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Abstract

When arrays are subscripted by index arrays, also known as subscripted subscripts, au-
tomatic vectorization and parallelization systems usually assume dependence or engineer
run-time dependence testing. This work investigates the effectiveness of user assertions in
determining dependence with static dependence analysis techniques. A set of basic user
assertions about index variables are shown to be effective in eliminating dependences for
general subscript expressions involving index variables, in many cases increasing the amount
of parallelism available at compile time.

Keywords: dependence analysis, index arrays, subscripted subscripts, index variables, user

assertions, parallelization, vectorization

1 Introduction

Index arrays are used frequently in numerical Fortran codes for a variety reasons. For

example, they eliminate the need to swap values in the arrays subscripted by the index
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array, which is common in codes such as Gaussian Elimination. In addition, they are used
to eliminate computation when sparse systems are being solved. Two dependence testing
studies have also found that index arrays occur and are a significant source of imprecision
in dependence testing [SLY89, PP91].

When analyzing sequential Fortran for the purposes of parallelization or vectorization,
a significant source of imprecision in dependence analysis results from the use of index
arrays. Dependence analysis must be conservative in the sense that if it is possible for two
references, where one is a write, to access the same memory location, then their original
access order must be preserved [Ban79, Ban88, Wol89, AK87]. During static analysis it is
usually impossible to determine possible values for index arrays, therefore dependence must
be assumed for the arrays accessed by index arrays. For example, consider the following loop

where index variables are referenced in the simplest possible way.

Loop A
DOI=1,N
S1 A(INDEX(I)) = ---
S2 . = A(INDEX(I))
ENDDO

In loop A, loop-carried true, anti, and output dependences must be assumed between S1
and S2. These conservative dependences are necessary because the values of INDEX(I) are
unknown and may overlap and intertwine. Most research and production compilers assume
dependence for this reason.

In the literature, techniques which employ run-time dependence analysis [Pol86, Pol87]
allow a general treatment of arrays accessed by index arrays. When index arrays contain
random, patternless, or repeat values the conservative dependences determined statically
really exist. If there is any parallelism to be extracted in this situation, run-time dependence
testing is the only way to safely introduce it. Here, the overhead associated with run-time
testing cannot be avoided. However, if the compiler or user determines that the index array
in loop A is a permutation array, then there are no loop carried dependences on array A and
the loop may be run in parallel without any run-time testing.

This work illustrates how a variety of user or compiler assertions about index arrays can

be incorporated into dependence testing. We introduce a set of assertions and assume a



framework in which the compiler or the user determines the assertions. Uses of index arrays
are then examined in light of these assertions. We illustrate the increased precision of the
dependence information possible with their use with a simple example. Then, the results
are generalized for more complicated linear expressions involving index variables. We show
that knowing the form of an index array enables the elimination of dependences, allowing
a more precise dependence graph. This precision in turn may expose parallelism and other

opportunities for optimization in programs.

2 Assertions

A selection of several common and observed properties of index variables is examined below.
One frequent usage of index arrays of size n is as a permutation array of the integers 1 to
n. In sparse matrix codes there also exist index arrays with size n, but whose values range
to from 1 to k, where k > n. When each value in the index array is distinct, but the range
is larger than n, it is called a single valued index array. Permutation arrays are simply a
subset of single valued index arrays and are not treated separately here. Index arrays that
increase or decrease corresponding to an increase or decrease in their subscript positions are
also encountered in practice (see Section 5). The above array types form the framework for
the assertions treated here and are enumerated formally below.
Single Valued INDEX(I) # INDEX(J), I #J
Monotone Non-Decreasing INDEX(I) < INDEX(I + 1)
Monotone Non-Increasing INDEX(I) > INDEX(I + 1)
Strictly Increasing INDEX(I) < INDEX(I + 1)
Strictly Decreasing INDEX(I) > INDEX(I + 1)
Strictly increasing is just a special case which combines single valued and monotone non-
decreasing, and strictly decreasing is a combination of single valued and monotone non-

increasing. An example of a single valued index array is INDEX(1:4) = {8, 1, 5, 2} and of
a strictly increasing index array is INDEX(1:4) = {1, 2, 5, 8}.



3 A Simple Use of Index Arrays

In loop A, conservative dependence analysis must assume loop carried true, anti, and output
dependence. There is also a loop independent true dependence, which exists regardless of
the values of the index array. If the index array in loop A is single valued then there are no
loop-carried dependences due to these references of array A. Clearly there is no dependence
if the index array is strictly increasing or decreasing. However, if the index array is simply
monotone non-decreasing or non-increasing, all possible dependences may be present.

Consider two more interesting, but simple uses of index variables in loops B and C.

Loop B
DOI=1,N
S3 A(INDEX(I)) = ---
S4 cee = A(INDEX(I + 1))
ENDDO
Loop C
DOI=2,N
S5 A(INDEX(I)) =---
S6 . = A(INDEX(I - 1))
ENDDO

In loop B, S3 and 54 have the following loop-carried dependences when there is no informa-

tion about the values of INDEX(I).

S3 — S4 true INDEX(I;) may equal INDEX(I; +1) L <1
S4 —+ S3 anti INDEX(I;) may equal INDEX(l; + 1) L <D
S3 — S4 output INDEX(I;) may equal INDEX(I;) L #1

In loop B, S5 and S6 have the following dependences when there is no information about

the values of INDEX(I).

S5 — S6 true INDEX(I,) may equal INDEX(l;-1) L1 <1
S6 — S5 anti INDEX(l;) may equal INDEX(I, -1) I <1,
S5 — S5 output INDEX(I;) may equal INDEX(I;) L #1,

I, and I, are values of the loop index variable I on two different iterations of the loop. For
the rest of this paper we assume I; occurs on an earlier iteration than I, (I1 < Ip). Below
we enumerate the assertions and their effects on this conservative dependence information

for loops B and C. The conservative dependences that do not occur when an assertion is



valid are indicated and a brief justification is given.

Single Valued

In loops B and C, output dependence does not occur because INDEX (/) # INDEX(/3).

Monotone Non-Decreasing

Loop B

True dependence does not occur.

Loop C
All dependences are still possible.

All dependences are still possible for loop C as can be observed in Example 1. However in
loop B, a definition of A(INDEX(I)) at statement S3 is either killed by the next iteration

or not referenced at all. Therefore, a carried true dependence is never instantiated.”

Loop B Loop C
A1) = - A1) = .-
= Ag(l) = A1)
A1) = - As(1) = -
= As() = A
As(l) = --- Ay2) = .-
.. = A42) = As(1)
Ay2) = -+ As(3) = ---
= Ay(3) = A42)

Example 1: Let INDEX(I) = {1,1,1,2,3}

Monotone Non-Increasing

Loop B

True dependence does not occur.

Loop C
All dependences are still possible.

These follow from the monotone non-decreasing case.

*However, a simple reversal of statement S3 and S4 will instantiate the true dependence, indicating that
in the general case it may be present.



Strictly Increasing

Loop B
Output dependence does not occur because INDEX(I;) # INDEX(I,).
True dependence does not occur because INDEX([;) # INDEX(I, + 1).

Loop C
Output dependence does not occur because INDEX(I;) # INDEX(I;).
Anti dependence does not occur because INDEX(I;) # INDEX(I; + 1).

In Example 2, the anti dependence is instantiated in loop B and the true dependence in loop
C. The other conservative dependences are proven not to exist using proof by contradiction.
For loops B and C output dependence occurs only if INDEX(I;) = INDEX(I;) where
I < I, but the definition of strictly increasing requires INDEX([;) < INDEX(];), a
contradiction. In loop B, true dependence occurs if INDEX([;) = INDEX(/; + 1) where
I, < I, but the definition of strictly increasing requires a stronger condition, i.e. INDEX(I;)

< INDEX(I,), a contradiction. Similarly, anti dependence in loop C is proven not to occur.

Loop B Loop C
A1) = - Ay(2) = -
= Ay(2) = A1)
A (2) = --- As(3) = .-
= As(3) = A(2)
As(3) = --- Ay4) = ---
= A44) = As(3)

Example 2: Let INDEX(I) = {1,2,3,4,5}

Strictly Decreasing

Loop B
Output dependence does not occur because INDEX(];) # INDEX(I;).
true Dependence does not occur because INDEX(];) # INDEX(I; +1).

Loop C
Output dependence does not occur because INDEX(I;) # INDEX(I;).
Anti dependence does not occur because INDEX([;) # INDEX(I; + 1).

In Example 3, the anti dependence is instantiated in loop B and the true dependence in loop
C. Using proof by contradiction, as with the strictly increasing case, the other dependences

are proven not to occur.



Loop B Loop C

Ar(5) = - A4) = -
Aqd) = o 4a(3) = -
e = A42) . = A3(3)

Example 3: Let INDEX(I) = {5,4,3,2,1}

4 General Uses of Index Arrays

4.1 Index Arrays subscripted by Linear Expressions

The subscript of an index variable may be a linear expression, as in loop D.

Loop D
DOI=1,N
S1 A(INDEX(al £ 7)) =---
S2 .. = A(INDEX(BI % §))
ENDDO

For simplicity assume «, B3, v, and § are positive integers. Loop D is similar to loops A, B
and C in that true, anti, and output loop-carried dependence must be assumed if the values
of the index array is unknown. This form can be examined by applying existing dependence
tests [Ban88, Wol89, GKT91] to the subscripts of the index variables, and then applying the
results to the array references referenced by the index variables. Determining equality of
al + v and BI £ 6 can be done using the single index variable (SIV) exact test [GKT91].
If this test proves independence, then the same dependences that are eliminated in Section
3 can be eliminated based on relationship between af + « and I + 6. However, no
additional dependences may be eliminated.

Below each assertion is listed with the method to determine if a conservative dependence

can be deleted, given an index variable of the form in loop D.

Single Valued

The output dependence (S1 — S1) does not occur.



Monotone Non-Decreasing and Monotone Non-Increasing

If (1) ol £ 7 is always < BI + §,and (2) alh £ = v Bl £ 6 forsome ; < I
then true dependence does not occur. We use the SIV exact test determine condition (2).
The direction vector resulting from this test indicates if condition (1) holds. If condition (1)

holds, then the ¢rue dependence may be eliminated.

Strictly Increasing and Strictly Decreasing

The output dependence (S1 — S1) does not occur.

Knowing that all the values of index will be unique and increasing, we only need to determine
if af + v and BI + 6 may be equal. This equality can also be determined using the single
index variable (SIV) exact test. If the test determines they are never equal, then no true,
anti, or output dependence exists. If a dependence exists, the SIV test reports a direction

vector that may eliminate either the anti or true dependence.

4.2 Linear Expressions using Index Arrays

Index arrays may also be used in linear expressions to subscript other arrays. Consider the
form of the subscripts in loop E. When this form occurs, the assertions also allow additional
dependences to be deleted. However, if v or § are functions of an index variable as well, more
general tests are required (Section 5 illustrates a program of this form). For example, the
multiple induction variable (MIV) test [GKT91] can be applied and the resulting direction
vector used to eliminate dependences.

Below, we consider the two specific cases in loops F and G where § > 0. The dependences
determined in these specific cases are at best what the general case may delete. For the
general case, the direction vector from the SIV or MIV test can be used to eliminate the
dependences outlined below for these specific cases.

Again, without assertions all three types of dependences must be assumed. With asser-
tions it is possible to increase the precision of the dependence information. The increases

possible in precision are outlined below. Remember I; < I.



Loop E

DOI=1,N
S1 A(a INDEX(I) £ 7)) =
S2 = A(ﬂ INDEX(I) + §))
ENDDO
Loop F
DOI=1,N
S1 A(INDEX(I)) =
52 = A(INDEX(I) + 6))
ENDDO
Loop G
DOI=1,N
S3 A(INDEX(I)) =
S4 = A(INDEX(I) - §))
ENDDO
Single Valued
Loop F
Output dependence does not occur because INDEX(I;) # INDEX(I2).
Loop G

Output dependence does not occur because INDEX(I;) # INDEX(I2).

Monotone Non-Decreasing

Loop F
True dependence does not occur because INDEX(];) < INDEX(l3) + é.
Note, INDEX(I;) < INDEX(I,).

Loop G
Anti dependence does not occur because INDEX(I;) > INDEX(I;) — 6.
Note, INDEX(I;) is already > INDEX(I;).

In Example 4 a monotone non-decreasing example is given for loops F and G where § = 1.

The subscript of A is the value of I, and the parentheses contain the appropriate value of

either INDEX(I), INDEX(I) + 1, or INDEX(I) - 1 that corresponds with I.

Monotone Non-Increasing

Loop F
Anti dependence does not occur because INDEX(I;) < INDEX(I;) + 6.
Note INDEX(I;) < INDEX(I5).



Loop G
True dependence does not occur because INDEX (/1) > INDEX(l;) — 6.

In Example 5 a monotone non-increasing example is given for loops E and F where 6 = 1.

The subscript of A is the value of I, and the parentheses contain the appropriate value of

either INDEX(I), INDEX(I) + 1, or INDEX(I) - 1 that corresponds with L.

Loop E Loop F
A (2) = - A(2) = -
e = A3) e = A1)
Ax(2) = .- A(2) = -
= A(3) = A1)
As(2) = - A3(2) = ---
e = A3(3) ce = As(1)
As3) = - As(3) = -
ce = Ag8) = A42)
As(3) = --- As(3) = ---
e = As(4) ce = As(2)
As(4) = --- Ag(4) = -
= As(5) = As(3)
Ar(5) = -+ Ar(5) = .-
= Aq(6) = A:(4)

Example 4: Let INDEX(I) = {2,2,2,3,3,4,5},and § = 1

Strictly Increasing

Loop F
Output dependence does not occur.

True dependence (S1 — S2) does not occur.

Loop G
Output dependence does not occur.

Anti dependence (S4 — S3) does not occur.

The results from the monotone non-decreasing assertion are clearly still applicable. Com-
bining this with the single value assertion, eliminates two of the three dependences for each

loop.
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Loop E Loop F

Ai(8) = A(6) Ai(5) = A()
= A .. = A4
Ay(5) = --- Ay(5) = .-
= Ay(6) .. = A(4)
As(5) = --- As(5) = ---
= As(6) = As(4)
As4) = - Ag4) = -
= A45) = Ay3)
As(3) = - As(3) = -
= As(3) = As5(2)
As(2) = --- As2) = ---
= As(2) = As(1)

Example 5: Let INDEX(I) = {5,5,5,4,3,2},and § = 1

Strictly Decreasing
Loop F

Output dependence does not occur.

Anti dependence (S2 — S1) does not occur.

Loop G
Output dependence does not occur.

True dependence (S3 — S4) does not occur.

The results from the monotone non-increasing assertion are still applicable and combining
this with the single value assertion, again eliminates two of the three dependences for each

loop.

5 Index Arrays in Practice

We have several Fortran programs that contain simple uses of single valued index arrays as
in loop A. However, we have also found programs with more interesting uses of index arrays.
Below we discuss two programs that use index arrays. The first program uses its index array
in a straight forward manner. The second uses its index array in an expression of the form
discussed in Section 4.2. The values of both index arrays are regular patterns and strictly

increasing.

11



MDG

In the Perfect benchmark MDG, a molecular dynamics program for the simulation of liquid

water, the main routine assigns the index array IX(I) as follows.

II=1
DO 1001 = 1, NVAR
IX(I) =11
100 II =1I + NATMO

The sample input provided with this program assign NVAR = 24 and NATMO = 1029.
This loop results in IX(I) = NATMO * (I-1) + 1,forI =1, 24, a regular, strictly
increasing expression. With advanced symbolic propagation and the problem size parameters
a compiler could determine this expression. VAR(IX(C)), where C is a constant, is then
passed into subroutines and used in non-trivial ways. In the subroutine initia the following

code is found

D=1
DO 20001 =1, NMOL
DO 100I = 1, NATOMS
VX(1J) =---
VvY(1J)
VZ(1J)

D=1U+1

2000 CONTINUE

where the formal parameter VX is bound to VAR(IX(4)), VY to VAR(IX(5)), and VZ
to VAR(IX(6)). In addition, NMOL = 3, NATOMS = 393, and NATMO = 3 *
393 = 1029. The access to each VX, VY, and VZ are therefore unique. Because the
Fortran standard guarantees no aliasing of actual parameters, most dependence tests assume
independence here and either of the loops may be made parallel. It is interesting to note
that many compilers apply procedure inlining to enable dependence testing in the presence
of procedure calls and in hopes of improving the precision of dependence testing. In this
case, the opposite is true. Without index array information, inlining here causes the loss of

the no aliasing assumption and requiring that output dependence be assumed.
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TRFD

Below in the Perfect benchmark TRFD, a missile tracking program, the main routine assigns
the index array IA(I). It is subsequently used via a subroutine call to TRFPRT. TX is an

array of dimension 1000000.

DO 30 NUM = 10, 40, 5
DO10I=1,NUM

10 IA() = (I*(I-1)) /2
NORB = NUM
NP = NUM

NPQ = (NUM * (NUM + 1)) / 2

IF (OUT) CALL TRFPRT(NP, NPQ, IA, X, ---)
30 CONTINUE

SUBROUTINE TRFPRT(NORB, NIJ, IA, TX, ---)

DO 1401 = 1, NORB

DO130J =1,1
DO120K =1,1
LMAX = K

IF (K .EQ.I) LMAX =]
DO 110 L =1, LMAX
ID=1A0)+17J
KL=IA(K)+ L
VAL = TX(1J,IK)

In this case, the usage of index array IA in an expression is slightly disguised and there is
no subsequent write of TX. However, this program illustrates that index arrays are being

used in linear expression to subscript other arrays.

6 Discussion

In order to further validate the usefulness of assertions in the parallelization process several
other issues must also be addressed. Currently in Fortran and other languages, there are
no syntactic constructs that allow users to make assertions. Some systems provide compiler
directives which usually are embedded in comments. Directives have several drawbacks. One

is scoping the assertions. Does the assertion apply for the entire program, subroutine, or
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loop? As Polychronopoulos points out, occasionally index variables are defined in the same
loop as they are used, further complicating the assertion process [Pol86].

In the ParaScope Editor [BKK+89, KMT91, KMT90], an interactive parallel program-
ming tool we are exploring an assertion facility with a language of its own, which would
annotate programs and their dependence graphs. Assertions in this tool may take many
forms. They may be applied to specific references, or a range of references (such as a loop
or subroutine), or something as complex as all the uses of a particular variable. A facility
like this would allows users to avoid the tedium of having to insert an assertion before every
use of a index variable. We believe that semantic assertions about program facts will be an
improvement over current compiler directives such as “run this loop in parallel regardless
of the dependences”, which communicates none of a users reasoning. ParaScope is already
providing program dependence information to the user, and we hope that providing a more
flexible format for user and compiler communication will further improve the parallelization
process.

We are also exploring more sophisticated compiler techniques for symbolic propagation
of program information such as index array properties [KMT91]. For example, if an index
variable is determined to be single valued, how can this be propagated to other loops or
procedures? In addition, detecting permutation arrays may require constant propagation
into arrays, a difficult problem. Eventually it may be possible for a compiler to determine
properties of index arrays. For example, the programs in Section 5 lead us to believe some
index arrays could be treated as “shadow loops”, where each index array reference is viewed
merely as another loop induction variable whose lower bound, upper bound, and step size
are determined using symbolic propagation.

Theoretically, the compiler solution is ideal because user assertions may introduce errors
into correct programs. Practically, the symbolic analysis needed to support the compiler

solution in not yet precise or efficient enough for general use.
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7 Conclusions

This work illustrates that in practice, index arrays may have regular and discernible forms
and uses. In addition this work shows that user assertions or advanced symbolic compiler
analysis about index arrays may be used to increase the precision of dependence testing,
thereby increasing opportunities for parallelization and optimization. However, the symbolic
techniques needed to determine the form of an index array are not yet available in a practical

compilation system.
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