Interprocedural Transformations
for Parallel Code Generation

Mary Hall
Ken Kennedy
Kathryn McKinley

CRPC-TR91149
April, 1991

Center for Research on Parallel Computatio:
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Interprocedural Transformations for Parallel Code Generation

Mary W. Hall Ken Kennedy Kathryn S. McKinley
Department of Computer Science, Rice University, Houston, TX 77251-1892

Abstract

We present a new approach that enables compiler
optimization of procedure calls and loop nests con-
taining procedure calls. We introduce two inter-
procedural transformations that move loops across pro-
cedure boundaries, exposing them to traditional opti-
mizations on loop nests. These transformations are
incorporated into a code generation algorithm for a
shared-memory multiprocessor. The code generator re-
lies on a machine model to estimate the expected ben-
efits of loop parallelization and parallelism-enhancing
transformations. Several transformation strategies are
explored and one that minimizes total execution time is
selected. Efficient support of this strategy is provided
by an existing interprocedural compilation system. We
demonstrate the potential of these techniques by ap-
plying this code generation strategy to two scientific
applications programs.

1 Introduction

Modern computer architectures, such as pipelined,
superscalar, VLIW and multiprocessor machines, de-
mand sophisticated compilers to exploit their perfor-
mance potentials. To expose parallelism and compu-
tation for these architectures, the compiler must con-
sider a statement in light of its surrounding context.
Loops provide a proven source of both context and
parallelism. Loops with significant amounts of com-
putation are prime candidates for compilers seeking
to make effective utilization of the available resources.
Given that increased modularity is encouraged to man-
age program computation and complexity, it is natural
to expect that programs will contain many procedure
calls and procedure calls in loops, and the ambitious
compiler will want to optimize them.

Unfortunately, most conventional compiling systems
abandon parallelizing optimizations on loops contain-
ing procedure calls. Two existing compilation technolo-
gies are used to overcome this problem: interprocedural
analysis and interprocedural transformation.

Interprocedural analysis applies data-flow analysis
techniques across procedure boundaries to enhance the
effectiveness of dependence testing. A sophisticated
form of interprocedural analysis, called regular section

*This research was supported by the Center for Research on
Parallel Computation, a National Science Foundation Science
and Technology Center, by IBM Corporation, the state of Texas
and by a DARPA /NASA Research Assistantship in Parallel Pro-
cessing, administered by the Institute for Advanced Computer
Studies, University of Maryland.

analysis, makes it possible to parallelize loops with calls
by determining whether the side effects to arrays as a
result of each call are limited to nonintersecting subar-
rays on different loop iterations [12, 20].

Interprocedural transformation is the process of mov-
ing code across procedure boundaries, either as an op-
timization or to enable other optimizations. The most
common form of interprocedural transformation is pro-
cedure inlining. Inlining substitutes the body of a
called procedure for the procedure call and optimizes
it as a part of the calling procedure.

Even though regular section analysis and inlining are
frequently successful, each of these methods has its lim-
itations [20, 23]. Compilation time and space consider-
ations require that regular section analysis summarize
array side effects. In general, summary analysis for
loop parallelization is less precise than the analysis of
inlined code. On the other hand, inlining can yield an
explosion in code size which may disastrously increase
compile time and seriously inhibit separate compila-
tion [13]. Furthermore, inlining may cause a loss of
precision in dependence analysis due to the complex-
ity of subscripts that result from array parameter re-
shapes. For example, when the dimension size of a
formal array parameter is also passed as a parameter,
translating references of the formal to the actual can
introduce multiplications of unknown symbolic values
into subscript expressions. This situation occurs when
inlining is used on the sPEC Benchmark program ma-
trix300 [8].

In this paper, a hybrid approach is developed that
overcomes some of these limitations. We introduce a
pair of new interprocedural transformations: loop em-
bedding, which pushes a loop header into a procedure
called within the loop, and loop extraction, which ex-
tracts the outermost loop from a procedure body into
the calling procedure. These transformations expose
such loops to intraprocedural optimizations. In this pa-
per, the intraprocedural optimizations considered are
loop fusion, loop interchange and loop distribution.
However, many other transformations that require loop
nests will also benefit from embedding and extraction.
Some examples are loop skewing [36] and memory hi-
erarchy optimizations such as unroll and jam [10].

As a motivating example, consider the Fortran code
in Example 1(a). The J loop in subroutine S may safely
be made parallel, but the outer I loop in subroutine P
may not be. However, the amount of computation in
the J loop is small relative to the I loop and may not
be sufficient to make parallelization profitable. If the I
loop is embedded into subroutine S as shown in (b), the

SUBROUTINE P SUBROUTINE P SUBROUTINE P
REAL A(N,N) REAL A(N,N) REAL A(E,D)
INTEGER I
DOI =1, 100

CALL S(A,I) CALL S(A) CALL s(a)
ENDDO

SUBROUTINE S(F,I) SUBROUTIRE S(F) SUBROUTINE S(F)
REAL F(N,N) REAL F(N,N) REAL F(N,¥)
INTEGER I,J INTEGER I,J INTEGER I1,J
DO J = 1,3 DOI =1, 100 PARDO J = 1, 3

F(J,I) = F(J,I-1) + 10 D0J=1,3 DOI =1, 100
ENDDO FQ(J,I) = F(J,I-1) + 10 F(J,I) = F(J,I-1) + 10
ENDDO ENDDO
ENDDO ENDPARDO

(a) before transformation

(b) loop embedding

(c) loop interchange

Example 1:

inner and outer loops may be interchanged as shown
in (c). The resulting parallel outer J loop now contains
plenty of computation. As an added benefit, procedure
call overhead has been reduced.

Loop embedding and loop extraction provide many
of the optimization opportunities of inlining without
its significant costs. Code growth of individual pro-
cedures is nominal, so compilation time is not seri-
ously affected. Overall program growth is also mod-
erate because multiple callers may invoke the same op-
timized procedure body. In addition, the compilation
dependences among procedures are reduced since the
compiler controls the small amount of code movement
across procedures and can easily determine if an editing
change of one procedure invalidates other procedures.

Our approach to interprocedural optimization is fun-
damentally different from previous research in that the
application of interprocedural transformations is re-
stricted to cases where it is determined to be profitable.
This strategy, called goal-directed interprocedural opti-
mization, avoids the costs of interprocedural optimiza-
tion when it is not necessary[8). Interprocedural trans-
formations are applied as dictated by a code genera-
tion algorithm that explores possible transformations,
selecting a choice that minimizes total execution time.
Estimates of execution time are provided by a machine
model which takes into account the overhead of par-
allelization. The code generator is part of an inter-
procedural compilation system that efficiently supports
interprocedural analysis and optimization by retaining
separate compilation of procedures.

The remainder of this paper is organized into five
major sections, related work, and conclusions. Sec-
tion 2 provides the technical background for the rest
of the paper. In Section 3, a compilation system is
described which is powerful enough to support inter-
procedural optimization but also retains the advan-
tages of a separate compilation system. Section 4 ex-
plains the interprocedural and intraprocedural trans-
formations in more detail, and Section 5 presents a code
generation algorithm that uses these to parallelize pro-
grams for a shared-memory multiprocessor. Section 6
describes an experiment where this approach was ap-
plied to the Perfect Benchmark programs spec77 and

ocean.

2 Technical Background
2.1 Dependence Analysis

Dependence analysis and testing have been widely re-
searched, and in this paper a working knowledge of
these is assumed (3, 7, 9, 17, 18, 27, 37]. In partic-
ular, the reader should be familiar with dependence
graphs, where dependence edges are characterized with
such information as dependence type and hybrid direc-
tion/distance vectors [25]. The dependence graph spec-
ifies a conservative approximation of the partial order
of memory accesses necessary to preserve the semantics
of a program. The safe application of program trans-
formations is based on preserving this partial order.

2.2 Augmented Call Graph

The program representation for interprocedural trans-
formations requires an augmented call graph to describe
the calling relationship among procedures and specify
loop nests. The code generation algorithm considers
loops containing procedure calls and loops adjacent to
procedure calls. For this purpose, the program’s call
graph, which contains the usual procedure nodes and
call edges, is augmented to include special loop nodes
and nesting edges. If a procedure p contains a loop ,
there will be a nesting edge from the procedure node
representing p to the loop node representing I. If a
loop I contains a call to a procedure p, there will be a
nesting edge from [to p. Any inner loops are also rep-
resented by loop nodes and are children of their outer
loop. The outermost loop of each routine is marked
enclosing if all the other statements in the procedure
fall inside the loop. Figure 1(a) shows the augmented
call graph for the program from Example 1.

2.3 Regular Section Analysis

A regular section describes the side effects to the
substructures of an array. Sections represent a re-
stricted set of the most commonly occurring array ac-
cess patterns; single elements, rows, columns, grids
and their higher dimensional analogs. This restriction
on the shapes assists in making the implementation

Ref: ™~ 7 Ref: T~ -0
P I ! I I
I 1 | I
: 1 [1 !
L- _d L _4J
d) A[1:100, I-1] A[J=1,100, I-1]
v
S Mod: l" ':_ Mod: :' ':_
1o o
v v o
@ L_L L_L
A[1:100, 1) A[J=1,100, I
(2) Augmented (b) Sections (c) Slices

Call Graph
Figure 1:

efficient [20]. The representation of the dimensions of a
particular array variable may take one of three forms:
(1) an invocation invariant expression, representing a
single element; (2) a range consisting of a lower bound,
an upper bound and a step size; or (3) the special el-
ement L, signifying that all of this dimension may be
affected. Sections are separated into modified and ref-
erenced sets. The sections for Example 1 are shown in
Figure 1(b).

By using sections, the problem of locating depen-
dences on procedure calls is simplified to the problem
of finding dependences on ordinary statements. The
modified and referenced subsections for the call appear
to the dependence analyzer like the left- and right-hand
sides of an assignment, respectively. For single-element
subsections, dependence testing is the same as it would
be for any other variable access. For subsections that
contain one or more dimensions with ranges, the de-
pendence analyzer simulates DO loops for each of the
range dimensions, with the lower bound, upper bound
and step size of the loop corresponding to those of
the range. Sections are necessarily an approximation
of actual accesses. To assist conservative dependence
testing, they are marked exact and inexact to indicate
whether they are an approximation.

Regular sections enable dependence analysis to de-
termine if loops containing calls are parallel. Sections
are also currently used to determine the safety of intra-
procedural transformations on a loop nest containing
calls. In this paper, sections are extended to enable
the code generator to determine the safety of inter-
procedural transformations. We introduce an annota-
tion to a section, called a slice. Slices resemble data
access descriptors, but they are not as detailed [5]. A
slice identifies the section of an array accessed and the
order of that access in terms of a particular loop’s in-
dex expression. Symbolic slices are stored only for the
outermost loop of a procedure. They are also marked
as exact or inexact. Figure 1(c) illustrates the slice
annotations for the program in Example 1.

3 Support for Interprocedural
Optimization

In this section, we present the compilation system
of the ParaScope Programming Environment [11, 14].
This system was designed for the efficient support of
interprocedural analysis and optimization. The tools
in ParaScope cooperate to enable the compilation sys-
tem to perform interprocedural analysis without direct
examination of source code. This information is then
used in code generation to make decisions about inter-
procedural optimizations. The code generator only ex-
amines the dependence graph for the procedure cur-
rently being compiled, not the graph for the entire pro-
gram. In addition, ParaScope employs recompilation
analysis after program changes to minimize program
reanalysis [15].

3.1 The ParaScope Compilation System

Interprocedural analysis in the ParaScope compilation
system consists of two principal phases. The first takes
place prior to compilation. At the end of each editing
session, the immediate interprocedural effects of a pro-
cedure are determined and stored. For example, this
information includes the array sections that are locally
modified and referenced in the procedure. The proce-
dure’s calling interface is also determined in this phase.
It includes descriptions of the calls and loops in the
procedure and their relative positions. In this way, the
information needed from each module of source code is
available at all times and need not be derived on every
compilation.

Interprocedural optimization is orchestrated by the
program compiler, a tool that manages and provides in-
formation about the whole program [14, 19]. The pro-
gram compiler begins by building the augmented call
graph described in Section 2.2. The program compiler
then traverses the augmented call graph, performing
interprocedural analysis, and subsequently, code gen-
eration. Conceptually, program compilation consists
of three principal phases: (1) interprocedural analysis,
(2) dependence analysis, and (3) planning and code
generation.

Interprocedural analysis. The program compiler
calculates interprocedural information over the aug-
mented call graph. First, the information collected
during editing is recovered from the database and as-
sociated with the appropriate nodes and edges in the
call graph. This information is then propagated in a
top-down or bottom-up pass over the nodes in the call
graph, depending on the interprocedural problem. Sec-
tion analysis is performed at this time. Interprocedural
constant propagation and symbolic analysis are also
performed, as these greatly increase the precision of
subsequent dependence analysis.

Dependence analysis. Interprocedural informa-
tion is then made available to dependence analysis,
which is performed separately for each procedure.
Dependence analysis results in a dependence graph.
Edges in the dependence graph connect statements
that form the source and sink of a dependence. If the
source or sink of a dependence is a call site, a sec-

RSDs

Augmented
Call Graph

RSD ﬁnm Code
Analysis Analysis Generation

Marked || Loops
Dependence Graphs
w/RSDs & Slices

Figure 2: Flow of information for interprocedural transformations.

tion annotates it. The section may more accurately
describe the portion of the array involved in the depen-
dence. Dependence analysis also distinguishes parallel
loops in the augmented call graph. Dependence analy-
sis is separated from code generation for an important
reason; it provides the code generator knowledge about
each procedure without reexamining their source or de-
pendence graph.

Planning and Code Generation. The final
phase of the program compiler determines where inter-
procedural optimization is profitable. When more than
one option for interprocedural transformation exists,
it selects the most profitable option. Planning is im-
portant to interprocedural optimization since unnec-
essary optimizations may lead to significant compile-
time costs without any execution-time benefit. To de-
termine the profitability of transformations requires a
machine model. To determine the safety of transfor-
mations, the dependence graph and sections are suf-
ficient. Once profitable transformations are located,
they are applied and parallelism is introduced in the
transformed program.

The relationship among the compilation phases is
depicted in Figure 2. Each step adds annotations to the
call graph that are used by the next phase. Following
program transformation, each procedure is separately
compiled. Interprocedural information for a procedure
is provided to the compiler to enhance intraprocedural
optimization.

3.2 Recompilation Analysis

A unique part of the ParaScope compilation system
is its recompilation analysis, which avoids unnecessary
recompilation after editing changes to the program.
Recompilation analysis tests that interprocedural facts
used to optimize a procedure have not been invalidated
by editing changes [15]. To extend recompilation analy-
sis for interprocedural transformations, a few additions
are needed. When an interprocedural transformation is
performed, a description of the interprocedural trans-
formations annotates the nodes and edges in the aug-
mented call graph. On subsequent compilations, this
information indicates to the program compiler that the
same tests used initially to determine the safety of the
transformations should be reapplied.

To determine if interprocedural transformations are
still safe, the new and old sections are first compared,
in most cases avoiding examination of the dependence
graph. This means that dependence analysis is only ap-

plied to procedures where it is no longer valid, allowing
separate compilation to be preserved. The recompila-
tion process after interprocedural transformations have
been applied is described in more detail elsewhere [19].

4 Interprocedural Transformation

We introduce two new interprocedural transforma-
tions, loop extraction and loop embedding. These ex-
pose the loop structure to optimization without incur-
ring the costs of inlining. The movement of a sin-
gle loop header is detailed below. Moving additional
statements that precede or are enclosed by a loop is
a straightforward generalization of these two transfor-
mations and for simplicity is not described. This sec-
tion also describes the additional information needed
to perform the applicability and safety tests for loop
fusion and loop interchange across call boundaries. All
of these are used in our code generation algorithm. The
code generation algorithm also uses loop distribution,
but does not apply it across call boundaries. Therefore,
it may be performed with no additional information.
Loop distribution is discussed in detail in Section 5.2.

4.1 Loop Extraction

Loop extraction moves an enclosing loop of a procedure
p outward into one of its callers. This optimization may
be thought of as partial inlining. The new version of P
no longer contains the loop. The caller now contains a
new loop header surrounding the call to p. The index
variable of the loop, originally a local in p, becomes a
formal parameter and is passed at the call. The call-
ing procedure creates a new variable to serve as the
loop index, avoiding name conflicts. It is always safe
to extract an outer enclosing loop from a procedure.
Example 2(a) contains a loop with two calls to proce-
dure S and (b) contains the result after loop extraction.
Note that (b) has an additional variable declaration for
the loop index J in P. It is included in the actual pa-
rameter list for S. In this example, the J loop may now
be fused and interchanged to improve performance.

4.2 Loop Embedding

Loop embedding moves a loop that contains a proce-
dure call into the called procedure and is the dual of
loop extraction. The new version of the called proce-
dure requires a new local variable for the loop’s index
variable. If a name conflict exists, a new name for the
loop’s index variable must be created. This transfor-
mation is illustrated in Example 1.

SUBROUTINE P(A)
REAL A(N,N), B(N,N)

SUBROUTINE P(A)
REAL A(N,N), B(N,N)

INTEGER I INTEGER I,J
D0OI=131,3
DOI=1,3 D0 J =1, 100
CALL S(a,I) CALL 8(a,1,J)
CALL S(B,I) ENDDO
ENDDO DO J =1, 100
CALL s(B,I,J)
ENDDO
ENDDO
SUBROUTINE S(F,I) SUBROUTINE S(F,I,J)
REAL F(N,N) REAL F(N,N)
INTEGER I,J INTEGER I,J
DO J = 1,100
F(J,I) = F(J,I) + 10 F(J,I) = F(J,I) + 10
ENDDO

(a) before transformation (b) loop extraction

Example 2:

If the index variable of the loop to be embedded ap-
pears in an actual parameter in the call, this parameter
is no longer correctly defined. To remedy this problem,
the formals that depend on it must be assigned and
computed in the newly embedded loop. In the sim-
plest case, an index variable i is passed to a formal f.
Here, f should be assigned i on every iteration of the
embedded loop, prior to the rest of the loop body.

If an actual is an array reference whose subscript ex-
pression contains the loop index variable, the actual
passed at the call becomes simply the array name. In
the called procedure, the original subscript expression
for each dimension of the actual is added to the sub-
script expression for the corresponding dimension of
the formal at each reference to the formal. If the array
parameter is reshaped across the call, this translation
is more complicated. The array formal is replaced by
a new array with the same shape as the actual. The
references to the variable are translated by linearizing
the formal’s subscript expressions and then convert-
ing to the dimensions of the new array[9]. Finally, the
subscript expressions for each dimension of the actual
are added to those for the translated reference. This
method is also the one that is used in inlining.

Procedure Cloning

Procedures optimized with embedding or extraction
may have multiple callers, and an optimization valid
for one caller may not be valid for another. To avoid
significant code growth, multiple callers should share
the same version of the optimized procedure whenever
possible. This technique of generating multiple copies
of a procedure and tailoring the copies to their calling
environments is called procedure cloning [14].

Dependence Updates

Because our code generator only applies loop extrac-
tion and loop embedding after safety and profitability
are ensured, an update of local dependence informa-
tion is not necessary. However, if further optimiza-
tion is desired, updating the dependence information
is straightforward.

4.3 Loop Fusion

Loop fusion places the bodies of two adjacent loops
with the same number of iterations into a single
loop [1]. When several procedure calls appear contigu-
ously or loops and calls are adjacent, it may be possible
to extract the outer loop from the called procedure(s),
exposing loops for fusion and further optimization. In
the algorithm checkFusion, we consider fusion for an
ordered set S = {s1,...,5,}, where s; is either a call
or a loop. There cannot be any intervening statements
between s; and s;4; and each call must contain an en-
closing loop which is being considered for fusion.

Fusion is safe for two loops {; and I, if it does not
result in values flowing from the statements in I, back
into the statements in /; in the resultant loop and vice
versa. The simple test for safety performs dependence
testing on the loop bodies as if they were in a single
loop. Each forward dependence originally between I
and I, is tested. Fusion is unsafe if any dependences are
reversed, becoming backward loop-carried dependences
in the fused loop.

This test requires the inspection of the dependence
source and sink variable references in I; and I,. If one
or more of the loops is inside a call, the variable refer-
ences are represented instead as the modified and ref-
erenced sections for the call. The slices that annotate
the sections correspond to the loops being considered
for fusion and are tested identically to variable refer-
ences (see Section 2.3). Unfortunately, while variable
references are always exact, a section and its slice are
not. If the slice is not exact, fusion is conservatively
assumed to be unsafe. To be more precise would re-
quire the inspection of the dependence graphs for each
called procedure, possibly a significant overhead.

checkFusion (5)

/* Input: S = {s1,...,5,}, s; is a call or a loop */
/* s; is adjacent to s;4 */
/* Output: returns true if fusion is safe V 5; %/
F= {81}

fori=2ton
let I; = the loop header of s;
if the number of iterations of I; differ from F then
return false
for each forward dependence (src,., sink,,)
if src, or sink,, is not exact then
return false
if (src,, sink,,) becomes
backward loop-carried then
return false
endfor
F =FU{s}
endfor
return true

4.4 Loop Interchange

Loop interchange of two nested loops exchanges the
loop headers, changing the order in which the itera-

tion space is traversed. It is used to introduce par-
allelism or to adjust granularity of parallelism. In
particular, when a loop containing calls is not paral-
lel or parallelizing the loop is not profitable, it may
be possible to move parallel loops in the called proce-
dures outward using loop interchange as in Examples 1
and 2. The safety of loop interchange may be deter-
mined by inspecting the distance/direction vector to
ensure that no existing dependence is reversed after
interchange (3, 37).

Our algorithm considers loop interchange only when
a perfect nest can be created via loop extraction, em-
bedding, fusion, and distribution. If a loop contains
more than one call, it may be possible to fuse the outer
enclosing loops of calls to create a perfect nest. Even if
there are multiple statements and calls, it may be pos-
sible to use loop distribution to create a perfect nest. If
a perfect nest may be safely created, testing the safety
of interchange simply requires inspection of the direc-
tion vectors and slices for dependences between calls or
statements in the nest.

5 Interprocedural Parallel Code
Generation

In this section we present an algorithm for the inter-
procedural parallel code generation problem. This al-
gorithm moves loops across procedure boundaries when
other transformations such as loop fusion, interchange,
and distribution may be applied to the resulting loop
nests to introduce or improve single-level loop paral-
lelism. The goal of this algorithm is to only apply
transformations which are proven to minimize execu-
tion time for a particular code segment. To determine
the minimum execution time of a code segment, a sim-
ple machine model is used. This model includes the
cost of arithmetic and conditional statements as well
as operations such as parallel loops, sequential loops,
and procedure call overhead. Both Polychronopoulos
and Sarkar have used similar machine models in their
research [33, 34].

5.1 Machine Model and Performance
Estimation

A cost model is needed to compare the costs of various
execution options. First, a method for estimating the
cost of executing a sequential loop is presented. Con-
sider the following perfect loop nest, where uby, ...,
ub, are constants and B is the loop body.

DO i3 =1,ub,
DO tn = 1,ub,
B
ENDDO
ENDDO
In order to estimate the cost of running this loop on
a single processor, a method for estimating the run-
ning time of the loop body is needed. If B consists of
straight-line code, simply sum the time to execute each
statement in the sequence. To handle control flow, we

assume a probability for each branch and compute the
weighted mean of the branches. Once the sequential

running time of the loop body t(B) is computed, then
the running time for the inner loop is given by the for-
mula:

ub, (¢(B) + o),

where o is the sequential loop overhead. The running
time for the entire loop nest is then given by the fol-
lowing;:

uby (... (ubn(t(B) +0)...) + o).

In order to estimate the running time of a parallel
loop, we need to take into account any overhead intro-
duced by the parallel loop. Our experiments on uni-
form shared-memory machines indicate that this over-
head consists of a fixed cost ¢, of starting the parallel
execution and a cost ¢; of forking and synchronizing
each parallel process. If there are P parallel processors,
an estimate of the cost of executing the inner loop of
the above example in parallel is given by the equation

¢+ e P+ [%] (t(B) +0) .

This formula assumes that the iterations are divided
into nearly equal blocks at startup time and the over-
head of an iteration o remains the same. Given a per-
fect loop nest where just one loop is being considered
for parallel execution, these two formulae may be gen-
eralized to compute the expected sequential and paral-
lel execution time. If the parallel execution time is less
than the sequential execution time, it is profitable to
run the loop in parallel.

To enable the parallel code generator to compare the
costs of different transformation choices, we introduce
the following cost function:

cost(L, how, B), where
L={l,...l}, a perfect loop nest
how indicates whether I, is parallel (||) or sequential
B = the loop body

The function cost estimates the running time of a loop
nest ly,...,l,, where the inner loop I, is specified as
either parallel or sequential, and all outer loops are
sequential. The loop body B may contain any types of
statements, including calls and inner loop nests.

3.2 Code Generation Algorithm

The goal of our interprocedural parallel code genera-
tion algorithm is to introduce effective loop parallelism
for programs which contain procedure calls and loops.
This algorithm applies the following transformations:
loop fusion, loop interchange, loop distribution, loop
embedding, loop extraction, and loop parallelization.
These transformations are applied at call sites and for
a loop nest containing call sites. The algorithm seeks
a minimum cost single loop parallelization based on
performance estimates.

Potential loop and call sequences that may benefit
from these interprocedural transformations are adja-
cent procedure calls, loops adjacent to calls, and loop
nests containing calls. To find candidates for inter-
procedural optimization, the augmented call graph is
traversed in a top-down pass. If a candidate benefits

BestCost (S, L)

/* Input: a set of statements S = {s, .. -»8p} in perfect loop nest £ = {l;,...1,} %/
/* Output: a tuple (r,T), where 7 = the minimum execution time and x/
/* T = the set of transformations that result in 7 */

(1, T) = (cost(L, sequential, S), B)
if (€ = 0) then
if (checkFusion(S) & (fused loop I; is ||)) then

(r,T) = min ({cost(ly, ||, body(ly)), {fuse, make L}) (r,T))

return (7,7)
endif
for (i = 1, n)

if (l;is||) then

(1, T) = min ({cost({ly,.. - i} I, body(l;)), {make I; ||} A7, T))

if i# n then return (r,T)
endif
endfor
if (checkFusion(S)) then
if (fused loop ; is ||) then

if (checkInterchange(ln,l;) & Iy is || after interchange) then

(1) . (1, T) = min({cost({l;, .. olac, b I * body(ly)), {fuse, interchange, make i1}, (r,T))
else
(2) {r, T) = min((cost({l1,...,1n,1s}, |, body(ly)), {fuse, make I ||}), (r,T))

else if (I, is = ||) & (checkInterchange (n,1p)) & (1n

|| after interchange) then

3) (1, T) = min({cost({l1,...,In-1,1z,1},]|, body(ly)), {fuse, interchange, make I, ||}), (r,7))

endif
return (r,7)

from interprocedural transformation, the transforma-
tions are performed and no further optimization of that
call sequence is attempted. Additional candidates for
optimization may be created by using judicious code
motion and loop coalescing (combining nested loops
into a single loop)[33].

BestCost Algorithm

BestCost considers £ = {ly,...,1,} a perfect loop nest
with body S = {s1,...,s,}, where I, is the innermost
loop and L may be the empty set 0. S consists of at
least one call and may also contain other statements
such as loops, control flow, and assignments.

The BestCost algorithm makes use of loop paral-
lelization, fusion, interchange, extraction, and embed-
ding (loop distribution is excluded) to determine a tu-
ple (r,T), such that T is the best execution time and
T specifies the transformations needed to obtain this
time. Unfortunately, finding the best ordering of a loop
nest via loop interchange requires that all possible per-
mutations (n!) be considered. Therefore to restrict the
search space and simplify this presentation, BestCost
only considers loop interchange of I, the innermost nest
and Iy the result of fusing S. However, opportunities
to test various interchange strategies are pointed out
in the text.

The sequential execution time is computed first
(T =0). If there is no surrounding loop nest (£ = ¢), S
may be a group of adjacent calls and loops that can be
fused. If fusion of all members of S is possible and pro-
duces a parallel loop, its execution time is computed

and compared to the sequential cost using the function
min. The function min assigns 7 the minimum of the
two times, and T the corresponding program transfor-
mation. If £ # @, other transformations are considered
as follows.

First, the outermost parallel loop of £ is sought and
compared with the sequential time. If any of I; .. .1,_;
are parallel, BestCost returns. Loop interchange out-
ward of any of these parallel loops could also be con-
sidered. Otherwise, if all of S fuses into [¢, three trans-
formations on I; and I, are considered.

1. Interchanging a parallel I; with I, to make a par-
allel loop with increased granularity.

2. A parallel I; in its current position.

3. Interchanging [, and l; to introduce inner loop
parallelism.

Case 1 is illustrated in Examples 1 and 2. Further
interchanging of I; to enable a more outer loop to be
parallel may also be tested here.

Embedding versus Extraction

To apply the set of transformations specified by (r,T),
the loops involved may need to be placed in the same
routine. In particular, if 7 specifies interchange or fu-
sion across a call then one of embedding or extraction
must be applied. If there is only one call, then em-
bedding loop I, into the called procedure is preferable
because it reduces procedure call overhead. If there
is more than one call and 7 requires fusion, extrac-
tion from all the calls is performed. Fusion, inter-

change, and parallelization may then be performed on
the transformed loops.

Loop Distribution

If BestCost(L, S) cannot introduce parallelism, then
it may be possible to use loop distribution to do so.
Loop distribution seeks parallelism by separating inde-
pendent parallel and sequential statements in £. For
example, loop distribution may create loop nests of ad-
jacent calls and loops which BestCost can optimize.

Ordered Partitions. Loop distribution is safe if
the partition of statements into new loops preserves
all of the original dependences [24, 32). Dependences
are preserved if any statements involved in a cycle of
dependences, a recurrence, are placed in the same loop
(partition). The dependences between the partitions
then form an acyclic graph that can always be ordered
using topological sort 3, 28].

By first choosing a safe partition with the finest pos-
sible granularity and then grouping partitions, larger
partitions may be formed. Any one of these group-
ings may expose the optimal parallelization of the loop.
Unfortunately, there exists an exponential number of
possible groupings [2].

To limit the search space, statement order is fixed
based on a topological sort of all the dependences for
L. Ambiguities are resolved in favor of placing parallel
partitions adjacent to each other. The advantage of
this ordering is that loop-carried anti-dependences may
be broken, allowing parallelism to be exposed.

Grouping partitions via dynamic program-
ming. A dynamic programming solution is used to
compute the best grouping for the finest granularity
ordered partitions. This algorithm is similar to tech-
niques for calculating the shortest path between two
points in a graph [31]. The algorithm is O(N * M3). N
is the number of perfectly nested loops. M is the max-
imum number of partitions and is less than or equal to
the number of statements in the loop. Both N and M
are typically small numbers.

The dynamic programming solution appears in Fig-
ure 3. The algorithm begins by finding the finest par-
tition for the inner loop I, that satisfies its own depen-
dences and the ordering constraints. On subsequent
iterations, the initial partition is further constrained
by including the dependences for the next outer loop.
Since an inner loop may have more partitions than its
enclosing loop, a map is constructed that correlates a
statement’s partition for the previous and current it-
eration; map(j) returns the partition from l;,, that
corresponds to w; in ;.

For each loop fevel, BestCost calculates the best ex-
ecution time of each possible grouping of partitions.
The grouping algorithm first tests the finest partition
and then each pair of adjacent partitions. Increasingly
larger groupings of partitions are tested for a partic-
ular loop level. At each level, the minimal execution
time for each grouping analyzed is stored. The minimal
grouping time is taken from the grouping at this level,
as well as that of the previous inner loops. This strat-
egy allows inner loop distributions to be used within

Input:
L={l,..,l} perfect loop nest
S ={s1,...,8p} ordered body of £

IT = {its,... it} number of loop iterations
time‘(’.:i = BestCost ({;,..., 7k}, {li,...,In})
Output:
opt‘(,»:i = minjsrsk(timeg»:l + time(,:‘),l,k)
. best execution time for I;
DS',)c = grouping of partitions at I;
with best execution time
Grouping via dynamic programming:
fori=n,1,-1
partition into 71,..., %y,
for6=0,m-1
forj=1,m-6
(9

1 . . ' . . i4+1
optg-:}w = min(time;’) 5, iti41 * time('*)j),map(”&))

ma,
if (tsjmeg-:}“ < “’"‘é;:;()j),map(j-w)) then
DY)y s ={{ms,..., 7is6}}
else
Dggw = DS.'.).,p(,),ma,,(j+a)
endif
fork=0,6-1
if (op?}:}+5 > opty) Ly + opti), 41 i) then
opti s = opt) 4+ optld, L, s
DY) ys= D{), v D§2k+1,;‘+6
endif
endfor
endfor
endfor
endfor

Figure 3:

an outer loop distribution to minimize overall execu-
tion time. On completion, the best execution time for
the grouping of the entire loop nest is determined.

Each time the algorithm locates a grouping of parti-
tions that improves execution time, a set D is con-
structed to describe how partitions are grouped to-
gether. For a loop I, D{") provides the best group-
ing of partitions at loop ;. Upon termination of the
algorithm, DS‘,),, indicates the final grouping with the
minimal cost. Implicit in D is also a description of any
additional transformations specified by BestCost.

Improvements. To leverage the dynamic program-
ming solution, the distribution algorithm generates
partitions based on a fixed statement order that sat-
isfies all the dependences. A correct and less restric-
tive statement order uses only the dependences for the
particular loop nest being distributed. In general, this
ordering causes the map between solutions for adjacent
loop partitions to be useless. It provides a single best
solution for each nesting level of distribution instead of
one overall best solution. In practice, experimentation
will be needed to differentiate these strategies.

6 Experimental Validation

This section presents significant performance improve-
ments due to interprocedural transformation on two
scientific programs, spec77 and ocean, taken from the
Perfect Benchmarks[16]. Spec77 contains 3278 non-
comment lines and is a fluid dynamics weather sim-
ulation that uses Fast Fourier Transforms and rapid
elliptic problem solvers. Ocean has 1902 non-comment
lines and is a 2-D fluid dynamics ocean simulation that
also uses Fast Fourier Transforms.

To locate opportunities for transformations, we
browsed the dependences in the program using the
ParaScope Editor [6, 25, 26]. Using other ParaScope
tools, we determined which procedures in the program
contained procedure calls. We examined the proce-
dures containing calls, looking for interesting call struc-
tures. We located adjacent calls, loops adjacent to
calls, and loops containing calls which could be op-
timized.

The rest of this section describes our experiences exe-
cuting these programs on a 20-processor Sequent Sym-
metry S81. Since the optimizations used and the exper-
imental methodology differed slightly for each program,
they are described separately.

6.1 Optimizing spec77

In spec77, loops containing calls were common. Over-
all, transformations were applied to 19 such loops.
Embedding and interchange were applied to 8 loops
which contained calls to a single procedure. The re-
maining 11 loops, which contained multiple procedure
calls, were optimized using extraction, fusion and in-
terchange. These loops were found in procedures delf,
gloop and gwater.

For the 19 transformed loops, performance was mea-
sured among three possibilities: (1) no parallelization
of loops containing procedure calls, (2) paralleliza-
tion using interprocedural information, and (3) inter-
procedural information and transformations. To ob-
tain these versions, the steps illustrated in Figure 4
were performed.

The Original version contains directives to parallelize
the loops in the leaf procedures that are invoked by the
19 loops of interest. The IPinfo version parallelizes the
19 loops containing calls. For the IPtrans version, we
performed interprocedural transformation followed by
outer loop parallelization. The parallel loops in each
version were also blocked to allow multiple consecutive
iterations to execute on the same processor without
synchronization. The compiler default is to create a
separate process for each iteration of a parallel loop.

Time in optimized
portion Speedup

Processors = 7

Original 81.9s 5.7
IPinfo 80.0s 5.8
IPtrans 80.6s 5.8
Processors = 19

Original 45.8s 10.1
IPinfo 48.0s 9.7
IPtrans 36.4s 12.7

The results reported above are the best execution
time in seconds for the optimized portions of each ver-
sion. The speedups are compared against the execution
time in the optimized portion of the program on a sin-
gle processor, which was 463.7s. This accounted for
more than 21 percent of the total sequential execution
time.

With seven processors, the results are similar for all
three versions, since each program version provided ad-
equate parallelism and granularity for seven processors.
On 19 processors, IPinfo was slower than the original
program because the parallel outer loops had insuffi-
cient parallelism — only 7 to 12 iterations. The paral-
lel inner loops of Original were better matched to the
number of processors because they had at least 31 it-
erations. The interprocedural transformation version
IPtrans demonstrated the best performance, a speedup
of 12.7, because it combined the amount of paral-
lelism in Original with increased granularity. The inter-
procedural transformations resulted in a 21 percent im-
provement in execution time over Original in the opti-
mized portion.

Parallelizing just these 19 loops resulted in a speedup
for the entire program of about 1.25 on 19 processors
and 1.23 on 7 processors. Higher speedups might result
from parallelizing the entire application.

6.2 Optimizing ocean

There were 31 places in the main routine of ocean
where we extracted and fused interprocedurally adja-
cent loops. They were divided almost evenly between
adjacent calls and loops adjacent to calls. In all 15
cases where a loop was adjacent to a call, the loop
was 2-dimensional, while the loop in the called proce-
dure was 1-dimensional. Prior to fusion, we coalesced
the 2-dimensional loop into a 1-dimensional loop by
linearizing the subscript expressions of its array refer-
ences. The resulting fused loops consisted of between
2 and 4 parallel loops from the original program, thus
increasing the granularity of parallelism.

To measure performance improvements due to inter-
procedural transformation, we performed steps similar
to those in Figure 4. Directives forced the paralleliza-
tion and blocking of the individual loops in the Original
version, and the fused loops in IPtrans. The execution
times were measured for the entire program and just
the optimized portion. The optimized execution times
are shown below.

Il Processors = 19

Time in optimized
I portion Speedup
Original 116.6s 5.5
IPtrans 79.3s 8.1

The speedups are relative to the time in the op-
timized portion of the sequential version of the pro-
gram, which was 645.9 seconds. The optimized code
accounted for about 5 percent of total program exe-
cution time. For the whole program, the parallelized
versions achieve a speedup of about 1.06 over the se-
quential execution time.

-

Directives on
inner loops

Original

spec?7 >

> Transform

Directives on
outer loops

Block IPinfo .

IPtrans

Figure 4: Stages of preparing program versions for experiment.

Note that IPtrans achieved a 32 percent improvement
over Original in the optimized portion. This improve-
ment resulted from increasing the granularity of paral-
lel loops and reducing the amount of synchronization.
It is also possible that fusion reduced the cost of mem-
ory accesses. Often the fused loops were iterating over
the same elements of an array. These 31 groups of loops
were not the only opportunities for interprocedural fu-
sion; there were many other cases where fusion was
safe, but the number of iterations were not identical.
Using a more sophisticated fusion algorithm might re-
sult in even better execution time improvements.

7 Related Work

While the idea of interprocedural optimization is not
new, previous work on interprocedural optimization for
parallelization has limited its consideration to inline
substitution [4, 13, 23] and interprocedural analysis of
array side effects [5, 9, 12, 20, 29, 30, 35). The various
approaches to array side-effect analysis must make a
tradeoff between precision and efficiency. Section anal-
ysis used here loses precision because it only represents
a few array substructures, and it merges sections for all
references to a variable into a single section. However,
these properties make it efficient enough to be widely
used by code generation. In addition, experiments with
regular section analysis on the LINPACK library demon-
strated a 33 percent reduction in parallelism-inhibiting
dependences, allowing 31 loops containing calls to be
parallelized [20]. Comparing these numbers against
published results of more precise techniques, there was
no benefit to be gained by the increased precision of
the other techniques [29, 30, 35].

Sections inspired a similar but more detailed ar-
ray summary analysis, data access descriptors, which
stores access orders and expresses some additional
shapes [5, 21, 22]. In fact, the slice annotation to sec-
tions could be obviated by using some of the techniques
in Huelsbergen et. al. for determining exact array de-
scriptors for use in dependence testing. However, slices
are appealing due to our existing implementation and
their simplicity.

8 Conclusions

This paper has described a compilation system; intro-
duced two interprocedural transformations, loop em-
bedding and loop extraction; and proposed a parallel
code generation strategy. The usefulness of this ap-
proach has been illustrated on the Perfect Benchmark
programs spec77 and ocean. Taken as a whole, the re-
sults indicate that providing freedom to the code gen-
erator becomes more important as the number of pro-
cessors increase. Effectively utilizing more processors
requires more parallelism in the code. This behavior
was particularly observed in spec77, where the benefits
of interprocedural transformation were increased with
the number of processors.

Although it may be argued that scientific programs
structured in a modular fashion are rare in practice, we
believe that this is an artifact of the inability of previ-
ous compilers to perform interprocedural optimizations
of the kind described here. Many scientific program-
mers would like to program in a more modular style,
but cannot afford to pay the performance penalty. By
providing compiler support to effectively optimize pro-
cedures containing calls, we encourage the use of modu-
lar programming, which, in turn, will make these trans-
formations applicable on a wider range of programs.

Acknowledgments

We are grateful to Paul Havlak, Chau-Wen Tseng,
Linda Torczon and Jerry Roth for their contributions
to this work. Use of the Sequent Symmetry S81
was provided by the Center for Research on Paral-

lel Computation under NSF Cooperative Agreement
CDA8619893.

References

[1] F. Allen and J. Cocke. A catalogue of optimizing transfor-
mations. In J. Rustin, editor, Design and Optimization of
Compilers. Prentice-Hall, 1972.

[2] J. R. Allen, D. Callahan, and K. Kennedy. Automatic de-
composition of scientific programs for parallel execution. In
Proceedings of the Fourteenth Annual ACM Symposium on
the Principles of Programming Languages, Munich, Ger-
many, January 1987.

[3] J. R. Allen and K. Kennedy. Automatic translation of For-
tran programs to vector form. ACM Transactions on Pro-

[4]

(5]

(6]

(7
(8]

(o]

(10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

gramming Languages and Systems, 9(4):491-542, October
1987.

R. Allen and S. Johnson. Compiling C for vectorization,
parallelization, and inline expansion. In Proceedings of the
SIGPLAN °’88 Conference on Program Language Design
and Implementation, Atlanta, GA, June 1990.

V. Balasundaram and K. Kennedy. A technique for sum-
marizing data access and its use in parallelism enhancing
transformations. In Proceedings of the SIGPLAN ’89 Con-
ference on Program Language Design and Implementation,
Portland, OR, June 1989.

V. Balasundaram, K. Kennedy, U. Kremer, K. S. MCKinley,
and J. Subhlok. The ParaScope Editor: An interactive par-
allel programming tool. In Proceedings of Supercomputing
’89, Reno, NV, November 1989.

U. Banerjee. Dependence Analysis for Supercomputing.
Kluwer Academic Publishers, Boston, MA, 1988.

P. Briggs, K. Cooper, M. W. Hall, and L. Torczon. Goal-
directed interprocedural optimization. Technical Report
TR90-147, Dept. of Computer Science, Rice University, De-
cember 1990.

M. Burke and R. Cytron. Interprocedural dependence anal-
ysis and parallelization. In Proceedings of the SIGPLAN
'86 Symposium on Compiler Construction, Palo Alto, CA,
June 1986.

D. Callahan, J. Cocke, and K. Kennedy. Estimating inter-
lock and improving balance for pipelined machines. Journal
of Parallel and Distributed Computing, 5(4):334-358, Au-
gust 1988.

D. Callahan, K. Cooper, R. Hood, K. Kennedy, and L. Tor-
czon. ParaScope: A parallel programming environment.
The International Journal of Supercomputer Applications,
2(4):84-99, Winter 1988.

D. Callahan and K. Kennedy. Analysis of interprocedural
side effects in a parallel programming environment. In Pro-
ceedings of the First International Conference on Super-
computing. Springer-Verlag, Athens, Greece, June 1987.

K. Cooper, M. W. Hall, and L. Torczon. An experiment
with inline substitution. Software—Practice and Ezper:i-
ence, 21(6):581-601, June 1991.

K. Cooper, K. Kennedy, and L. Torczon. The impact of
interprocedural analysis and optimization in the RP pro-
gramming environment. ACM Transactions on Program-
ming Languages and Systems, 8(4):491-523, October 1986.

K. Cooper, K. Kennedy, and L. Torczon. Interprocedural
optimization: Eliminating unnecessary recompilation. In
Proceedings of the SIGPLAN ’86 Symposium on Compiler
Construction, Palo Alto, CA, June 1986.

G. Cybenko, L. Kipp, L. Pointer, and D. Kuck. Super-
computer performance evaluation and the Perfect bench-
marks. In Proceedings of the 1990 ACM International Con-
ference on Supercomputing, Amsterdam, The Netherlands,
June 1990.

J. Ferrante, K. Ottenstein, and J. Warren. The program
dependence graph and its use in optimization. ACM Trans-
actions on Programming Languages and Systems, 9(3):319—
349, July 1987,

G. Goff, K. Kennedy, and C. Tseng. Practical dependence
testing. In Proceedings of the SIGPLAN ’91 Conference on
Program Language Design and Implementation, Toronto,
Canada, June 1991.

M. W. Hall. Managing Interprocedural Optimization. PhD
thesis, Rice University, April 1991.

P. Havlak and K. Kennedy. Experience with interprocedural

[21]

(22]

(23]

[24]

(28]

[26]

(27]

(28]

(29]

[30]

[31]

(32]

(33]

(34]

35]

(36]

(37]

analysis of array side effects. In Proceedings of Supercom-
puting ’90, New York, NY, November 1990.

L. Huelsbergen, D. Hahn, and J. Larus. Exact dependence
analysis using data access descriptors. In Proceedings of the
1990 International Conference on Parallel Processing, St.
Charles, IL, August 1990.

L. Huelsbergen, D. Hahn, and J. Larus. Exact dependence
analysis using data access descriptors. Technical Report
945, Dept. of Computer Science, University of Wisconsin,
Madison, July 1990.

C.A. Huson. An inline subroutine expander for parafrase.
Master's thesis, Dept. of Computer Science, University of
Illinois at Urbana-Champaign, 1982.

K. Kennedy and K. S. McKinley. Loop distribution with
arbitrary control flow. In Proceedings of Supercomputing
’90, New York, NY, November 1990.

K. Kennedy, K. S. McKinley, and C. Tseng. Analysis and
transformation in the ParaScope Editor. In Proceedings of
the 1991 ACM International Conference on Supercomput-
ing, Cologne, Germany, June 1991.

K. Kennedy, K. S. McKinley, and C. Tseng. Interac-
tive parallel programming using the ParaScope Editor.
IEEE Transactions on Parallel and Distributed Systems,
2(3):329-341, July 1991.

D. Kuck. The Structure of Computers and Computations,
Volume 1. John Wiley and Sons, New York, NY, 1978.

D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J. Wolfe.
Dependence graphs and compiler optimizations. In Co nfer-
ence Record of the Eighth Annual ACM Symposium on the
Principles of Programming Languages, Williamsburg, VA,
January 1981.

Z.Li and P. Yew. Efficient interprocedural analysis for pro-
gram restructuring for parallel programs. In Proceedings
of the ACM/SIGPLAN Symposium on Parallel Program-
ming: Ezperience with Applications, Languages, and Sys-
tems (PPEALS), New Haven, CT, July 1988.

Z.Li and P. Yew. Interprocedural analysis and program re-
structuring for parallel programs. Technical Report 720,
Center for Supercomputing Research and Development,
University of Illinois at Urbana-Champaign, January 1988.

R. McNaughton and H. Yamada. Regular expressions and
state graphs for automata. JRE Transactions on Electronic
Computers, 9(1):39-47, 1960.

Y. Muraoka. Parallelism Ezposure and Ezploitation in Pro-
grams. PhD thesis, Dept. of Computer Science, University
of Tllinois at Urbana-Champaign, February 1971. Report
No. 71-424.

C. Polychronopoulos. On Program Restructuring, Schedul-
ing, and Commaunication for Parallel Processor Systemas.
PhD thesis, Dept. of Computer Science, University of Illi-
nois at Urbana-Champaign, August 1986.

V. Sarkar. Partition and Scheduling Parallel Programs for
Multiprocessors. The MIT Press, Cambridge, MA, 1989.

R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization
of CALL statements. In Proceedings of the SIGPLAN ’86
Symposium on Compiler Construction, Palo Alto, CA, June
1986.

M. J. Wolfe. Loop skewing: The wavefront method re-
visited. International Journal of Parallel Programming,
15(4):279-293, August 1986.

M. J. Wolfe. Optimizing Supercompilers for Supercomput-
ers. The MIT Press, Cambridge, MA, 1989.

