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Abstract

We study the hardware and, especially, software support for unstructured scientific
simulations in the context of an application classification in terms of a problem archi-
tecture. We suggest that extensions of Fortran 90 may provide an overall framework
for handling general loosely synchronous problems. These include over 90% of current
scientific simulations.

1 Introduction

We will discuss the parallel computer software and hardware architectures needed to
support “unstructured scientific simulation” or, more precisely, what we have termed
irregular loosely synchronous problems. We will focus on software which we believe
is the main limitation to the rapid adoption of parallel machines in the mainstream
of computing. Unstructured problems are particularly challenging to both hardware
and software. They require more flexible hardware and usually faster communication
(compared to calculation) performance than simpler regular computations. Many
types of unstructured problems have been successfully parallelized, but I suggest that
the software has been difficult to write. Expressing the irregularities and efficient
mapping onto particular machines currently needs tedious nonportable code. Thus,
this class of problem is a very important one for motivating new approaches to parallel
software. We do not need a new language to express matrix multiplication or the
solution of Laplace’s equation in a rectangular domain on a parallel machine. Rather,
it is the unstructured problems which should be one of the major targets of work on
new software approaches to scientific simulations.

We suggest that the close coupling between hardware, software, and problem
structures emphasizes the value for interdisciplinary research. This was a feature of
the Caltech Concurrent Computation Program (C3P) which I have described else-
where [Fox:87d, Fox:8800, Fox:90h]. This project taught me that “parallel computing
works,” but also that we did not yet have the correct software tools to tackle un-
structured problems. We also found it quite hard, at times, to express the “obvious”
parallelism in the problem. We will see examples of this in Section 5. We are continu-
ing this work at Syracuse with major portable parallel software projects described in
Section 4 and Section 6. Interdisciplinary research is centered on a new computational



science program at Syracuse offering degrees at the undergraduate, masters and Ph.D.
level. We are also emphasizing applications of parallel computing to industry. We
find more irregular problems here than in the academic applications which have been
the dominant domain of parallel computing up to now. The irregularity in industrial
applications is a natural consequence of simulating the details of the “real world”. As
industrial use of parallel computing is essential for the field to advance, we see again
the importance of examining and developing tools for unstructured problems.

In Section 2, we review the current status of our problem architecture classifica-
tion, and Section 3 a corresponding approach to software. In Section 4, we discuss
the Rice-Syracuse proposal of Fortran D as a portable language for synchronous prob-
lems. Section 5 and Section 6 describe the unstructured “skeletons in the programming
closet,” and a proposed software approach based on extensions of Fortran 90D.

2 Problem Architectures

We have introduced three broad classes of problem architectures [Fox:88b, Den-
ning:90a, Angus:90a]. These were deduced from our experience at Caltech combined
with a literature survey involving 400 papers, which was reasonably complete up to the
middle of 1989. At Caltech, we developed some 50 applications .on parallel machines
of which 25 led to publications in the scientific literature describing the results of sim-
ulations performed on our parallel computers [Fox:87d, Fox:88a, Fox:8800, Fox:89n].
This analysis led us to introduce three broad classes of problem architectures that
technically describe the temporal (time or synchronization) structure of the problem
[Fox:88b]. Further detail is contained in the spatial structure or computational graph
describing the problem at a given instance of simulation time [Fox:88tt]. Here, we
only need to consider “embarrassingly parallel” problems, where there is little or no
spatial connection between the individual parallel program components. For embar-
rassingly parallel problems, the synchronization (both software and hardware) issues
are greatly simplified. .

We have recently realized that we need to extend our classification, and that
our original proposal should only be applied to individual program modules [Fox 91c,
Fox:91d].

The three general temporal structures for program modules are called synchronous,
loosely synchronous, and asynchronous, which we sometimes shorten to Classes I, II,
and III, respectively. The temporal structure of a problem is analogous to the hard-
ware classification into SIMD and MIMD. The spatial structure of a problem is anal-
ogous to the interconnect or topology of the hardware. The detailed spatial structure
is important in determining the performance of an implementation [Fox:88a], but it
does not affect the broad programming issues discussed here.

Synchronous problems are data parallel in the language of Hillis [Hillis:87a] with
the restriction that each data point is evolved in time with the same procedure. The
problem is synchronized microscopically at each computer clock cycle. Such problems
are particularly common in academia, as they naturally arise in any description of



some world in terms of identical fundamental units. This is illustrated by quantum
chromodynamics (QCD) simulations of the fundamental elementary particles which
involve a set of gluon and quark fields on a regular four-dimensional lattice. These
computations form the largest use of supercomputer time in academia [Baillie:89e,
Baillie:90f, Baillie:90n].

Loosely synchronous problems are also typically data parallel, but now we allow
different data points to be evolved with distinct algorithms. Such problems appear
whenever one describes the world macroscopically in terms of the interactions between
irregular inhomogeneous objects evolved in a time synchronized fashion. Typical
examples are computer or biological circuit simulations where different components
or neurons are linked irregularly and modeled differently. Time-driven simulations and
iterative procedures are not synchronized at each microscopic computer clock cycle,
but rather only macroscopically “every now and then” at the end of an iteration or a
simulation time step.

Loosely synchronous problems are spatially irregular, but temporally regular.
The final asynchronous class is irregular in space and time. A good example is an
event-driven simulation which can be used to describe the irregular circuits we dis-
cussed above, but now the event paradigm replaces the regular time-stepped simu-
lation. Other examples include computer chess [Felten:88i] and transaction analysis.
Asynchronous problems are hard to parallelize unless they are “embarrassingly paral-
lel” (termed Class III-EP). More general asynchronous applications require sophisti-
cated software and hardware support to properly synchronize the nodes of the parallel
machine, as is illustrated by the time-warp mechanism for event-driven simulations
[Wieland:89a].

Unstructured problems could be either loosely synchronous or asynchronous.
Clearly, a “war game” is an unstructured simulation that is usually implemented as
an asynchronous event-driven simulation. However, we will not discuss asynchronous
problems in Sections 4-6; we will concentrate on the irregular loosely synchronous
case that is, in fact, a possible implementation of most war games, and the dominant
methodology for irregular scientific simulations.

Synchronous or loosely synchronous problems parallelize on systems with many
nodes. The algorithm naturally synchronizes the parallel components of the problem
without any of the complex software or hardware synchronization mentioned above for
event-driven simulations. 90% of the surveyed applications fall into the classes that
parallelize well. This also includes the embarrassingly parallel I, II, III-EP classes.
It is interesting that massively parallel distributed memory MIMD machines that
have an asynchronous hardware architecture are perhaps most important for loosely
synchronous unstructured (scientific) problems.

As described in [Fox:91¢, Fox:91d], many important problems have heterogeneous
architectures, illustrated in Figure 1, which points out the analogy between heteroge-
neous problems and networks of heterogeneous machines. We term this mixed class
IIICG-IIFG to indicate it contains an asynchronous coarse grain mixture of loosely
synchronous (data parallel) fine grain modules. This figure uses an example com-
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ing from an integrated approach to the optimization of a new airframe. This could
involve the integration of airflow, structural and radar signature modules with an
artificial intelligence optimization module. The fields of vision (and related areas,
such as robotics), or more generally information systems, produce such heterogeneous
problems. We will not need to study this here, but concentrate on irregular loosely
synchronous problems. Note that both asynchronous and loosely synchronous prob-
lems are irregular. In asynchronous problems, the irregularities are usually dynamic
and cannot, and need not, be exploited; subtle mappings that minimize communi-
cation are not required, but rather one sces statistical methods of load balancing
underlying the decomposition. In the loosely synchronous case, the irregularities usu-
ally come from an underlying data parallelism. Expressing this properly leads to
important performance gains. This difference is reflected in the software support.
In the asynchronous case, one stresses flexible communication in an object oriented
approach. In the loosely synchronous case, we search for high-level data structures,
and runtime support for optimal geometric decompositions. We also note that loosely
synchronous problems parallelize, albeit with software difficulties but that for asyn-
chronous problems, parallelism is a serious difficulty as well as the software.

3 A Portable Software Strategy

In Figure 2, we follow K. Kennedy and divide software into several layers where, here,
we are interested in the higher levels where problems can be portable to a broad
range of machines, in particular, having a SIMD or MIMD architecture. The domain
specific levels include environments aimed at linear algebra (Lapack) or differential
equations (Ellpack, Pcgpack ...). Ilere, we will discuss the next lowest level, which
has broad applicability to many problems but is still portable over a range of machine
architectures. As expanded in Figure 3, we view software as a mapping of problems
onto machines. We expect that portable user-friendly software will reflect the general
characteristics of the problem architecture, and not the machine architecture. This
is what we mean by portable. From this point of view, we consider Fortran (or C)
plus message passing as a low-level non-portable approach to parallel programming.
This software model reflects the machine architecture of MIMD nodes communicating
with messages. We should emphasize that this approach (mainly C plus message
passing) dominated our work at Caltech, and is currently the only generally effective
approach to MIMD programming. This is especially true for unstructured problems,
where we have successfully parallelized the applications described in Section 5 in C
plus message passing, but as revealed in Section 6, have only some suggestions as to
possible portable higher level systems.

We suggest that the problem architecture classification introduced in Section 2
provides a reasonable framework to describe possible portable software models. Just
as we found three classes for problem modules, we will not propose a single high-level
software model. Rather, we will need several approaches, including one that allows
the integration of modules of disparate architectures in heterogeneous problems.



We now discuss how, for program modules of our three temporal classes, we can
suggest portable software paradigms.

Class I Synchronous Problems

These problems are tightly coupled synchronous problems which are regular in space
and time. Their data, or geometric parallelism, can be naturally expressed in For-
tran 90D (appropriately extended Fortran 90) [Fox:91c, Fox:91le] or similar languages
such as CM Fortran, Crystal [Chen:88b], C* [Quinn:90a, Quinn:90b], or even APL.
This allows the user to specify the problem structure in a natural high-level fashion
using the vector and matrix constructs of Fortran 90. The compiler can take care of
mapping this onto different machines, including those of SIMD and MIMD architec-
ture [Fox:90h, Wu:91a]. We will describe this in more detail in Section 4 where we
note that we have defined extensions to Fortran 77, called Fortran 77D, which will
allow Fortran 77, as well as Fortran 90, to be used in this problem class.

Class IIT Asynchronous Problems

This class is irregular in space and time and often exhibits functional or process
parallelism. One good example of this class is the simulation of sensors and control
platforms involved in your favorite SDI battle management architecture [Meier:90a,
Fox:91d]. Here, the basic components communicate with messages in the real world
and so, at this, we can hardly complain about software models involving message
passing! Thus, in this problem, we see a natural breakup into processes and message
passing at the problem level, and software engineering approaches, such as object
oriented programming, ADA, C++, Strand [Foster:90a], PCN [Chandy:90a], ISIS
[Birman:91a)] or Linda [Gelernter:89a] are possibilities. In many cases, we do not need
to use carefully optimized decompositions but, rather, use statistical load balancing
and decomposition methods. This problem class includes distributed computing and
the software, such as ISIS, designed to support it. As well as this loosely coupled
category, we also see the event-driven simulations with their specialized software,
which we mentioned in Section 2.

The heterogeneous problem of Figure 1 is supported by similar software models,
but we will need an important extension. Each module can be viewed as an object
to be supported in an asynchronous software model. However, we must further allow
parallelization internal to the module. Thus, we see the need for systems, such as
Strand, supporting Fortran 90 processes or ADA supporting calls to data parallel C*.

Class II Loosely Synchronous Problems

These problems are irregular in space, but regular in time. Often, their spatial struc-
ture changes dynamically, and adaptive algorithms are needed. As already mentioned,
this class is difficult because the tightly coupled spatial structure demands the same
kind of detailed optimizations provided by the Fortran 90 compiler for Class I. How-
ever, the irregularities make this hard to implement.
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Table 1A. Gaussian Elimination (256 x 256 matrix)

Number of Processors on iPSC2 Hypercube

1 2 4 8 16
Original Hand 85.4 58.1 31.1 16.0 8.42
Coded F77+MP
F77+MP from 80.0 50.2 26.6 13.8 7.72
Fortran 90
Revised Hand 73.4 50.1 26.9 13.8 7.53

Coded F77+MP

Table 1B. N-body Simulation (1024 Particles)

Number of Processors on iPSC2 Hypercube
1 2 4 8 16

Hand Coded
F77+MP

F77+MP from
Fortran 90

TL.7 35.9 17.9 8.98 4.83

139.6 69.1 35.5 18.1 9.40

Table 1C. Fast Fourier Transform (16384 Poix;\ts)

Number of Processors on iPSC2 Hypercube

1 2 4 8 16

Original Hand
Coded F77+MP

Optimized Hand
Coded F77+MP

Optimized F77+MP
from Fortran 90

36.8 23.3 14.2 8.32 4.82
13.0 6.67 3.42 1.75 0.91

18.8 10.1 5.36 2.84 1.50




We know that Fortran (C) plus message passing works for this problem class, but
we need a more portable user friendly approach. This can involve new data structures
to extend languages like Fortran 90. It needs sophisticated run time support, such
as that provided by the PARTI system from ICASE [Saltz:91b]. In particular, we
need dynamic load balancing modules for which the basic research has been done,
but no general implementations are yet available [Fox:88mm)]. We will expand this
brief discussion in Section 6.

4 Fortran D as a Portable Parallel Software Environment for Synchronous
Problems

Although direct parallelization of Fortran 77 has proven to be very difficult, we
believe that one can build an excellent portable Fortran environment for synchronous
(Class I) problems. This is the goal of a collaboration with K. Kennedy’s group at
Rice, my group at Syracuse, and the Parasoft Corporation, and Figure 4 illustrates
our strategy. One needs to “help” the compiler disentangle the problem architecture
by, for instance, specifying how the Fortran arrays are distributed over the distributed
memory parallel machines. These extensions to Fortran 77 or Fortran 90 are called
Fortran D [Fox:9le].

The success of CM Fortran as the programming environment for the CM-2 sug-
gests that it is a good approach for our synchronous Class I applications. As discussed
earlier, we view Fortran 90D (CM Fortran, C*) as programming systems for “SIMD”
(synchronous) problems and not as languages for SIMD machines. Compilers can
map Fortran 90D effectively into all parallel architectures suitable for this problem
class including MIMD, SIMD parallel machines, systolic arrays, and heterogeneous
networks. Fortran 90 was not originally designed as a massively parallel program-
ming system, but it has one key attribute that makes it effective. It uses high-level
data structures explicitly (as vectors and matrices), and so the problem architecture
is clear and not hidden in values of pointers and DO loop indices. It is portable as
high-level constructs—such as A = B*C with A, B, and C matrices—can be optimized
by the compiler for each new machine. Our experience has been that, in many cases,
users prefer Fortran 90 to Fortran 77 even for sequential applications, as it expresses
applications naturally with much shorter code. Often, one finds a factor of two to
three reduction in code size for Fortran 90 compared to Fortran 77.

We can illustrate the success of Fortran 90D by some test examples, shown in
Table 1, which compare it with direct user coding of Fortran 77+ message passing
[Fox:90h, Wu:91a].

For a problem with a simple topology, LU decomposition in Table 1A, the For-
tran 90 code produced essentially as good a code as the direct Fortran 77+ Message
Passing. Indeed, the “automatic” Fortran 90 procedure pointed out a possible im-
provement in our handed codes F77+MP; this is the difference between lines one
and three of Table 1A. In Table 1B, our current automatic approach for the N-body
problem loses a factor of two compared to the best parallel implementation; this is



due to inefficient communication, and one may need to change the Fortran 90 imple-
mentation to allow the compiler to optimize this. In this sense, the user will need to
understand some issues of parallelism, even when writing “explicitly parallel” code as
with Fortran 90. Note the example in Table 1B is the simple O(N?) algorithm and not
the more interesting and challenging O(N(log N)) approach discussed in Section 5. In
Table 1C, we find a 50% degradation in performance on the FFT for the Fortran 90
approach. This indicates that Fortran 90 does not optimally support the hierarchical
data structures found in the FFT. As we discuss in Section 6, we expect that the final
Fortran 90D language will include new data structures—over and above the arrays
and vectors in Fortran 90. .

Finally, in Table 1D we come to a “real,” albeit small in code size, problem. The
original climate modeling code has been used in production [Keppenne:89a] on CRAY
and SUN computers. We saw, in this project, an interesting division of labor. The
first rewriting from C to Fortran 90 was performed by the application expert. The
further conversions of Fortran 90 into Fortran 77 and Fortran 774 message passing
were performed by “computer scientists” without deep knowledge of the application
[Keppenne:90a). In this case, we believe that no automatic method could have paral-
lelized the original C code, but that our planned automatic approach would be able
to perform the MIMD parallelization from Fortran 90. The result of this project is a
portable code running well on the CRAY, Connection Machine and hypercubes. Note
that we even improved the sequential performance (line one vs. line three of Table 1D)
by an order of magnitude. The original C code made extensive use of pointers which
had several repercussions. It made vectorization hard on the CRAY; it made the code
impossible to automatically parallelize as the “structure of problem” was expressed in
dynamic pointer values; it made the code hard to port except by the domain expert.

Our initial experiments are sufficiently encouraging that we believe that a lan-
guage like Fortran 90 will become an efficient vehicle for synchronous Class I applica-
tions. However, the use of Fortran 77 is, of course, critical due to the large amount of
existing code and experience in this language. However, we can discuss Fortran 90D
more straightforwardly as its array extensions are easier for the compiler to paral-
lelize efficiently. In Figure 4, we can view Fortran 90D as a “permanent annotation
language” for user assisted parallelization of Fortran 77. It will require more experi-
mentation with real application codes to compare the relative merits of parallelizing
Fortran 77D versus Fortran 90D.

5 Irregular Loosely Synchronous Problems
5.1 Overview

In the previous section, we have discussed software support for “simple” or syn-
chronous problems. We can ask if the following problem classes are roughly identical:
e problems suitable for SIMD machines, such as the Maspar and CM-2;
o problems whose data structure is an array;
e problems that can be expressed easily in Fortran 90;



Table 1D. Climate Modeling Code [Keppenne:90a]

Implementation Size Machine Performance
of Code (megaflops)
(lines)
Original C Code 1500 CRAY X-MP ~1
(1C.PU)
Fortran 90 600 8K CM-2 66
F77 Produced by Hand 1500 CRAY Y-MP 20
from Fortran 90 (1 C.PU)
F77+MP by Hand 1650 NCUBE-1 3.3
from Fortran 90 16 node
hypercube
NCUBE-2 20
16 node
hypercube
INTEL i860 80
16 node

hypercube




e problems that a semi-automatic compiler can parallelize from good Fortran 77
code;
e problems that run well on the Cray.

Now we start our collection of “skeletons in the programming closet” which fall
outside the above classes; those irregular loosely synchronous problems which we will
use to challenge and motivate our parallel software environments.

At the conference, we saw several examples of irregular meshes for partial differ-
ential equations. These could be adaptive and involve multigrid techniques. Another
large class of irregular problems involve particle dynamics, where we describe a partic-
ularly hard example in Section 5.3. Other problems in our collection will be irregular
circuit simulations from many fields including biology (cortex models), chip simu-
lation, and electric and gas power distribution. Many of these applications can be
handled by systems which offer decomposition tools, such as PARTI which support
the distribution of irregular sparse matrices [Saltz:87a], [Saltz:91b).

What other applications should we use to challenge our software system? In
Section 5.2, we will review Monte Carlo studies of materials near the critical point
where dynamic irregular domains are formed and must be treated explicitly by the
algorithm. This raises different issues that are similar to those in high-level image
processing where regions need to be identified. A final difficult example can be seen in
the generation of adaptive meshes; R. Williams has successfully parallelized this in two
dimensions, but the tricky parallel algorithm and use of linked lists are not obviously
expressible in a high-level fashion [Williams:88a], [Williams:89b], [Williams:90b].

These examples share certain characteristics.

1) They exhibit natural parallelism (loosely synchronous irregular “data parallelism”).

2) They involve either hierarchical data structures or, more simply, can be expressed
as an irregular sparse matrix.

3) They typically run more straightforwardly on MIMD than SIMD architectures.

4) We have been able to parallelize these applications “by hand”; however, both the
parallel algorithm and software development have been hard.

In Section 6, we will study implications of these examples and characteristics for
the parallel software support. Here we discuss, in more detail, two physics applications
mentioned above. The multigrid method is familiar and successful in the solution of
partial differential equations and can be viewed as an algorithm that properly treats
all length scales in the problem by refining them on the same iteration time scale.
The methods of the next two sections reflect a similar physical idea, but for different
applications; statistical physics and particle dynamics.

5.2 Clustering Models for Statistical Physics

We will discuss the concepts for a caricature of the real problem shown in Figure 5
as a 12 x 10 array of spins (the Ising model)—where each spin can be up or down.
The conventional iterative Monte Carlo approach to such problems involves cycling
through each spin, one at a time, deciding whether or not to change its value. Meth-
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ods such as Heat Bath or the Metropolis algorithm are used in this decision. Near a
phase transition, neighboring spins are correlated and often domains form in which
all the spins have the same direction. We can introduce a correlation length, =, such
that spins are correlated over this length scale. The traditional methods are still valid
in this interesting region (which contains most of the important physics) where 7 is
large, but slow down because (roughly) the simulation time grows like 72; this can be
seen intuitively from a random walk argument. Unfortunately, behavior near a criti-
cal point is a major goal of simulations, and the decreasing effectiveness of single-site
updates is called “critical slowing down.” We cannot directly apply multigrid as there
is no continuity from site to site in the statistical configuration. However, the idea is
the same; we must design an algorithm that properly treats effects on their physical
length scale. Several ingenious algorithms have been found that remove the criti-
cal slowing down [Brower:91a), [Sokal:88a], [Swendsen:87a], [Wang:90a)], [Wolff:00b].
Typically, one would find clusters, such as those shown in Figure 5 with blocks of
dots or crosses. Clusters are then manipulated as a single entity. In our original
work, the major difficulty was finding and labeling independent clusters. This was
solved on a MIMD machine by using an optimal sequential algorithm within nodes,
and a less efficient but parallelizable method to identify clusters between nodes. The
results on the MIMD Symult-2010 are shown in Figure 6 [Baillie:01a]. Recently, we
have extended the methods to the Connection Machine using the “scan” operations
[Apostolakis:91b].

There are some interesting hardware implications. The basic single-site Monte
Carlo runs well on SIMD machines, and the CM-2 is being used extensively for pro-
duction QCD calculations of this type. However, the cluster algorithms are much
more sensitive. They might need either MIMD or better communication/calculation
bandwidth to perform well. Interestingly, nobody has yet to find-a good clustering
method for QCD, even though the large lattices (100) anticipated for QCD teraflop
calculations would clearly gain much from explicit treatment of correlations. So, we
may find the need to change the target architecture for this application.

5.3 Large N-body Calculations

We now describe clustering algorithms for particle dynamics. This was perhaps our
most interesting project at Caltech, as it combined beautiful physics with challenging
parallel algorithms. v

The basic idea was developed by Appel, Barnes, Hut and Greengard [Appel:85a),
[Barnes:86a], [Fox:89t], [Greengard:86a), [Greengard:88a), [Salmon:90a] where we have
used the particular version developed (on a sequential machine) by Barnes and Hut.
The essential point is shown in Figure 7. With a long-range force, as we get with the
gravitational interaction between stars, the simple algorithm has a time complexity
of O(N?) for N stars. However, we note that we can replace the interaction of
complexity M in Figure 7, by a single interaction between a star and the centroid of
the cluster. This idea can be applied recursively and refined by the use of multipole
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expansions instead of the single centroid term. J. Salmon has shown that if the
original unaccelerated method has a time complexity of Thaive = 0.5N 2 3 particle,
then the Barnes-Hut clustering algorithm has Tjyster = (20 — 50)N log N t2 particle-
Here t3particie is the time taken to calculate the interaction between two stars. For
N > 1000, the clustering approach is more effective than the naive approach, and for
the interesting case N = 106, the clustering problem is a thousand times faster. This
acceleration allows a new class of calculation in the areas of

e galaxy structure and collision. Here, we ran several 2 x 10% “star” simulations on
the 512-node NCUBE-1. The excellent speedup measurements for this are shown
in Figure 9 [Salmon:89b].

e cosmological studies of the growth of fluctuations in the early universe. Some
scientific results from this are shown in Figure 8 [Warren:91a].

e globular cluster simulations involve precisely of order million stars, but we need
more powerful machines to handle the short-range interactions (binaries) found
in this case.

Our original NCUBE-1 calculations were, at the time, the largest simulations
performed in this field as they exploited the large (albeit distributed) memory available
on the parallel machine. We noted [Fox:89i), [Fox:89n], [Fox:900] that the NCUBE-1
was 50% efficient in this production run, but this unusually “bad” result (typically we
find 80% or better efficiency on loosely synchronous problems) allowed the 512-node
NCUBE-1 to deliver about twice the performance of the CRAY X-MP which only
realized 5% efficiency. Often, one finds that irregular problems parallelize naturally
but are hard to vectorize. The same approach and lessons can be used in other fields,
such as the vortex approach to fluid dynamics [Pepin:00a], [Pepin:90b], molecular
dynamics [Ding:90m] and plasma physics.

We now examine why this problem is hard to parallelize and challenging to the
software environment.

Sequential Particle Clustering Algorithm

This builds up a tree by successive division of space—three dimensions in our real
application, but shown in two dimensions in Figure 10. This illustrates an essential
feature of this algorithm—namely, the data structure is an irregular dynamic tree that
is rebuilt at each time step. On a sequential machine, tree building is only 2% of the
total execution time, and so unimportant. As detailed by Salmon, the tree building
is performed in steps.
e start with null tree
e add particles one at a time
e refine tree as necessary to ensure, at most, one particle in each cell (leaf node of
tree)
The tree building is followed by the major computational part of the algorithm-—
namely, calculation of the force on each particle. Here, each force calculation starts
at the root of the tree and traverses the tree downward stopping on each branch when
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“enough detail” has been exhibited. A typical search termination criterion is shown
in Figure 11 where we only open up a cell and go further down the tree if the cell
subtends a large enough angle at the star.

Parallel Clustering Algorithm

The parallel algorithm was developed by Salmon and Warren, and is described in
Salmon’s Ph.D. thesis and initially in Warren’s undergraduate senior thesis report
[Salmon:90a, Warren:88c].

The load balancing uses a heuristic, illustrated in Figure 12, which has been found
useful in many other applications—namely, orthogonal recursive bisection along each
direction of the hypercube. The “work” per star is very nonuniform as the density of
particles can vary by a factor of a thousand between different regions of space—and
there is much more calculation needed for a star in a dense region than in a quiet
region. The work per star is found at each time step and used to balance the load for
the next time iteration. Thus, we have a fully dynamic load balancing.

The calculation of the tree was the hardest part of the parallel algorithm. Al-
though it only took 1/50th of the sequential time, we wanted to run on at least 512
nodes, and so we did not have the memory or time to compute the tree on a single
node and broadcast to all others.

One essential idea can be expressed in the concept of locally essential data. This
implies that each node will calculate and store only that part of the tree it will
need to calculate the force on each particle stored in the node. The concept is quite
general. We can view locally essential data as “the world as seen from the node”
with fine detail at short distances and coarse information at long distances. Figure 13
shows that, for a simple partial differential equation, the locally essential data is that
stored in the node plus the surround guard ring of grid points. In an iteration or
time-stepped simulation, one would communicate between processors to ensure each
has their locally essential data. Then the equation, or particles, can be calculated
separately in each node without further communication.

Figure 14 shows the far subtler locally essential data for processor 0 in our tree
problem defined in Figure 10 and Figure 12. Comparison of Figure 10 and Figure 14
shows that the latter has the detailed tree near the stars stored in node 0, but only
the coarse levels of the tree for array. The top levels of the tree is now stored in
all nodes and this “explains” why there is no sequential bottleneck at the root of the
tree. However, how do we elegantly express the above argument in a portable efficient
fashion? I do not know—Salmon’s implementation proceeds as follows. The full tree
of Figure 10 is never calculated in any one place—rather, we just calculate the locally
essential trees which are naturally found in parallel. The algorithm for this involves
a loop over hypercube channels where each processor sends to its neighbor in the
hypercube any information that might be needed to calculate locally essential data
by any processor on the “other” side of the particular hypercube channel. This step
is followed by a tree update and pruning.
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Our discussion appears rather hardware specific and indeed the implementation
was designed for the NCUBE-1 which is a hypercube. However, hierarchical data
structures are naturally supported by a hypercube, and this is a “correct virtual
machine” which can then be optimally mapped to the physical hardware topology.

There is a good analogy to the method used above to calculate the locally essen-
tial tree in the crystal accumulator or fetch and add algorithm [Fox:88a], [Fox:88g].

Consider ‘
W=3 Az =34
j J

where z; and y; are both distributed. Then one calculates the sum over j incre-
mentally as the components ej cross hypercube channels, they are added “on the
ﬂy.”

The last step of the parallel algorithm involves calculating the force on each
particle, and this is straightforward. Indeed, by definition as each node is initialized
with its locally essential data, it can proceed with the sequential algorithm without
further node-to-node communication.

Summary

What did we see above that could have general significance?

We have an irregular loosely synchronous problem implemented as a complex
communication step at the loose synchronization “barrier” defining the locally essen-
tial data followed by independent calculations in each node. Currently, we only have
a good MIMD implementation and it is hard, but probably not impossible, to get
a good SIMD version. There is a SIMD implementation of the easier case with a
homogeneous particle distribution [Zhao:87a), [Zhao:89a].

We find a dynamic tree (or hierarchical) data structure which can also be seen
in other applications such as quicksort, adaptive meshes, high-level image processing,
and divide and conquer approaches to many problems. In the next section, we will
discuss possible software lessons.

6 Fortran D Suspport for Unstructured Scientific Computations

In Table 2, we summarize how increasingly complex problem architectures require
extensions to Fortran. As described in Section 4, the synchronous (Class I) and
embarrassingly parallel (Class III-EP) applications can be handled by adding
a) decomposition directives defining data parallel arrays, their alignment with re-
spect to each other, and separately their dynamic or static distribution over a
particular machine;
b) Forall commands to express the asynchronous but uncoupled Class III-EP appli-
cations.
We also mentioned in Section 4 how heterogeneous problems (Class ITICG - IIFG)
can be expressed in a correspondingly heterogeneous software model involving an
object oriented approach with Fortran D “objects.” Here we concentrate on extensions
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to Fortran D to allow it to express the unstructured scientific problems reviewed in
Section 5. The success of irregular finite element codes on the Connection Machine
[Johnsson:89b], [Johnsson:90a] illustrates how some sparse problems can be handled
in Fortran 90 by using arrays of pointers. As an example, if we have an irregular
shape but still four neighbors to each grid point, then four pointer arrays would just
define the four neighbors. In Fortran D, we need to use the techniques of PARTI to
handle these problems in general [Berryman:91a), [Saltz:87a], [Saltz:90b], [Saltz:91b).
These extensions of Fortran D allow the user to define runtime decompositions to
optimize the distribution of the sparse matrix over the parallel machine. These are
important, but not major changes, and we can say that Fortran D is adequate as the
data structures are arrays of either values or pointers.

In Section 5.2, we described an application where we expect that the major
extension needed in Fortran D would be new runtime support of generalizations of
the Connection Machine’s scan operation. In Section 5.3, we found a new challenge as
the data structure is a dynamic tree which is expressed by the current code as linked
lists in C. The user knows about the underlying physical structure shown in Figures 10,
12 and 14, and was able to parallelize the problem! However, the compiler (even with
runtime support) would find the physical structure impossible to reconstruct from
the hierarchy of pointers used in a linked list. Here, we need to extend Fortran D
with new data structures, such as a tree [Mou:90a]. The astrophysics application of
Section 5.3 also needs primitives to initialize, build, merge, and prune trees. We are
currently investigating this and other applications with a hierarchical structure to see
what general high level support is needed.
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Table 2.

Fortran 90D for Synchronous (SIMD) and Loosely Synchronous (MIMD)
Data Parallel Programming (about 90% of Scientific and Engineering Computations)

Program Class

Language and Environment Features

a) I - Regular Geometry
e.g., full matrix
e.g., finite difference
e.g., Monte Carlo

“pure” Fortran 90 with arrays of values
Need decomposition directives in Fortran D

b) I - Regular + III-EP
e.g., chemical potential and dynamics problems
Calculate matrix elements (needs forall); full
matrix algebra (Class I) for energies and cross sections

Add forall to Fortran 90

c) I/1I — Regular Topology
but irregular geometry
e.g., finite element

Add arrays of pointers to arrays of values.
Need new run-time library as in PARTI.

d) “True” Loosely Synchronous (I1) Irregular Problems
e.g., High-level image processing
e.g., Multiscale simulations
Problem architectures are more general
than that of array.

New data structures in Fortran 90D

e) IIICG -1, IIFG
Complex System Simulations
(See Section 2 and Figure 1)

Fortran 90D modules controlled by
object oriented systems.




[Chen:88b] Chen, M., Li, J., and Choo, Y. “Compiling parallel programs by
optimizing performance,” Journal of Supercomputing, 2:171-207, 1988.

[Denning:90a] Denning, P.J., and Tichy, W. F. “Highly parallel computation,”
Science, 250:1217-1222, 1990.

[Ding:90m] Ding, H., 1990. Private Communication.

[Felten:88i] Felten, E. W., and Otto, S. W. “A highly parallel chess program,”
in Proceedings of International Conference on Fifth Generation Computer
Systems 1988, pages 1001-1009. ICOT, November 1988. Tokyo, Japan,
November 28 — December 2. Caltech Report C3P-579¢.

[Foster:90a] Foster, I., and Taylor, S. Strand: New concepis in Parallel Pro-
gramming. Prentice Hall, Englewood Clifs, New Jersey 07632, 1990.

[Fox:87d] Fox, G. C. “Questions and unexpected answers in concurrent com-
putation,” in J. J. Dongarra, editor, Ezperimental Parallel Computing Ar-
chitectures, pages 97-121. Elsevier Science Publishers B.V., North-Holland,
1987. Caltech Report C3P-288.

[Fox:88a] Fox, G. C., Johnson, M. A., Lyzenga, G. A, Otto, S. W., Salmon,
J. K., and Walker, D. W. Solving Problems on Concurrent Processors,
volume 1. Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, 1988.

[Fox:88b] Fox, G. C. “What have we learnt from using real parallel machines
to solve real problems?,” in G. C. Fox, editor, The Third Conference on
Hypercube Concurrent Computers and Applications, Volume 2, pages 897—
955. ACM Press, 11 West 42nd Street, New York, NY 10036, January 1988.
Caltech Report C3P-522.

[Fox:88g] Fox, G. C., and Furmanski, W. “Hypercube algorithms for neural
network simulation the CrystalLAccumulator and the Crystal_Router,” in
G. C. Fox, editor, The Third Conference on Hypercube Concurrent Comput-
ers and Applications, Volume 1, pages 714-724. ACM Press, 11 West 42nd
Street, New York, NY 10036, January 1988. Caltech Report C3P-405b.

[Fox:88mm] Fox, G. C. “A review of automatic load balancing and decompo-
sition methods for the hypercube,” in M. Schultz, editor, Numerical Algo-
rithms for Modern Parallel Computer Architectures, pages 63-76. Springer-
Verlag, 1988. Caltech Report C3P-385.

[Fox:8800] Fox, G. C. “The hypercube and the Caltech Concurrent Computa-
tion Program: A microcosm of parallel computing,” in B. J. Alder, editor,
Special Purpose Computers, pages 1-40. Academic Press, Inc., 1988. Cal-
tech Report C3P-422.



References

[Angus:90a] Angus, 1. G., Fox, G. C., Kim, J. S, and Walker, D. W. Solving
Problems on Concurrent Processors: Software for Concurrent Processors,
volume 2. Prentice-Hall, Inc., Englewood Clifis, NJ 07632, 1990.

[Appel:85a] Appel, A. W. “An efficient program for many-body simulation,”
Sci. Stat. Comput., 6:85, 1985.

[Apostolakis:91b] Apostolakis, J., Coddington, P., and Marinari, E. “A multi-
grid cluster labeling scheme.” Technical Report SCCS-103, Syracuse Uni-
versity, June 1991.

[Baillie:89¢] Baillie, C. F., Brickner, R. G., Gupta, R., and Johnsson, L. “QCD
with dynamical Fermions on the Connection Machine,” in Proceedings of
Supercomputing ’89, pages 2-9. ACM Press, November 1989. IEEE Com-
puter Society and ACM SIGARCH, Reno, Nevada. Caltech Report C3P-
786. '

[Baillie:90f] Baillie, C. F. “Lattice QCD: Commercial vs. home-grown parallel
computers,” in D. W. Walker and Q. F. Stout, editors, The Fifth Dis-
tributed Memory Computing Conference, Volume I, pages 397-405, 10662
Los Vaqueros Circle, P. O. Box 3014, Los Alamitos, California 90720-1264,
1990. IEEE Computer Society Press. Held April 9-12, Charleston, South
Carolina. Caltech Report C3P-878.

[Baillie:90n] Baillie, C. F., Johnston, D. A., and Kilcup, G. W. “Status and
prospects of the computational approach to high-energy physics,” The
Journal of Supercomputing, 4:277-300, 1990. Caltech Report C3P-800b.

[Baillie:91a] Baillie, C. F., and Coddington, P. D. “Cluster identification algo-
rithms for spin models,” Concurrency: Practice and Ezperience, 3(2):129-
144, April 1991. Caltech Report C3P-855.

[Barnes:86a] Barnes, J., and Hut, P. “A hierarchical O(N log N) force calcula-
tion algorithm,” Nature, 324:446, 1986. ’

[Brower:91a] Brower, R. C., Tamayo, P., and York, B. “Parallel multigrid al-
gorithms for percolation clusters,” J. Stat. Phys., 63:73-88, 1991.

[Birman:91a] Birman, K., “Recent developments with ISIS,” 1991. Presentation
at DARPA Workshop, Providence, Rhode Island, February 28, 1991.

[Chandy:90a] Chandy, K., and Taylor, S. “A primer for program composition
notation.” Technical Report CRPC-TR90056, California Institute of Tech-
nology, June 1990.



[Gelernter:89a] Gelernter, D. “Multiple tuple spaces in Linda,” in Proceed-
ings of Parallel Architectures and Languages Europes, volume 2, page 366.
Springer-Verlag, LNCS, June 1989.

[Greengard:86a] Greengard, L., and Rokhlin, V. “A fast algorithm for parti-
cle simulation.” Technical Report YALEU/DCS/RR-459, Yale University,
1986.

[Greengard:88a] Greengard, L. “The rapid evaluation of potential fields in par-
ticle systems,” in ACM Distinguished Dissertation Series, Vol. IV. MIT
Press, Cambridge, Mass., 1988. Yale research report YALEU/DCS/RR-
533 (April 1987).

[Hillis:87a] Hillis, W. D. “The Connection Machine,” Scientific American, page
108, June 1987.

[Johnsson:89b] Johnsson, S. L., and Mathur, K. “Data structures and algo-
rithms for the finite element method on a data parallel supercomputer.”
Technical Report CS89-1, Thinking Machines Corporation, 1989.

[Johnsson:90a] Johnsson, S. L., and Mathur, K. K. “Experience with the conju-
gate gradient method for stress analysis on a data parallel supercomputer.”
Technical report, Thinking Machines Corporation, 1990.

[Keppenne:90a] L., K. G., Ghil, M., Fox, G. C., Flower, J. W., Kolawa, A.,
Papaccio, P. N., Rosati, J. J., Shepanski, J. F., Spadaro, F. G., and Dickey,
J. O. “Parallel processing applied to climate modeling.” Technical Report
SCCS-22, Syracuse University, November 1990.

[Meier:90a] Meier, D. L., Cloud, K. L., Horvath, J. C., Allan, L. D., Hammond,
W. H., and Maxfield, H. A. “A general framework for complex time-driven
simulations on hypercubes,” in D. W. Walker and Q. F. Stout, editors, The
Fifth Distributed Memory Computing Conference, Volume I, pages 117-121,
10662 Los Vaqueros Circle, P. O. Box 3014, Los Alamitos, California 90720-
1264, 1990. IEEE Computer Society Press. Held April 9-12, Charleston,
South Carolina. Caltech Report C3P-960.

[Mou:90a] Mou, Z. G. “Divacon: A parallel language for scientific computing
based on divide and conquer,” Frontiers 90, pages 451-461, IEEE Press,
October 1990.

[Quinn:90a] Quinn, M. J., and Hatcher, P. J. “Data-parallel programming on
multicomputers,” IEEE Software, pages 69-76, September 1990.

[Quinn:90b] Quinn, M. J. “Compiling SIMD programs for MIMD architec-
tures,” in Proceedings of the IEEE Computer Society 1990 International
Conference on Computer Languages, March 1990.



[Fox:88tt] Fox, G. C., and Furmanski, W. “The physical structure of concur-
rent problems and concurrent computers,” Phil. Trans. R. Soc. Lond. A,
326:411-444, 1988. Caltech Report C3P-493.

[Fox:89i] Fox, G.C. “1989 — the first year of the parallel supercomputer.” Tech-
nical Report CRPC-TR890010, California Institute of Technology, March
1989. Paper presented at the Fourth Conference on Hypercubes, Concur-
rent Computers and Applications; CCR-8809615.

[Fox:89n] Fox, G. C. “Parallel computing comes of age: Supercomputer level
parallel computations at Caltech,” Concurrency: Practice and Ezperience,
1(1):63-103, September 1989. Caltech Report C3P-795.

[Fox:89t] Fox, G. C., Hipes, P., and Salmon, J. “Practical parallel supercom-
puting: Examples from chemistry and physics,” in Proceedings of Super-
computing ’89, pages 58-70. ACM Press, November 1989. IEEE Computer
Society and ACM SIGARCH, Reno, Nevada. Caltech Report C3P-818.

[Fox:90h] Fox, G. C. “A chievements and problems for parallel comput-
ing.” Technical Report SCCS-29, California Institute of Technology, June
1990. Proceedings of the International Conference on Parallel Computing:
Achievements, Problems and Prospects; held in Anacapri, Italy, June 3-9,
1990; to be published in Concurrency: Practice and Ezperience; CRPC-
TR90083.

[Fox:900] Fox, G.C. “Applications of parallel supercomputers: Scientific results
and computer science lessons,” in M. A. Arbib and J. A. Robinson, editors,
Natural and Artificial Parallel Computation, chapter 4, pages 47-90. MIT
Press, Cambridge, Massachusetts, 1990. SCCS-23. Caltech Report C3P-
806b.

[Fox:91c] Fox, G. C. “Parallel problem architectures and their implications for
portable parallel software systems.” Technical Report C3P-967, Northeast
Parallel Architectures Center, May 1991. CRPC-TR91120, SCCS-78, Pre-
sentation at DARPA Workshop, Providence, Rhode Island, February 28,
1991.

[Fox:91d] Fox, G. C. “FortranD as a portable software system for parallel com-
puters.” Technical Report SCCS-91, Syracuse University, June 1991. Pub-
lished in the Proceedings of Supercomputing USA/Pacific 91, held in Santa
Clara, California. CRPC-TR91128. '

[Fox:91e] Fox, G. C., Hiranandani, S., Kennedy, K., Koelbel, C., Kremer, U.,
Tseng, C.-W., and Wu, M.-Y. “Fortran D language specification.” Techni-
cal Report SCCS-42¢c, Rice Center for Research in Parallel Computation;
CRPC-TR90079, April 1991.



Jefferson, D. “The performance of a distributed combat simulation with
the time warp operating system,” Concurrency: Practice and Ezperience,
1(1):35-50, 1989. Caltech Report C3P-798.

[Williams:88a] Williams, R. D. “DIME: A programming environment for un-
structured triangular meshes on a distributed-memory parallel processor,”
in G. C. Fox, editor, The Third Conference on Hypercube Concurrent Com-
puters and Applications, Volume 2, pages 1770-1787. ACM Press, 11 West
42nd Street, New York, NY 10036, January 1988. Caltech Report C3P-502.

[Williams:89b] Williams, R. D. “Supersonic flow in parallel with an unstruc-
tured mesh,” Concurrency: Practice and Ezperience, 1(1):51-62, 1989.
(See manual for this code in Caltech Report, C*P-861 (1990)). Caltech
Report C3P-636b. .

[Williams:90b] Williams, R. D. “DIME: Distributed Irregular Mesh Envi-
ronment.” Technical Report C3P-861, California Institute of Technology,
February 1990. Users Manual.

[Wolff:00b] Wolff, U. “Critical slowing down,” Nucl. Phys. B (Prop. Suppl.),
17:565-579, 1990.

[Wu:91a] Wu, M., and Fox, Geoffrey, C. “Compiling Fortran 90 programs for
distributed memory MIMD parallel computers.” Technical Report SCCS-
88, Syracuse Center for Computational Science, April 1991. CRPC-
TR91126.

[Zhao:87a] Zhao, F. An O(N) Algorithm for Three-dimensional N-body Simu-
lations. PhD thesis, Massachusetts Institute of Technology, 1987. October.

[Zhao:89a] Zhao, F., and Johnsson, S. L. “The parallel multipole method on
the Connection Machine.” Technical Report CS89-6, Thinking Machines
Corporation, October 1989.



[Salmon:89b] Salmon, J., Quinn, P., and Warren, M. “Using parallel computers
for very large N-body simulations: Shell formation using 180K particles,” in
A. Toomre and R. Wielen, editors, Proceedings of the Heidelberg Conference
on the Dynamics and Interactions of Galazies. Springer-Verlag, April 1989.
Caltech Report C3P-780b.

[Salmon:90a] Salmon, J. Parallel Hierarchical N-Body Methods. PhD thesis,
California Institute of Technology, December 1990. Caltech Report C3P-
966.

[Saltz:87a] Saltz, J., Mirchandaney, R., Smith, R., Nicol, D., and Crowley, K.
“The PARTY parallel runtime system,” in Proceedings of the SIAM Confer-
ence on Parallel Processing for Scientific Computing. Society for Industrial
and Applied Mathematics, 1987. held in Los Angeles, CA.

[Saltz:90b] Saltz, J., Crowley, K., Mirchandaney, R., and Berryman, H. “Run-
time scheduling and execution of loops on message passing machines,” Jour-
nal of Parallel and Distributed Computing, 8:303-312, 1990.

[Saltz:91b] Saltz, J., Berryman, H., and Wu, J. “Multiprocessor and runtime
compilation,” Concurrency: Practice and Ezperience, 3(5), 1991. Spe-
cial Issue from International Conference on Parallel Computing, held in
Anacapri, Italy June 3-9, 1990.

[Sokal:88a] Sokal, A. D. Computer Simulation Studies in Condensed Matter
Physics: Recent Developments. Springer-Verlag, Berlin-Ieidelberg, 1988.
editors, D. P. Landau et al.

[Swendsen:87a] Swendsen, R. H., and Wang, J. “Nonuniversal critical dynamics
in Monte Carlo simulations,” Phys. Rev. Leit., 58(2):86-88, 1987.

[Wang:90a] Wang, J., and Swendsen, R. H. “Cluster Monte Carlo algorithms,”
Physica A, 167:565-579, 1990.

[Warren:88c] Warren, M. “An O(Nlog N) hypercube N-body integrator.”
Technical Report C3P-639, California Institute of Technology, May 1988.
Caltech Undergraduate Senior Thesis. WARNING: Internal

[Warren:91a] Warren, M. S., Zurek, W. H., Quinn, P. J,, and Salmon, J. K.
“The shape of the invisible halo: N-Body simulations on parallel super-
computers.” Technical Report C3P-961, California Institute of Technology,
1991. submitted to Proceedings of After the First Three Minutes, ed. S.
Holt, V. Trimble, and C. Bennetti, AIP, 1991; Los Alamos Technical Report
LA-UR-90-3915.

[Wieland:89a] Wieland, F., Hawley, L., Feinberg, A., DiLoreto, M., Blume,
L., Ruffles, J., Reiher, P., Beckman, B., Hontalas, P., Bellenot, S., and



