and positive semi-definite on the null space of A. Also, we will assume that a
strictly feasible point exists.

Subscripts will be used to distinguish values of quantities at a particular iteration and
superscripts will indicate components of vectors. We also use the notation:

min(v) = min(v') = 1I}u<r1 v' and max(v) = max(v') = max vt
<ikn <ikn

. for a vector v € R”. The symbol || - || denotes the ¢, norm unless otherwise stated.

The paper is organized as follows.. In Section 2, we describe the basic interior-point al-
gorithm for our general model (1.1). In Sections 3, we specify our choice of the step-length
and the centering parameter. Polynomiality and superlinear convergence are established

in Sections 4 and 5, respectively. Concluding remarks are given in Section 6.

2 Algorithm

The basic algorithm we will study is the following.

Algorithm 1
Given a strictly feasible pair (zo,y0). For k=0,1,2,..., do

Step 1 Compute the Newton step

Azl
£ | = =[F ok y0) T F (zh a)
Ayl
and the centering step
Az 0
“ | = LeTyulF(ar, ya)]
Ayf e



Step 2 Choose oi € (0,1) and form the combined step

Az Azl Az
= + Ok .
Ay Ayl Ayf

Step 3 Choose ay = Tiéx, where 7 € (0,1) and

-1
" min(X; Az, Y Ayi)”

G

Step 4 Compute the new iterate

Thi1 Tk Axk
= + ag .
Yk+1 Yk Ayx

Notice that since (zo, yo) is strictly feasible, all the subsequent iterates {(zx,yx)} will
also be strictly feasible. Also for QP and LCP, the matrix F'(z,y) is nonsingular for all
(z,y) > 0; hence Algorithm 1 is well-defined.

For (z,y) € F, we use the {;-norm of the residual of (1.1), i.e.,

IF(z, )l = =Ty,

as our measure of convergence. This measure can be shown to be the duality gap in

linear and quadratic programming.
Observe that all three pairs (Azi, Ayk), (Azd,Ayl) and (Az{, Ayf) satisfy the

equation Mu + Nv = 0. We also have the following useful relationships:
YiAzp + XAy = =X Yie + ak%z{yke (2.1)

and

$k£1yk+1 = zfyk(l — (1 —ox)ax) + Az,{Aykai. (2.2)

Algorithm 1 covers, or is closely related to, a wide range of existing interior-point

algorithms for linear programming, quadratic programming and linear complementarity



problems. In particular, it covers most of the existing primal-dual interior-point al-
gorithms for linear programming as well as quadratic programming, including Kojima,
Mizuno and Yoshise [8], Todd and Ye [13], Monteiro and Adler [11, 12], Lustig [9], to
name a few. Algorithms for linear complementarity problems that are covered by Al-
gorithm 1 include Kojima, Mizuno and Yoshise [6, 7], Kojima, Megiddo and Noma (3],
Kojima, Megiddo and Ye [4], Kojima, Mizuno and Noma [5]. For more references, see
two recent review papers by Ye [14, 15]. Although these algorithms have been motivated
and presented in various ways including path-following (homotopy or continuation), po-
tential reduction or affine scaling algorithms, most of them fit into the framework of

Algorithm 1.

3 Choices of Parameters

There are two control parameters in Algorithm 1. One is the so-called centering pa-
rameter o and the other is the step-length parameter k. In [17], Zhang, Tapia and
Potra established sufficient conditions for choosing the two parameters for Algorithm 1
to achieve superlinear convergence. Our concern in this paper is both global and local
behavior of the algorithm appled to QP and LCP. For LP, this issue has been studied by
Zhang and Tapia [18]. They gave rules for choosing the centering and the step-length pa-
rameters so that both polynomial complexity and superlinear convergence are obtained.
In this section, we will modify their rules for choosing the step-length parameter for LP.
The modified rules will fit not only LP but also QP and LCP.
We adopt the following notation:

zi(a) = x + aBzk,  yr(a) = yk + aBy,
fr(@) = Xi(e)Yi(a)e, f2*(a) = rzr(a)Tyi(a), (3.1)
frin(a) = min(fe(@)), fi**(@) = max(fi(a)).

Whenever o = 0, we will drop the argument from the above functions. For example, z; =



zx(0), fi* = f£*°(0) and so on. Clearly, we also have zy4; = zi(c), 25 = f2(au)
and so on.
It is important not to allow any z}y} to become too small compared with the average

value 27y, (see [17], for example). Hence we require that o = oy satisfies

J;m(( )) Ty @ >0, (3.2)
where
T € [v, S/ 2] and 0 <y < fR/fe <1 (3.3)

Note that in the case fiin/fav¢ > v, we allow v; to decrease monotonically as long as

Yk > 7.
It is easy to verify that

file) = fi = (fi = o fi™)o + AzjAyio®. (3-4)

Hence, fi(e) is a quadratic for every i. As a result, f™"(a) and f™*(a) are piecewise

quadratics. Moreover, f2¥¢(a) is also a quadratic and

(@) = 71 - (1 - on)a] + DAY 5)
For notational convenience, let us introduce the piecewise quadratic function
k(@) = fi™(a) = % fe*(@). (3.6)
It follows that condition (3.2) is equivalent to
he(e) >0, a>0. (3.7)
In determining ax we will use the following quantity:
aj = min{a > 0 : hi(a) = 0}. (3.8)

The following lemma is given in Zhang and Tapia [18].
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Lemma 3.1 The quantity o is well defined and o € (0, &). Moreover, condition (3.2)

is satisfied for all a € (0,q]].
An equivalent expression for o] is
of =minf{a > 0: fi(a) — %f2(e) =0, i =1,2,...,n}.

The computation of o} involves calculating the roots of at most n quadratics and therefore
requires O(n) operations.
In addition to a lower bound for {fi(ak)/f2**(cx)} (i.e., condition (3.2)), we also

impose an upper bound on these quantities; namely, we require o to satisfy

f&(a)
=——=<TI% a>0, 3.9
fa) = 9
where
T € [fi™/f2*,T] and 1< fF*/f3* <T <n. (3.10)

Since fi(a)/f2**(a) < n for all ¢, condition (3.9) will be redundant if [y = n. Our reason
for introducing condition (3.9) is to improve our complexity bound.

Similarly, we introduce the piecewise quadratic function
Hi(a) = fi**(a) = Tk fi*(a). (3.11)
It is easy to see that condition (3.9) is equivalent to
Hi(a) L0, a>0. (3.12)

We define

o { +oo, if {a>0: Hy(a) =0} =0, .19

min{a > 0 : Hi(a) = 0}, otherwise.
Analogous to Lemma 3.1 for condition (3.2), we have the following lemma for condi-

tion (3.9).

Lemma 3.2 The quantity af, is well-defined and of, € (0, &:). Moreover, condition (3.9)

is satisfied by all a € (0,aL) and also by a = of when the latter is finite.
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Proof: The proof is similar to that for Lemma 3.1, so we omit it. a
Similarly, of can be found by calculating the roots of at most n quadratics and
requires O(n) operations.

The duality gap
zi(a)Tyr(@) = z¥yr — 2Tye(1 — ok)a + AzT Aypa® (3.14)

is a quadratic function of a with the second derivative Azf Ayx. If Azf Ay > 0, it will

reach its minimum at
(1 —ox)zfys
2AzT Ay

If AzfAyx = 0, the duality gap is a decreasing function of a; so it is always desirable

(3.15)

ap =

to take the largest step-length possible. For LCP and QP, one always has Azf Ay, > 0

(see Lemma 3.3 below). Therefore our choice of the step-length ay is

(3.16)

{ min(l, o, ok, a¥), if AzTAy, >0,
QE =

min(1,a],ak), otherwise,
where of is defined by (3.8), af by (3.13) and a% by (3.15). This choice of step-length
will guarantee (3.2), (3.9) and ax € (0, &x).

For the sake of simplicity, we will enforce the conditions
% < 1/2 and Ty > 2. (3.17)

The specific values in (3.17) do not constitute a loss of generality because they will only
affect expressions for some constants in our analysis. These values of 4; and I'y will lead

to much simplified expressions for those constants.

Procedure 1

Given
0 < v < min(1/2, 4/ f3*°), max(2, ff**/f2*) <T < n. (3.18)

Step 1 Choose v € [y, min(1/2, fRi»/ fav¢)] and Tk € [max(2, f*</ fave), T).
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Step 2 Compute o] by (3.8), o by (3.13), and if necessary, of by (3.15).

Step 3 Compute ay by (3.16).

When Az7 Ay, = 0, the above procedure basically reduces to Procedure 1 in (18],
which was designed for LP where AzT Ay, = 0.

Now we shift our attention to the choice of the centering parameter. We will use
exactly the same strategy to choose o as that used in [18]. However, for the sake of

completeness we still describe the choice in detail. Let

e = XAz, @ =Y, Ay,
ph = XAz, o =Y AYY, (3.19)
pf = XAz, ¢ =Y AYE,

and

we = 1tvg.ag;(l(;vi?’ (@) 1@ ) (@) 1) (@), 1) (a8 ). (3.20)

Lemma 3.3 For QP and LCP,
(i) AzfAyx 20, (Azf)T(AyL') 2 0 and (Az})T(AyY) 2 0;
(ii) i fi/f3* 2 7, then wi < n/y*.

Proof: (i) Since all three pairs (Azk, Ayx), (Azd,Ayl) and (Az{,AyS) satisfy the
equation Mu + Nv = 0. It suffices to prove that uTv > 0 for all u,v € R™ satisfying
Mu+ Nv=0.

In the case of LCP (N = —I), Mu + Nv = 0 is equivalent to v = Mu. Hence

T

uTv = uT Mu > 0 because M is positive semi-definite.

In the case of QP, Mu + Nv = 0 is equivalent to Au = 0 and BQu = Bv (see
(1.3)). Using the representations u = BTu; and v = ATv; + BTv,, where v; € R™

and uz,v, € R*™™, and noticing that AT L BT, we have uTv = u BBTv;. Moreover,
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BQu = Buv is equivalent to BQBTu; = BBTv,. Hence, if @ is positive semi-definite on

the null space of A, then
uTv = ul BBTv, = uI(BQBT)u, > 0.

(ii) Multiply both sides of Yi Az} + XAyl = —X,Yie by (X&Yi)™7 and consider

thg square of the £;-norm of both sides. Using (i) of Lemma 3.3, we have
XY 7ol 17 + I1(Xe Vi) 2ql |17 < =T
or equivalently after dividing both sides by 22T vk,
I3 1 + 1T g < o, (3:21)

where T = Lz{yi(XYi)™! is a diagonal matrix. Since e/ fave > «, it is easy to see

that
I(B2)] < \/n/v < Va/y and |(gl)] < \/n/v < Vs

Similarly, we can prove

|(p$)'| < Vm/v and |(¢€)| < V/n/.

The result in (ii) of Lemma 3.3 follows directly from the definition of w; and the above
estimates. ‘ 0

We now state our procedure for choosing the centering parameter oy.

Procedure 2
Given
2 2
v L, Yo
o€ (0,1), p'= 5 P2 (3.22)

Step 1 Compute wi from (3.20).
Step 2 Compute p} = min(p*, o /wk).
Step 3 Choose pi € [(p' + pt)/2, pE]-
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Step 4 Let or = prwy.

It is easy to verify, using (ii) of Lemma 3.3, that p} > p'; thus o4 is well-defined.
Moreover, we have o < pjwi <o < 1.

Overall, we have the following algorithm.
Algorithm 2 Given a strictly feasible pair (zo,yo). Choose (recall (3.18))
0 < < min(1/2, fi*/f3), max(2, ff**/f3*) <T <n,
and o € (0,1). Set p' = v%0/2n and p* > v%*c/n. For k=0,1,2,..., do
Step 1 Compute (AzY,Ayl) and (AzS, AyS) from Algorithm 1.
Step 2 Choose oy by Procedure 2 and form (Azk, Ayk) from Algorithm 1.
Step 3 Choose ay by Procedure 1.

Step 4 Form (Zk+41,Yk+1) from Algorithm 1.

4 Polynomiality

In this section, we will establish the global behavior of Algorithm 2. We first define

£ = %Az{Ayk — max(AziAy})

o (4.1)
M = LAz Ay, — min(AziAy}).
Lemma 4.1 Let o be given by (3.8). If ni < 0, then o) > 1; otherwise,
—_ T — ave
o] > (1 = vk)okTi Yk — (1 = w)oxfi . (4.2)

NNk Nk

Proof: First we notice that for a € [0, 1],

file) = fi = (fi = oefi™)e + AziAyia® 2 7™ = (fi™ — ok f£*)e + min(AziAys)a’.
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Therefore,

fila) = v fE*(a) 2 fi™ — (fF — ox ff*)a + min(AziAyL)a? — 7 f2%(@)
= (ff" = nfE)1 = a) + (1 = w)or fe*a — nia? (4.3)
> (1 = w)oefia — ma’.
If ni <0, then it follows that hi(a) has no root in (0,1); hence @ > 1. Otherwise, the

quadratic in the right-hand side of the last inequality has a unique positive root

_ (A =v)orzfye (1 —v)orfe
NNk Nk '

Therefore, if o] < 1, from (4.3) ) must be greater than or equal to the above positive

number. This completes the proof. o

Lemma 4.2 Let of be given by (3.13). If &, > 0, then af > 1; otherwise,

(1 — Tx)orzfys _ (1 =Tx)orfpve
néx €k '

ap >

Proof: The proof is similar to that of Lemma 4.1. So we omit it. O
Lemma 4.3 Let £ and 7, be given by (4.1).
(1) & = —dwi fi,
(i) m < 6wy fP2>.
Proof: (i) Note that

Az Ayl = |(ziyi)(pial)l

< max(XiYie)lldiag(pk)grlloo

f2||diag(py + oipf )(ak + oxPE )|loo

fk wk(1+ak)2
4 f™w.

VAN |

IN
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Since Az} Ay > 0, we have (see (4.1))
£ > —max(AzLAy}) > —4 M0,

(ii) Since |AziAyL| < 4 fP>*wi, AzT Ayy < 4n f™2*w;. Therefore,

e = %szAyk—min(Am};Ay;;)
S Ay fiwr + 40 we
< 6fiwr,
because 4x < 1/2. This completes the proof. O

Lemma 4.4 Let (zx,yi), (Azk, Ayx) and (a),al) be generated by Algorithm 2. Then

there erxists a constant § > 0, such that

min(1,af,al) > g- (4.5)
Moreover,
Azjdy o 1 (4.6)
TE Yk 4y

Proof: From Lemmas 4.1 and 4.2, it suffices to consider the situation where £, < 0 and

ne > 0. In this case,

min(1,a},el) > ( (1-1")""'”“, (l_r"z:"f ) [Lemmas 4.1-4.2]
2 ( ) 0;:'}{:»?, ;’;ff:’;) [(3.17) and Lemma 4.3]
> min (1, 121‘) [fmax/fave < T and ok = prwi]
> min (1, %) ok = o' = 720 /2n]
> (%g)t [y<1,T>land o <1].
Hence, )
=1 (4.7)

will satisfies (4.5).
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Now define Dy = X,.Y;™! and let
T = [a'/,%a:fyk(XkYk)'l/z - (XkY;)l/z]e.

It follows that

T

T 21
TeTk = Tk Yk (1 — 204 + oitaly;

T X.Y.)!
T ) < Tt - 204+ o),

since 2%/} < 1/7.
Multiplying both sides of (2.1) by (X, Y:)~!/2 gives

re = D;'*Azy + DY* Ay,

Therefore,
ritk = Az{D;'Azi + Ayf DilAyx + 2827 Ay,
= | D;'*Azi — D Ayi|)? + 4A2T Ay,
> 4Azf Ay

Combining (4.8) and (4.9) and noting o} < 1 leads to

AzT Ay, < 1
Ty T4

(1 =20k + 0} /7)
(

i(1—0)? +0f(2 -1))

L
-

IN
>

This completes the proof.

Theorem 4.1
Let {(zk,yx)} be generated by Algorithm 2. Then

T

Tri1Yk+1

————-k;';. P <1-6&)<1,
kY&

where & = Q(%).

Proof: From (2.2),

T =zT 1—-(1-o01)x
k41 Yktt mkyk< ( K)ok + Ty

15
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We must estimate the quantity

AzTA
8 = (1 — ok — —;—ﬂak) k. (4.10)
Tk Yk
Since 6 < 1 is guaranteed in Algorithm 2 by the choice of a, it is sufficient to verify
that 8 = Q(2).

Consider the following two functions of «

Si(a) = (1 — o) — Aigiy" ) (4.11)
and
6(a) = (1 -0 - 4—17-(1) a. (4.12)
From (4.6) and o < o, for a > 0
8k(@) 2 é(a).
From the choice of aj in Procedure 1, it can be verified that
ar = arg max{6x(a) : a € [0, min(1,a}, )]}
Therefore, for all a € [0, min(1, o}, a})],
& = bi(ar) > &(a). | (4.13)

Let 3 be defined by (4.7). It follows from (4.5) that (4.13) is satisfied by a = §/n;
i.e.,
62 8(5/m) = (1-0- ) £ =)
This completes the proof. m]
The following corollary follows immediately from Theorem 4.1. Its proof is straight-
forward (see [18]), for example). By a standard argument, it leads to polynomiality

assuming integral data.

Corollary 4.1 Assume zlyo < 2L, where L > 0 and v > 0. Then in at most O(nL)

iterations, Algorithm 2 will produce (zx,yx) satisfying z¥y, < 27L.
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5 Superlinear Convergence

In this section, we will apply the following superlinear convergence result of Zhang, Tapia

and Potra [17] to establish Q-superlinear convergence of Algorithm 2 for QP and LCP.

Theorem 5.1 (Zhang, Tapia and Potra)
Let {(zr,yx)} be generated by Algorithm 1 and (z.,y.) be a solution of problem (1.1).

Assume

(i) strict complementarity holds at (z.,y.),

(ii) {fgve/fmin} is bounded above,
(iii) ox — 0 and ax — 1.

Then if {(zk, yx)} converges to (z.,y.), the sequence { X Yre}, component-wise, converges
to zero Q-superlinearly. Moreover, under the above conditions, ay — 1 if and only if

Tk—bl.

Since 7% is directly under our control and ay is not, the more meaningful result is
stated in terms of ;. However, Lemma 3.1 of Zhang, Tapia and Potra [17] demonstrates
that under the conditions of the theorem, &, as defined in Step 3 of Algorithm 1 converges
to 1. Hence, ar — 1 if and only if 7, — 1 and we may consider either condition. In the
sequel, we choose to verify oy — 1.

We note that unlike in LP, a strictly complementary solution may not exist in QP or
LCP. So the strict complementarity assumption for QP and LCP is a somewhat strong,
but often made, assumption.

For the same technical reasons as encountered in Zhang and Tapia [18], we must
restrict further the choice of px. Denote the length of the interval [p!, p] by 7. It follows
from (3.22), Step 2 of Procedure 2, and Lemma 3.3 that

2

70
> 5.1
Pk-n (5.1)
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Thus,

2
o
7rk=p}$—p‘2127>0- (5.

o
~—

Let Xi be the following set of 2n points
Ze = {-)/(), =) /() i=1,2,....n}
and define the distance from o to the set ¥, as
dist(o, Zx) = min{|o —¢| : s € T;}.
We choose o} according to Procedure 2 with the additional restriction that
dist(ok, k) 2 mewr/(8n + 4). (5.3)
In other words, we require not only
ax € [0.5(p' + pi)wi, phwi] (5.4)

but also that o be bounded away from the set I by at least the amount 7wy /(8n +4).
Since {74} is bounded away from zero, we see from (5.3) that {dist(ox,Zx)} is bounded
away from zero when {wi} is bounded away from zero. It has been shown in Lemma 8.1
of Zhang and Tapia [18] that the set of o values satisfying (5.3) and (5.4) is nonempty.

Our superlinear convergence theory for Algorithm 2, applied to not only LP, but also

to QP and LCP, is the following.

Theorem 5.2
Let (z.,y.) be a solution of problem (1.1) and {(zk,yx)} be generated by Algorithm 2

with the restriction (5.8) on the centering parameter 0. Assume
(i) strict complementarity holds at (z.,y.),

ii) p* is sufficiently large, e.g., p* > 24T.
p
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For LP, QP and LCP, if {(zk,ys)} converges to (Zx,Y.), then the sequence {XkYie},

component-wise, converges to zero @Q-superlinearly.

Proof: Theorem 5.2 is a generalization of Theorem 8.1 in [18], i.e., the superlinear
convergence of Algorithm 2 applied to LP. As for the proof of Theorem 8.1 in [18], we
need to show oy — 0 and ap — 1.

The proof for ox — 0 is identical to that in [18], because it only requires that {ax}
be bounded below and that {p}'}, {g}'}, {pC} and {g)'} be bounded above, which are
also true for QP and LCP (see Lemmas 3.3 and 4.4).

The proof for ax — 1 is similar to that in [18]. First, the same argument used in (18]
gives

Qg S &k — 1. (5.5)

When Azf Ay, = 0, it follows from (3.16) and the proof of Lemma 4.4 that

ar = min(1,a],af) > min (1, 1’;—"1,) . (5.6)

From the definition of p; and the fact wy — 0, for & sufficiently large
1, 1, 1
= - ) > —p¥ = =pt.
pe =50 +pk) 2 5Pk = 3P
Therefore, if p* > 24T, then from (5.6)
Qk Z 1. (57)

Now inequalities (5.5) and (5.7) together imply ax — 1.

When Az{Ayx > 0, in order to prove (5.7) we also need to show that a¥ > 1 for
k sufficiently large (see (3.16)). It follows from Az} Ay, < 4nwy f™* (see the proof of
Lemma 4.3 (ii)), fi***/fa¥* < T, ox < 0 and w; — 0 that as k — co

(1—odziye , Q—oe)ft* 1-o0
2A:L‘£Ayk — 8wrfiax T 8Twy

oy = — 00.
Hence, ax = min(1,a},af,a%) > 1 for k sufficiently large. This completes the proof. O
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6 Concluding Remarks

In this paper, we have constructed a primal-dual interior-point method for a general
problem which includes linear programming, quadratic programming and linear comple-
mentarity problems, and have demonstrated its O(nL)-iteration polynomial complexity
and its Q-superlinear convergence. We accomplished the above objectives by adopting
the rules for choosing step-length in the Zhang-Tapia polynomial and superlinearly con-
vergent algorithm for LP [18] to our general problem, and then extending their theory

to our problem.
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