Multioffset Inversion by
Differential Semblance Optimization

William Symes

CRPC-TR90177
December, 1990

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892






Multioffset Inversion by
Differential Semblance Optimization

W.W. Symes
Department of Mathematical Sciences

Rice University
Houston, TX 77251-1892

Abstract

A still-unresolved problem in reflection seismology is the estima-
tion of wave velocities directly from waveform data, bypassing expen-
sive manual steps such as event-picking in before-stack data. This
paper suggests a waveform inversion algorithm, differential semblance
optimiztion for shot-gather data, designed to yield accurate veloctiy
estimates even in the absence of accurate a priori information. The al-
gorithm described here is a variant of least-squares inversion by gradi-
ent optimization, which has proven incapable of estimating large-scale
velocity features. We explain the obstacles to success of least-squares
velocity inversion, and offer both theoretical and numerical evidence
that our modification should overcome these obstacles. An appendix
describes our approach to accurate calculation of the gradient of the
modified cost functional.

1 Introduction

Least-squares (or more generally, least-error or maximum-likelihood) inver-
sion has been advocated over the last decade as a general approach to the
inversion of reflection seismograms, for several reasons. It is capable of re-
flecting directly almost any physics of seismic wave propagation; it can be



modified to incorporate nonseismic constraints; and it possesses an elegant
statistical justification (Tarantola, 1987).

Unfortunately, the promise of least squares inversion using gradient (quasi-
Newton) optimization has been largely unrealized, principally because of its
failure to yield large-scale velocity trends. This failure, first noticed in numer-
ical experiments (see Kolb et al. 1986, Gauthier et al. 1986), has attracted
widespread comment. For an attempt at an explanation, see Santosa and
Symes 1989.

The purpose of this note is to present a modification of least-squares in-
version which appears to retain some of its advantages while yielding velocity
trend estimates as well. The main step in this modification is the inclusion
in the least-squares principle of a differential measure of event semblance, so
we have called this modification the differential semblance method.

The differential semblance method actually encompasses a number of al-
gorithms. In previous papers (Symes 1988, 1990a, Symes and Carazzone
1989, 1990) we have explored algorithms in this class appropriate for plane-
wave data and layered media. We have given both theoretical and numerical
evidence that the plane-wave differential semblance method yields efficient
and accurate velocity and reflectivity estimates. The numerical evidence
includes successful treatment of field data sets.

In the following sections we will formulate a simple acoustic model of re-
flection seismology; explain the difficulty faced by conventional least squares
inversion in context; present a version of the differential semblance method
appropriate for shot-record data; explain how the differential semblance method
avoids the least-squares pitfalls; and show some preliminary numerical evi-
dence of its effectiveness. This paper aims only to introduce the differential
semblance method in the shot-record context. Some mathematical details of
the gradient calculation are given in an Appendix; a more detailed treatment
of mathematical and numerical aspects will appear elsewhere. A first crude
attempt at velocity inversion for a complex model appears in Symes 1990b.

2 The Acoustic Model

The constant-density linear acoustic model connects the (spatially varying)
sound velocity v(z), the pressure field p(z,t), and a body force divergence



“source”) f(z,t) through the acoustic wave equation
g q
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We assume that f is transient and known and p is causal: p =0 for ¢t << 0.
We also assume (for simplicity) that the fluid occupies the half-space {z > 0},
and that the surface {z3 = 0} is free, i.e. p =0 there.

It is very important in what follows that f depends on another parameter
z,, so we write: f(z,z,). Thus p depends on z, as well. For common-shot
seismic data z, is naturally the source position; however z, could also be
construed as offset for application to common-offset data, or as slowness for
application to plane wave data.

The seismogram is the sampling of the pressure field at a set {z,} of
receiver points. It depends functionally on the velocity distribution v. We
base this discussion on the well-known perturbational approximation to the
seismogram, in which v is split as v = v + v,, with v, a smooth background
velocity and v, a rough or oscillatory perturbation. Using regular first-order
perturbation theory we write

S=5+S,

where S is the background seismogram and S, is the perturbation due to v,.
If vy is sufficiently smooth, which we assume, then S, consists of the direct
wave, plus possibly refractions. We limit our attention to reflections here; so
we assume that S, has been subtracted or muted out (a nontrivial step in
practice!) and identify S with S,.
S is thus the sampling at the receiver locations of the pressure field per-
turbation ép, which solves
2
iz 9 52p - Vp= 2
v Ot Vp
plus appropriate side conditions. Note the appearance of the reflectivity
T = v, [w; in the sequel we shall use r rather than v, to represent the rough
part of the model.
As is well-known (Cohen and Bleistein 1977, Beylkin 1985, Rakesh 1988,
Percell 1989) S can be approximated rather effectively as an oscillatory in-
tegral of the form

S(v)r(zs; x4, )

Vzp
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The notation is chosen to emphasize the following points:

(1) The seismogram is a function of the source parameter z,, the receiver
coordinate z,, and time t;

(2) The amplitude or symbol A and the phase ¢ also depend on a wave vector
§ of the same dimensionality as the space coordinates.

(3) A and ¢ depend further on a source coordinate z and are convolved in
z and t against the source distribution f(z,t,z,).

(4) The seismogram S, the amplitude A, and the phase function ¢ depend
functionally on v,. The phase function ¢ is related to the travel time of
certain reflected rays; see Percell 1989 for details.

(5) The seismogram S depends linearly on the reflectivity r.

For space dimension n, the symbol A behaves for large |€] like

AO(zu Tr, t7 £/|£l)|€|nT-l.

for a suitable smooth function Ao (the “principal symbol”). Ap is non-zero
over a sector in /|| determined by the ray geometry (hence by vs). The
phase function of ¢ is positively homogeneous of degree 1 in £.

3 Mathematical and Scientific Difficulties
of Least Squares Inversion

With the conventions established so far, we can state a simple version of the
least-squares inversion problem:

Find vy, to minimize

Jrs [vb,r; Sda.ta,] = %///d:c,a’a:,dt IS[vb] 7 — S4ata ?




Here we understand the integral sign to mean integral or sum, as appro-
priate. To avoid writing an excessive number of integral signs in the sequel
we introduce the standard notations for the L? inner product and norm:

W.0) = [d9
ol = (v,9)}

where the integration variables are understood from context, and replaced
by scaled sums in case the functions ¥, ¢ are discretely sampled in one or
more variables.

In this notation,

D)

1
JLS[vba Ty Sdata] = 5”5[06]7. - Sda,ta,”2 :

In a typical reflection seismic model in 2D, v, might be represented by
a few tens to a few hundreds of parameters, while r requires perhaps 10° —
106 parameters for a useful degree of resolution. Thus the least-squares
problem is computationally very large, and efficient minimization algorithms
are required. By far the most efficient numerical optimization techniques
are the descent methods related to Newton’s method — when they work.
These iterations take steps predicted by the linearized model/data relation
so rely for their effectiveness on a close relation between the cost function
and its quadratic approximation. Accordingly, we now examine (somewhat
formally) the response of S to perturbations in vy and r.

From the oscillatory integral expression above the perturbation of S due
to a change v, in v, is

8,5 T = / dE(i66 - A + 6A)e™%F .

This is an oscillatory integral of the same form as that approximating S, with
a-different symbol. In fact ¢ is also homogeneous of order 1, exactly as is
¢. Therefore the symbol (amplitude) in the above integral grows as |¢|*F as
|é] — oo, i.e. at a more rapid rate than A. It follows that for at least some
oscillatory r, smooth évy

16, S1l >> 111 -
Taking this reasoning one step further, one sees immediately that

162 S|l >> 1|6, ,
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that is, that S is very nonlinear in vj.
On the other hand S is linear in r. Since

Sy JLs = (8(upr)[S[ve] - 7], Sle]r — Sqata)
(60, S[ve]r + S[vs]ér, S[vs]r — Sqata)
6turdrs = 165, S[vs]r + S[ws)ér||?

+ (6305[111,]1’ + 26,, S[vs)6T, S[vs)r — Sdata)

one might well expect that

53,,JLS’ >>

53J,,s|

and this is indeed the case for some oscillatory r, ér of the same magnitude
and smooth v, 6vs. Thus the Hessian is extremely ill-conditioned.

Moreover, it also follows that the growth rate of J.s as one moves v,
away from the minimizer must be many times the overall size of J.g itself.
Therefore the growth cannot be sustained over a large change in v;, and Jrs
saturates. Consequently J.s tends to be very non-convex, with a very small
region of convexity near the global optimum model. See Symes and Caraz-
zone 1989, Figure 4 for an actual picture of Jis illustrating these features.

The highly non-quadratic nature of Jrs explains the great difficulty of
recovery of v, by least-squares inversion reported frequently in the literature
(Gauthier et al. 1986, Kolb et al. 1986, Mora 1987, for example — see also
Santosa and Symes 1989 for an extensive explanation of these ideas in the
context of a simpler model). Both numerical obstacles and difficulties of prin-
ciple arise. First, one can say with confidence that extraction of the global
minimizer of Jrs by means of least-squares inversion and local, Newton-type
optimization is impossible, unless the initial estimate if v, is quite accurate.
The necessary degree of accuracy in the initial estimate appears very difficult
to predict.

Random or systematic search has been suggested as alternative to gradient-
based methods (Cao et al. 1990, Tarantola 1987, Tarantola et al. 1990, and
many references cited there). Such methods may work well when the back-
ground velocity may be represented by a few parameters in a known way.
In general, severely parsimonious parameterization is likely to introduce un-
justified bias, that is, to fail to sample the model space sufficiently to well-
approximate the optimal v,. On the other hand, refined parameterization
generates extremely large search tasks.
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It has also been suggested that all of the local minima of Jrs should be
viewed collectively as the “solution” of the estimation problem. If one em-
ploys local optimization techniques to minimize JLs, one is de facto forced
to this point of view. Tarantola 1987, Tarantola et al. 1990 has argued that
the various local minima of Jps (perhaps biased toward an “a priori” model
by a penalty term) represent statistically important models, relatively more
likely than the surrounding models — and in fact exp{—JLs}, regarded as
an un-normalized probability density, is really the “solution” of the inver-
sion problem. The viability of this “standard inverse theory” viewpoint is
delicate, and in our opinion unresolved. In practice, only simple estimators
of the “solution” density are sought, e.g. maximum likelihood points, lead-
ing directly back to output least-squares. For highly nonlinear problems like
velocity estimation, however, even the density itself is extremely sensitive to
the noise model (“state of a priori information”), which is in turn selected
almost entirely on the basis of heuristics and mathematical convenience.

In sum, estimation of v, via the least-squares principle is unlikely to yield
useful results in general, or reliable inversion methods.

4 The Differential Semblance Method

Our resolution of the difficulties outlined in the preceding paragraphs begins
with two observations:

(i) For fized vy, Jis is perfectly convex — in fact, quadratic!

(ii) If the set of shot parameter values {z,} reduces to a singleton, e.g. only
one point source record is used, the minimum value of Jis is essentially
independent of vy.

That is, the inversion of a single shot record is feasible, and constrains only
r, not vy. Since this task is practical, it suggests the expedient of viewing r
as a function of the shot parameter z,

r=r(z,z,).
Of course, if Sq,;, is noise free,

Sda.ta, = S['U;]T"
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then r(z,z,) = r*(z) is amongst the minimizers of

2

|Stilr(-,25) = Sqatal-2.)

and has the addition property of coherence, or independence of z,, which we
can express as

or =0.
oz,
Only coherent reflectivity estimates have any ultimate meaning, since there
is only one earth!
The above two conditions can be combined into a single cost functional,
for instance:

ISToelr = Sgatall® + o?l|Or/0z,||?

where r is now allowed to depend explicitly on z, — with such dependence
penalized by the second term, weighted by a parameter o2.

This functional is quadratic in r, so the minimization with respect to r
presents no difficulties, in principle. On the other hand, as a functional of
both vy and r, it is still quite non-convex, for the same reasons as is JLs.
Together these two observations suggest elimination of r: that is, we define
a functional of v, only by

)

It is a remarkable fact that this functional is smooth — in fact, nearly
quadratic — in its dependence on v, despite its rather close relation with
the least squares functional! Minimization of J, over a smooth class of back-
ground velocities v, is the differential semblance optimization problem. Note
that for noise-free data Sq,4, = S[v;]r", J, attains the value 0 for v, = vy,
which is clearly its global minimum, and that this minimum is reached by set-
ting 7 = r* on the right-hand side. That is, the global minimum is achieved
at the correct velocity — and, implicitly, at the correct reflectivity. Since J,
is smooth, it is necessarily convex near a consistent global minimizer. That
is, if the data is noise-free, then J, is necessarily convex near v}, and remains
convex when Sy,, is perturbed by small amounts of noise. We conjecture

or
Oz,

I [vb; 5'da,ta.] = m,.m% {”S[vb] T Sdata”2 +0°
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that J, is strongly convex for near-consistent data Sdata and proper choice
of 0%, over a large subset of background velocity models. We will present
some numerical evidence for this later, and have given a proof for the related
(but simpler) plane/wave layered medium case (see Symes 1988, 1990; Symes
and Carazzone 1989).

In the remainder of this section, we will outline the reasons for the smooth-
ness of J,, and our reasons for thinking that J, might be minimized quite
efficiently. We give only the formal skeletons of arguments here; precise
statements and proofs will be presented elsewhere. Since we propose to use
Newton-type (“gradient”) optimization methods to minimize J,, accurate
calculation of the gradient is important. The derivation of an accurate tech-
nique for gradient calculation is relegated to the Appendix, as it is somewhat
more technical in nature than the following material.

Before starting we take care of a few technical details. The first is that
the normal operator

STS
is a pseudodifferential operator of order n — 1 in dimension n(= 1,2, or 3)
if the source is impulsive, f(z,t) = §(z — z,)6(t), under some ray-geometric
restrictions (no caustics in the incident wavefront). That is, S7.S is given by
an oscillatory integral of the form

STS r(2,2) = [ d sz, =5z 6)

where b ~ bo(z,,z,£/|€])|€|"! as |€] — oo, and #(z,,£) is the Fourier trans-
form in z of r(z,,z). In fact STS is a family of pseudodifferential operators
in z, parameterized by z,, of order n — 1. It is a slight technical headache
that such a family of pseudodifferential operators in z is not a pseudodif-
ferential operator in z and z,; however this is not an essential complication
(e.g., Taylor 1975, Appendix) and we shall ignore it here. This pseudodiffer-
ential representation of STS is an immediate consequence of the FIO calculus
(Duistermaat 1973), and is mentioned explicitly in Beylkin 1985, Symes 1986,
and Rakesh 1988 for example. As shown in Percell’s thesis 1989, this conclu-
sion is false when caustics are present in the incident wave-front — a generic
occurrence in heterogeneous media. It is possible to recover the pseudod-
ifferential nature of STS by modifying the definition of S by a microlocal
(phase space) suppression or muting of the reflectivity 7. Without going into



details, we assume that this has been done. Then S7S operator is elliptic,
i.e. acts as an invertible Fourier multiplier at high spatial frequencies, over
a conic sector of wave vectors (the “reflection aperture”) determined by the
relative positions of sources and receivers and the ray geometry of the back-
ground velocity field. Outside of the reflection aperture, which varies with
location in the subsurface, ST S suppresses high-frequency components (these
correspond to off-cable reflections). That is, the symbol b satisfies

bo(zs,7,€/|€]) > O within the reflection aperture
bo(z,,z,£/|€]) = 0 outside of the reflection aperture .

The theory of pseudodifferential operators is an indispensible tool in de-
veloping a precise and effective understanding of the reflection seismic inverse
problem. Good references are Taylor 1980 and Hormander 1983. For the fol-
lowing discussion, the reader needs to understand that

(a) A pseudodifferential operator of order k (roughly) scales the Fourier
transform of the function to which it is appliedy by |€|*. That is, it
“acts” like a k** derivative operator. Here k may be negative or even non-
integral. A pseudodifferential operator of order zero does not alter the
rate of growth of the Fourier components, so acts locally as a bounded
operator on L2.

(b) If the symbol b of a pseudodifferential operator

Blolu(z) = [ deb(v, 2, )e=i(¢)

depends smoothly on parameters v, then so does the operator Blv], and
all derivatives with respect to v are operators of the same order. That is,
differentiation with respect to parameters does not result in increased
weighting of high-frequency components. Note the contrast with the
behaviour of oscillatory integrals of the type defining S, as presented in
the last section, in which the phase also depends on parameters. This
contrast underlies the entire theory developed in these pages.

Because of the aperture limitation mentioned above, the high-frequency
components of r outside the inversion aperture must be constrained a priori
in solving equations involving STS. To accomplish this goal in a well-scaled
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way, we first modify the definition of S: we assume that the source has point-
support, and in its time dependence is a low frequency perturbation of the
(35%)-th derivative of §(t): thus

— 6(x—z,)t_% , n=2
f(z,t) = const. { 6z — m,)é‘?t) =3

+ fo(zv t)

(the distribution ¢7* is defined in Gel’fand and Shilov 1958, for example),
where fo is a smooth function. This amounts to assuming that f, while

bandlimited below, behaves as t;% (n = 2) or §(t) (n = 3) across the upper
part of the passband of the seismic signals. Practically, this assumption is
realized by preprocessing the data to re-scale it in the frequency domain.
With this modification, S7S is a pseudodifferential operator of order 2,
independently of the dimension.
We chose a regularizing operator W, pseudodifferential of order 2 in z
and depending parametrically on z,, so that

STS + 3w
is uniformly elliptic for each z, as long as A2 > 0. A simple choice is
W=1-V2%.

This choice is suboptimal, as it also affects the components within the reflec-
tion aperture, but for small A? this is probably of little consequence. It will
be important in the sequel to write W = CTC, with C a pseudodifferential
operator of order 1. This is certainly possible for the simple choice just given
with C = (I — V2)3,

The (regularized) differential semblance functional J, is defined by min-
imizing over r the (regularized) quadratic

)

A minimizer of the above quadratic is a solution of the normal equations

or
oz,

% {”S" - 5dau:a"2 + X (r, Wr) + o*

Nr :=[STS + MW — 02 8*/82%r = ST Sy, -
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The operator N is (essentially) an elliptic pseudodifferential operator of order
2 in z,z,. Standard techniques show that N is invertible, under reasonable
restrictions on r, and that r depends stably on Sdata in suitable norms.

Since S = S[uvy], the solution of the normal equations also depends on vy:
r = r[us, Sqata) also. The dependence of r on v, is quite erratic — this is
another consequence of our analysis of the least-squares problem in the last
section. In any case we can write r = N‘IS'TSdata and obtain

—

Jom = = (STSda,ta,’ (I - N—l)STSda.ta.>

(Sdatar SU - N_I)STSdata.) .

(ST

The operator S(I — N1)ST is — essentially — pseudodifferential, for
the same reasons as is the normal operator. Its symbol is a smooth function
of vy, whence follows the smoothness of J,, by virtue of the property of
pseudodifferential operators depending on a parameter, noted earlier.

Note that the quantity STSdata is not a smooth functional of v: it is
given by an oscillatory integral with phase depending nontrivially on v,. The
same is true of N=1STS. We can write

- 1 -
<STSdata’N l‘S'TSdatax) Y {”U+N 1)STSda,taL"2
— (I = N")STSgaall?} -

Thus the smoothness of J, is an amusing instance of the observation that
a non-smooth function taking values in a Hilbert space may have a smooth
norm.

We assume that we apply to the normal equations an algorithm yielding,
after a finite number of steps, an estimate of r. We will consider only Krylov
space methods such as conjugate gradient iteration. The normal equations
are very similar in nature to the Laplace equation, and in particular precon-
ditioning is required to produce rapid convergence of the Krylov sequence.
Preconditioning amounts to replacing the normal equations by the precondi-
tioned normal equations

MT = S-Sda.ta

where M = GN, S* = GS7, and G is the solution operator of the Laplace
equation in (z,z,) with suitable boundary conditions. (In fact, S* is the

12



adjoint of S with respect to a so-called Sobolev scalar product.) This is
the system solved in the numerical work reported in the next section. The
operator M is now of order zero, i.e. does not enhance high-frequency com-
ponents (nor does it suppress them). In a qualitative sense at least, M is
well-conditioned.

5 Numerical Exploration

In this section we present some preliminary numerical results, in which we

have evaluated the coherency optimization functional over line segments in

the space of background velocity models, to display directly its convex nature.
As is evident from the expression

Jo = St = Sqatall® + A2 (r, Wr) + 0*||0r/dz,|*
N = STS+NW - o? 9%/0z?
M = GN

it 1s necessary to approximate
(i) the seismogram (“forward map”) S;
(i) its adjoint ST;
(iii) the regularizing operator W;
(iv) 0/dz.;

(v) the solution operator G of the Laplace equation in r and z,, with suitable
boundary conditions.

We shall examine each of these approximations briefly. We were incau-
tious in the work reported here, and set A2 = 0. Thus step (iii) (the regular-
izing operator) was neglected.

We computed 2D shot-record seismograms of duration 1.6 s, over a model
3 km deep and 7.5 km wide. Velocities ranged from 1.5 to 2.5 km/s. Shot
locations were confined to the interval 3.5-4.5 km from the left edge of the
model. The cable stretched from 150 to 1950 m to the right of each shot,
with 60 receivers (modeled as points) spaced 30 m apart. The shot depth

13



was 8 m, and the shot was modeled as a point source with Ricker wavelet
time dependence. The receiver depth was 15 m.

With this geometry, no reflections from the edge of the model could arrive
back at the cable within the time gate of the simulation. Accordingly we used
Dirichlet boundary conditions on all four sides of the computational domain.

In order to keep the computational cost low for these exploratory exper-
iments, we chose to use a very low-frequency source, with peak frequency
at 10 Hz. We could then use sample rates At = 4 ms, Az = Az = 15
m, and obtained stable and reasonably nondispersive simulation with the
commonplace second order centered difference scheme.

The adjoint ST was computed with the adjoint state technique. The z,
derivative was approximated by the midpoint rule. The boundary conditions
for the Laplace operator were periodic in z and z and Neumann in z,. The
solution operator G was implemented via Fourier transform in z and z, and
tridiagonal solve in z,.

Computational modules written in FORTRAN incorporating these choices
were coupled to a conjugate residual procedure for solution of the normal
equations. The calculations were performed on a Stardent Titan 1500 Series
superworkstation. The Titan spent the bulk of its time in the finite difference
solution of the wave equation, achieving roughly 15 M flops in parallel /vector
loops.

We present the results of two experiments, each involving 10 shots. The
first shot was located at z, = 3600 m and the shot interval was 100 m.
Each reflectivity was estimated via 10 conjugate residual iterations. The
evaluation of J, for each model required approximately 4 hours of Stardent
CPU time.

For both experiments we sample J, at the sequence of velocity models
shown in Figure 1. The “target” velocity v; rises linearly from 1.5 km/s at
z=0mto 2km/s at z = 500 m, and was used to generate the data for both
experiments. The “initial” velocity vo is constant, = 1.5 km/s. The other
velocities are convex combinations of these two,

v = (1-~h)v+ hy,
h = 0, 0.25, 0.5, 0.75, 1.0, 1.25.

In both experiments o2 was adjusted so that the two terms in the cost func-
tion would have roughly similar magnitudes. This was done by comparing

14



the mean-square residual term at r = 0 (i.e. the data mean-square) to the
incoherence term after ten CR iterations with 02 = 0, in both cases with
v = vg. Then o2 was chosen to equilibrate (roughly) these two values. In
both experiments this procedure resulted in the choice o2 = 1000.

In the first experiment, the target reflectivity was a single flat reflector
located at z = 750 m. That is, r is a step function jumping from r = 0 to
r=r"at z = 750 m. Figure 2 shows the cost function and its two compo-
nents. The value at the target is nonzero, suggesting that the reflectivity is
not accurately reconstructed in 10 CR iterations. Nonetheless the curve is
smooth and convex and has the target model at its minimum, suggesting that
this type and degree of inaccuracy will not prevent effective estimation of ve-
locities. Common z gathers (“image gathers”) for the reflectivity estimates
at vg and v, are offered in Figures 3a and 3b as further confirmation that
the computed reflectivities are sufficiently accurate to detect moveout error.
These gathers correspond to a well-illuminated location below z = 4400 m.
Further from the center of the line, CR was not able to overcome aperture
truncation effects, which account for most of the remaining incoherency.

The second set of experiments was based on the reflectivity model of Fig-
ure 4. In this model a sequence of flat-lying beds are truncated by underlying
curved beds dipping to the left. A pair of shot gathers from near the center
of the line appear as Figure 5. Figure 6 displays the cost functional, which
is once again without any secondary minima. Figure 7 gives the common
z gathers for a number of locations near the center of the line. The resid-
ual aperture effects are evident, but also the dip of the principal reflector,
and the flatness of the overlying layer, are clearly reproduced. Figure 7 uses
a common-z sort of the reflectivity estimated after ten conjugate residual
iterations with the target velocity v;.

Discussion and Conclusion

Let us state precisely the sense in which we hope to solve the velocity in-
version problem via differential semblance optimization. First, for noise-free
data, as noted above, the “exact” model is amongst the minima of J,. Thus
the velocity estimator obtained by minimization of J, is consistent with
the model. Second, if our convexity conjecture is correct, then the veloc-
ity estimate is a stable function of the data; in particular it is well-defined.
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Third, because of the smoothness (proved) and convexity (conjectured) of
Js, rapidly convergent Newon-type iteration will produce the estimator: it is
efficiently computable.

We believe that this triple of properties just stated (consistency, stability,
and computability of the velocity estimator) form a satisfactory substitute
for the statistical inverse theory (Tarantola 1987). While the latter appears
not to apply to velocity estimation, the former are mathematical properties,
which are effective when the noise is small in a well defined sense. Smallness
of the noise, both random and model-error, can be verified — by solving
the minimization problem! In contrast, the statistical assumptions underly-
ing standard inverse theory are unverifiable, probably wrong, and force the
investigator into computationally intractable problems.

We have described a modified least-squares principle and velocity and
reflectivity estimation. We have explained how this principle avoids the main
pitfalls of least-squares inversion, and described an accurate calculation of
the gradient of a computable approximating family of functionals. F inally
we have offered some preliminary numerical evidence that this functional is
smooth and has no secondary minima over a large domain in model space.
Should this conjecture hold, quasi-Newton methods should be adequate to
find the global minimum, at a kinematically correct velocity model. We hope
to report the implementation of such a quasi-Newton velocity estimator in a
future article.
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Appendix. Accurate Calculation of
the Differential Semblance Gradient

Since the differential semblance
L1
Jo[vy] = min 5 {”S[vb]r — Sdatall® + Mr, Wr) + 0’2“37'/61?,”2}

is itself the solution of a minimization problem, the calculation of its gradient
is not straightforward. The complication, to which this appendix is devoted,
arises from the infeasibility of the exact minimization of the right-hand side.
Instead of J,, we can have computational access to

-~

1 . . rr~ ~
Jolos) = 5 {IS[lF = Sqagall® + X2(7, WF) + 0*|107/02. )%}
where 7 is an approximate solution of the normal equations:

Nlw)r = (S[ve)TS[vs) + V)r
S[ve]"Sqata
where V = MW —o?6?/0z2.

As mentioned in the text, we have chosen to produce  via a fixed, finite
number of steps of a Krylov subspace iteration, e.g. the conjugate gradient
algorithm, applied to the preconditioned normal equations

Mr =5"S4.ta, M=GN, S =GST

where G is the solution operator of the Laplace equation in z and z, , with
suitable boundary conditions. Such an algorithm produces 7 in the form

# = P(M)S*Sqata

where P is a polynomial.

In order to state the sense in which convergence # — r occurs, introduce
the Laplace operator H (in z and z,) with the boundary conditions previously
mentioned: thus GH = HG = identity. Also, e is the normal residual:

e= M7 — S'Sdata.

17



which measures directly the error in the solution of the normal equations.
Then S~ is the adjoint of S in the sense of the form defined by

Irll} = (r, Hr)

(a version of the Sobolev 1-norm — we assume that the boundary conditions
on r are chosen so that this is indeed a norm). Sufficiently many steps of a
Krylov space method will drive both the error

7 =7l
and the normal residual
| M7 — 5" Sqatall = llells

below any prescribed tolerance.
We will first investigate the approximation of the directional derivative
6J, in the direction §vy by 6§J,. Note that

6J, = (65-7,5r=Sq,ta)

+ (6, (STS + V) r = STS4.1a)
(657,87 — Sqata)

+ 6r, Nt — STS4.1a) -

Here ér is the (implicit) derivative of r = r[v;, Sdatal With respect to v,. This
could be computed by differentiating the normal equations, but fortunately
this effort is unnecessary: because of the normal equations the second term
drops out. Thus

6Js = (857,57 — Syata) -

Similarly,

-~

6Jo = (857,57 — Sqata) + (67, NF — STSy,10)
(65 - 7, ST — Sqata) + (67, He)
but now the second term does not drop out, since in general e # 0. We can

write

67 = 6PGST Syata + PGEST Sqats -

18



Now N and G are formally self-adjoint, i.e. N = NT, etc. Since P is a
polynomial in M = GN, PG is also formally self-adjoint. Thus

§J, = (657,57 - Sqata)
+ (Sqatar SGSPTHe)
+ (Sdatar 65 - Pe) .

To go further, we must introduce some properties of S. F irst, as one might
guess from the fact that STS is or order two (after the normalization intro-
duced in the text), S itself is of order one in the sense that

[Sull < Cllull,

for a suitable constant C > 0.
Next we introduce the factorization

8,57 = / (6A +1i6¢ - A)e®r = SQr

which follows from the calculus of Fourier integral operators (e.g. Duister-
maat 1973). Here Q;[vs, dvy] is a pseudodifferential operator of order 1 (i.e.
its symbol grows like |¢| for large |¢| ) and depends smoothly on vy, linearly
on 6vs. Moreover, Q, is essentially skew-adjoint: there is another pseudod-
ifferential operator Qo of order zero (i.e. whose symbol go is bounded as
|€] — o) so that

Q1+Q{=Qo-

Using this factorization, we can write

§J, = (657,51 — Sguta)

= (Qr,ST(Sr - Sdata))
= (er, —-VT‘)

where we have used the normal equations. Also,

6J, = (Qif,—V7+ He)
+ (Sqatar SGSPTHe) + (Sqata, SQiPe) .
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Note that

(Sdatar S@1Pe) = (Sqatar S[Q1: Ple) + (Sqata, SPGHQ€)
(Sdatar S[Q1, Ple) = (PGSTS ..., HQqe)
(Sdata> S[@1, Ple) + (7, [@1H]e) + (fo', He) .

Thus

6Js —6J, = (QuF,=V7) = (Qir,=Vr)
(@1 + Q] )7, He)
(Sdatar SGSPT He)
(Sdata> S[Q1, Ple)

(7, [@Q1, Hle) .

We claim that the sum on the r.h.s. is bounded by ||r — 7||; and ||e||;, which
as noted before can be made as small as you like.
For the first two summands, note that

<Q1T,V7'> = (T,Q{V?‘)
= (r(VQI +(Q1,V])r)
= (QIr,Vr)+ (r,[Q], VIr)

+
+
+
+

since V is self-adjoint. So

2@, Vr) = (@ +Q7)r,Vr)
+(r, [Q1, VIr)
= (r,QV +(Q],V]r)

where Q; + QT = Qo is of order zero (as noted above) and necessarily self-
adjoint.

Now we employ the L? bounds from the calculus of pseudodifferential
operators. Since Q7 is of order 1 and V of order 2, [QT, V] is of order 2, and
hence defines a bounded quadratic form on the subspace of H! reserved for
reflectivity sections r, as does QoV. Thus

|(Qlf7 —VF) - (er7 —V?“)l
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{7, Qv + @1, V1A = (. (QoV + [QF, V1)) }|

((F =), (QoV +[Q1, V)F) + (r, (QaV +[QT, V] )(7 ~ r))|
7l + 1)l = 7l)

for some C > 0.

Similar but simpler arguments show that the other terms are bounded
by multiples of ||7||; ||e||; or ISqatall llelli- Since ||7|l; and ||7||; are both
controlled by [|Sy,¢,|l, the final result is an estimate of the form

[N R (VR

A~ ——— ———

< C

18J5 = 811 < C(lir = #llx + llefl) 16wl

where C' depends on v, and Sdata- The linear dependence on év, follows
from the linear dependence of the symbols of Q, and 6P on Svp.

Since the error in directional derivatives can be made as small as one
likes, the same is true of the error in the gradients, which are defined by

6J, = (grad J,,6vs)
§J, = (grad J,,évb) .

Note however that gradient error depends on the error in the reflectivity
estimate |r — |1, not just on the normal residual — or, otherwise put, on
both |le|l; and the coercivity of the preconditioned normal operator M.
There remains the question of a feasible computational procedure: the
formula given above for 6J, does not define such a procedure, as it turns
out. It is tempting to drop the second term (involving é7) entirely, thus

8§J, 2 (8S - 7,57 — Sqapa)

l.e., to use the functional form of the exact §J, but with the approximate
7. Unfortunately, this approximation is not guaranteed to converge as the
Krylov iteration proceeds. In fact, the “cancellation” Q; + QT = Q, does not
occur in this expression, leaving a residual term not dominated by ||r — 7|,
llell1, but only by norms of r — 7, e involving second derivatives. After
discretization, these norms are equivalent, but we lose all control over the
rates. Convergence degrades as the grid is refined, since in the continuum
limit the size of second derivatives of e may remain bounded away from zero,
or even be undefined.
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Note however that if we drop the summand involving § P only, we obtain
an approximation

-~

8J, ~ (87,57 — Sqata) + (Sdata 65 - Pe) = D

in which only computable quantities occur, and to which the same analysis as
before applies to yield convergence to §J,. (Note that Pe can be computed
by applying to e the Krylov polynomial constructed during computation of
T, e.g. by saving the conjugate gradient coefficients and “replaylng” the CG
iteration). The essential thought behind this manipulation is: since J, is
only an approximation to J,, it is not necessary to compute §J, precisely —
only to ensure that it converges to §J, as the Krylov iteration proceeds!
In fact the term involving § P is exactly

(Sqatar SGSPT He)

in which G6PTH is a pseudodifferential operator of order 0. Since S is of
order 1, this quantity is bounded by a multiple of ||e||;, as claimed before.
Thus i

|6Jo — D| < Cllellx
and in particular this error is independent of the lower bound for M.

It remains only to extract a practical gradient procedure from these for-
mulae. It would appear necessary to compute 65, which is really the second
derivative of the nonlinear forward map (S itself being the linearized forward
map). Denote by Sp the nonlinear forward map: then

§S-7 = lim l(S[vb + ebvp]7 — S[vs]7)
= lx_x}g - {hrn 7 (So[ve + €bvp + k7] — So[vs + evs))
~ Jim 7 (Solos + 7] - Solu]) }
.1 .
= ’ll% 7 {S[ve + h7]bvy — S[vs)6uvs} .
Assume that the interchange of limits is OK (sufficient conditions are known

in 1D, but only conjectured at this point for nD,n > 1). Since the source
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is assumed oscillatory and v, and 6vy both smooth, the summand S[vy)év,
should be negligible. Thus

1
6S T x -}-L-S[vb + hf]&vb
for sufficiently small A. Using this approximation we get

< 1 . -
§J, =D = E<S[vb + hF)6vy , S[vs]F — Sqata)
1
h
In this formula, év, is independent of z, , so that the adjoint operator to S

in this context includes summation over z, , i.e. a stack. We signify this
“stacked migration” with an overbar: ST = >z, ST. Then we obtain

+ —(Sdatar Slvs + hPe)bvy) .

- 1 /- -
grad J, =~ 3 {ST[vb + A7) (S[os]F — Sqata) + ST (v + hPe]Sda.ta} .

This “raw” gradient involves only simulation (S) and stacked migration (57),
but with a twist: migration is carried out at oscillatory reference states
vy + AT, vy + hPe. This accounts entirely for the trend information carried
in grad J,, and contrasts with the least-squares gradient

S[Ub]T(S[vb]f — Sdata) -

To be consistent with the assumed smoothness of the velocities, the “raw”
gradient sections must be projected into a space of smooth velocity per-
turbations V; denote by IIy the projection operator. The implementable
approximation to the gradient is then

N 1=~ i N -
gradyJ, = IIVE {ST[vb + h7)(S[vs]F — Sqata) + ST [vs + hPe]Sdata.} ,
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3a.

3b.

. Velocities used in scan experiments

Evaluation of Jcar at the velocities of Figure 1,
for data from a flat reflector at 750m

Common-x gather, z = 4400m, for v = vq

Common-x gather, z = 4400 m, for v = v,

Reflectivity model for second set of experiments

. Shot records, z, = 3900 m, 4000 m

Evaluation of Jeas at velocities of Figure 1,
data from reflectivity of Figure 4

Common z gathers, z = 4300-4700 m, for reflectivity
estimated by 10 CR iterations with v = v;
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