A Portable Run-time System
for PCN

Ian Foster
Steve Tuecke
Stephen Taylor

CRPC-TR91148
February, 1991

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

R4

'y

£%

"

Contents

1 Introduction 2
1.1 Core PCN e e e e e e e e e e 2
1.2 The Program Composition Machine 2
1.3 Imstruction Set i e e e e e e e 4
1.4 ForeignlInterface e 4
1.5 Performance Tools @i i i i i i i i it e e 5

2 Data Structures 6

© 2.1 Control Structures e e e e e e e e e e e 6
22 PCNDataTypes v v v v it et e e i i e e e 8
2.3 Registers. e e 11

3 Abstract Instruction Set 13
3.1 Control Instructions0 e e e e e e e e e 15
3.2 Build Instructions e e e 17
3.3 Put Imstructions it i e e 19
3.4 Test Instructions i v i v v v i e e e e e e e 19
3.5 Term Manipulation Instructions 21
3.6 Foreign Instructions o .. 24

4 The Communication Component 26
4.1 Message Processing oo 27

5 Garbage Collection 29
5.1 Global Collection v v v v v it e e e e e e e e e e e e e 29
5.2 Local Collection @i i i i i it ittt e ittt e e 32
5.3 Garbage Collection Failure. 34
54 Deficiencies e e e e e e e e e e 35

6 System Bootstrap 36

7 Asynchronous Keyboard Input 37

A Abstract Instruction Set and Encoding 38

B Coding Examples 39
B.1 Partition: Array Version i e 39
B.2 Partition: Definitional Version I 44
B.3 Partition: Definitional Version IT 45

iii

A Portable Run-Time System for PCN

Ian Foster, Steve Tuecke
Argonne National Laboratory

Stephen Taylor
Caltech

February 18, 1991

Abstract

This report describes a run-time system to support Program Composition Nota-
tion (PCN), a high-level concurrent programming notation. The run-time system is
described in terms of an abstract machine. We specify an abstract architecture that
represents the state of a PCN computation and executes abstract machine instruc-
tions that encode tests on or modifications to the computation state. Programs to
be executed on the abstract machine are encoded as sequences of abstract machine
instructions. The abstract machine may be implemented by an emulator written in
a low-level language. Alternatively, sequences of abstract machine instructions may
be further compiled to machine code. The run-time system is designed to run on
uniprocessors, multiprocessors, and multicomputers.

LY

o

1 Introduction

This report describes a run-time system to support Program Composition Notation (PCN),
a high-level concurrent programming notation [1]. The run-time system is described in
terms of an abstract machine. An abstract machine for a programming notation imple-
ments its computational model. It provides an abstract architecture that represents the
state of a computation in the chosen model and executes abstract machine instructions
that encode tests on or modifications to the computation state. Programs to be executed
on the abstract machine are encoded as sequences of abstract machine instructions. The
abstract machine may be implemented by an emulator written in a low-level language.
Alternatively, sequences of abstract machine instructions may be further compiled to ma-
chine code.

In designing an abstract machine for PCN, we have emphasized architectural simplic-
ity, sometimes apparently at the expense of efficiency. In particular, we provide no special
support for sequential composition or nested choice blocks. Hence, the machine can only
execute directly programs expressed in a PCN subset referred to as Core PCN. We ex-
pect this “RISC”-like approach to permit novel optimizations in an implementation, and
hence provide good overall performance. However, experience may motivate extensions to
support particular language features.

1.1 Core PCN

Definitions. A kernelis a process that invokes a primitive operation. A call is a process
that invokes another program. A kernel is non-suspending if it is a definition or if it is an
assignment or other kernel for which the input arguments are known to be available at
the time it is called. A kernel is suspending if it is not known to be non-suspending.

Core PCN is the language subset in which programs have the following restricted form.

1. A program has the form P {? Cy, ...,Cn},n > 0.

2. Each choice C; has the form G — B, where G is either a sequence of guard tests or
the empty test true.

3. Each body B has the form {; Ky, ..., K, { || P1, ..., Pi}}, k, > 0, where the K; are
non-suspending kernels and the P; are calls. If k = 0, the sequential block may be
omitted; if [< 2, the parallel block may be omitted.

1.2 The Program Composition Machine

The Program Composition Machine (PCM) consists of three components: a reduction
component, a communication component, and a garbage collection component. These
execute at every processor.

Reduction Component. This provides the facilities required to execute Core PCN programs.
That is, it maintains a pool of processes and repeatedly selects and attempts to execute

L

processes in this pool. Execution of a process involves trying each of the choices in the
associated program. If the guard associated with any choice evaluates to true, any kernels
in the body of that choice are executed, and processes are created to execute any calls.
Otherwise, the process is replaced in the pool.

Two important optimizations improve the efficiency of the basic model. These are
support for tail recursion and a scheduling structure. Tail recursion permits execution to
continue with a body process when a choice with one or more calls in its body is used to
reduce a process. This avoids the overhead of adding the process to the process pool and
subsequently selecting it. To ensure that reduction is just, tail recursion is only applied a
finite number of times before the current process is added to the process pool and a new
process is selected for reduction. The number of tail recursive calls permitted before such
a process switch occurs is termed the timeslice.

The scheduling structure avoids the overhead of repeatedly attempting to reduce pro-
cesses whose data is not available. It consists of a single active queue containing all
reducible processes plus a suspension structure that links together processes requiring
particular data.

Recall that guard execution in PCN reads terms, while definition statements may
provide values for definitions. Both read and definition operations may generate com-
munication if they encounter references to remote terms (i.e., remote references). This
effectively provides a global address space.

Communication Component. This operates at the end of a time-slice and receives messages
that arrive at a processor. It can modify local data structures and/or send outgoing
messages. Five types of message can be received: Read, Define, Value, Cancel, and Collect.

The Read message signifies that a remote processor requests a copy of local data, to be
provided when it becomes available. The Value message carries a data structure to be used
locally and is received in response to a Read message. The Define message signifies that a
remote processor has executed a definition operation that refers to a local definition. The
Cancel message indicates that a remote processor no longer requires certain interprocessor
references. The Collect message signifies that a remote processor requires this processor
to perform a local garbage collection.

Garbage Collection Component. Programming systems that support automatic storage al-
location and dynamic data structures generally require a garbage collector to reclaim
inaccessible storage. PCN is no exception. Global analysis techniques and program an-
notations can support optimizations that allow certain programs to execute in constant
space. However, a garbage collector is required in the general case.

The garbage collector employed in the PCM has a global and a local component. The
global component supports asynchronous garbage collection: that is, it permits individual
processors to reclaim inaccessible storage independently [3]. The local component employs
a stop and copy algorithm [2].

1.3 Instruction Set

The PCM instruction set is summarized in Appendix A. To briefly illustrate the use of
these instructions, consider the following program:

movej(lb,j,s,a,R)

int Ib,j,s,a[]

{?
j>1b,a[j] >s— {;j:=j-1, movej(lb,,s,a,R)},
default — R =[]

}

This compiles into the following instruction sequence:

movej: try(L1) % Start of 1st choice
le(A0,A1) % j > Ib
build_static(A5,int,1) % Create space for alj]
get_element(A1,A3,A5) % Access alj]
It(A2,A5) % afj] > s
put_data(A6,1) % Build integer 1
sub(A1,A6,A7) %j=j-1
copy_mut(A7,A1)
recurse(move;j,5) % Recurse as movej

L1: default(5) % Succeed if 1st choice failed
build_static(A5,tuple,0) % Create []
define(A4,A5) %R =]
halt % Terminate process

The try instructions encode the beginning of choices; their arguments are labels which
indicate where execution should continue if a choice’s guard does not succeed. Matching
and test operations in guards are encoded using instructions such as le; the build static and
get_element instructions are used to access arguments. The body of a choice is encoded
using instructions such as put_data, which creates a new integer, sub, which performs
subtraction, and define, which encodes a definition. The recurse instruction encodes a tail-
recursive call to a new program; halt encodes process termination. Another instruction,
fork, is used to encode process creation.

1.4 Foreign Interface

A call to a program written in a language such as Fortran or C is compiled to a sequence
of put_foreign instructions, which set up a vector of pointers to arguments, followed by a
call_foreign instruction, which invokes the foreign program. Further, machine-dependent
primitives are required to load foreign code.

N

-

1.5 Performance Tools

The PCM incorporates low-level support for the Gauge profiling system. Each halt, recurse,
and default instruction takes an offset to a counter as an argument and increments this
counter each time it is executed. The call_foreign instruction takes an offset to a timer
as an argument. This is used to accumulate the total time spent in the foreign program.
The counters and timers are stored in code modules, and can be accessed using special
primitives.

Support is also provided for animation tools. A segment of memory may optionally be
reserved for storing information about program events; a special primitive allows programs
to record events in this area. System facilities support the dumping of logged events to
external storage.

13

2 Data Structures

In the rest of this report, we define first the various PCM data structures and then the
abstract instructions that operate on these data structures. This constitutes a specification
for the reduction component. The communication and garbage collection components are
described in separate sections.

The PCM uses a set of registers to hold important components of abstract machine
state. Otherwise, it uses only a single data area, the heap. This is a contiguous sequence
of 32-bit cells. All application program data structures and system control structures are
allocated on the heap; all structures are cell aligned.

2.1 Control Structures

The PCM maintains various control structures representing processes, the suspension
structure, interprocessor references, etc.

Process Records. A process record is a contiguous block of two or more cells. The first cell
is the nezt field; it contains a pointer and is used for attaching the process into either the
active queue or a suspension structure. The second cell is the program field which contains
a pointer to the code which the process is to execute when it is scheduled. Additional cells
contain references to process arguments.

Active Queue. The active queue is a list of process records, linked together using the next
field in each record. Pointers to the first and last entries in the queue are held in abstract
machine registers (c.f. AF and AB respectively).

Incoming Reference Table (IRT). A processor’s IRT is used to record references from other
processors to terms on the local heap. This permits garbage collection to be performed
on a single processor independently of other processors. The IRT consists of a contiguous
array of IRT entries, initially located at the bottom of the heap. A fixed-sized IRT is
allocated initially; free entries are linked in a free list. If this free list becomes empty, the
IRT is extended, as described in Section 5.1.

An IRT entry comprises two cells. The first is a 32 bit quantity representing the
weight associated with the referred-to object. The second contains a pointer to either the
referred-to object or, if the weight is zero, the next entry in the IRT free list.

Outgoing Reference Table (ORT). A processor’s ORT is used to record local references to
terms located on other processors. This permits the processor to cancel these references
when local garbage collection indicates that they can be discarded. The ORT is maintained
as a linked list of entries located on the heap. A pointer to the first element of this list is
kept in a register (c.f. OH). The list is compacted at local garbage collection by removing
free entries: i.e., those with weight zero. At other times, free entries are linked in both a
free list and the ORT list.

Each ORT entry represents an outgoing reference to another processor and, if it has not

-

1 3

become inaccessible, is referenced by a remote reference or value note (described below)
located within local memory. An entry consists of four cells. The first contains a 31-bit
integer value representing the weight associated with the interprocessor reference, plus a
flag (the top bit) that indicates whether or not a Read request has been generated on that
remote reference. The second contains an integer value representing an IRT index. The
third cell contains either an integer value representing a processor identifier, or a reference
to the next entry in the ORT free list. The fourth contains a reference to the next entry
in the ORT. In addition, the high bit of the second cell is used as a mark bit during local
garbage collection. The third cell is used to link an ORT entry into the ORT free list
when the weight of that ORT entry is zero, indicating that the remote reference has been
deleted.

Suspension Structure. During a reduction attempt, matching or guard evaluation may
require values that are not yet available. These values may be either local definitions or
remote terms referenced via remote references. A suspension register (c.f. SU) is used
to record the suspension status of the current process. This register is set to 0 before
a reduction attempt. If matching or guard evaluation requires a value, SU is set to the
address of the required definition or remote reference. If subsequent evaluation requires a
further value, SU is set to the value -1 to indicate that the current process requires more
than one value. If a process requires more than one value, a Read message is generated for
remote references, unless other processes have already read them. A flag associated with
a remote reference indicates whether a Read message has already been generated.

If guard evaluation succeeds for any choice, the suspension register is reset causing
entries to be discarded. If execution reaches the default choice, indicating that all previous
choices have failed or suspended, the register’s value is examined to determine whether the
current process must be added to the suspension structure, as follows. If the value is zero,
all previous choices have failed, and so execution proceeds with the body of the default
choice. If the value is neither 0 nor -1, the process requires the value of a single definition
or remote reference: the process is then added to a circular queue associated with the
definition or remote reference. This case occurs most often and is the prime suspension
technique.

A process that requires the value of more than one variable or remote reference (SU
= -1) is added to a Global Suspension Queue. Pointers to the first and last entries in this
queue are held in machine registers (c.f. AF and AB respectively). If the active queue ever
becomes empty, all processes recorded on the global suspension queue are moved to the
active queue. Execution then proceeds normally. However, if the active queue becomes
empty again without any intervening reductions, the abstract machine enters a suspended
state, which it exits only upon receipt of input from the keyboard or other processors. In
order to ensure that reduction is just, the global wakeup is also performed at regular (but
infrequent) intervals, even if the active queue never becomes empty.

Value Note. The communication component attaches a value note to an unbound definition
when it receives a Read message requesting its value. This permits a Value message to
be generated if the variable becomes bound. A value note consists of four contiguous

[

Table 1: Tag values

| Type | Tag [2°[2 [27]
Reference REF -101(0
Undefined UNDEF | 0|1 (0O
Remote Ref | RREF 1110
Tuple TUP 0)10(1
String STR 1101
Integer INT 011
Real REAL |1 (1|1

cells. The first is the nezt field; it points at the next process or suspension record in
the suspension structure. The second contains a null value. The third is the ORT ficld;
it contains a pointer to the ORT entry for the remote term for which a Read request is
pending. The fourth field contains a pointer to the definition, so that its value can be
accessed when the value note is processed.

2.2 PCN Data Types

Both application program data structures and executable code are represented on the heap
by sequences of cells. Tuples, integers, reals, strings, arrays, and code are represented by
header cell containing the tag and size information followed by one or more untagged
data cells representing the data structure. This organization simplifies communication
with programs written in other languages. Four data types are supported: Tuple, String,
Integer, and Real. In addition, Definitions are represented by tagged cells, and reference
chains are represented by tagged Remote Reference and Local Reference cells.

Tagged data types have a three bit tag located in the low bits of a cell. The Local
Reference data type is distinguished by zeros in bits 0 and 1; all other data types have at
least one of these bits set to 1. The tag values used to represent the different types are
given in Table 1.

Data Headers. A data header cell has the general form:
< SIZE(31-4), INLINE(3), TAG(2-0) >

The SIZE field contains a positive size, expressed in terms of the number of elements
(integers, reals, characters, tuple arguments) contained in the data structure. The INLINE
field is 1 if the data structure is embedded in a module, and 0 otherwise.

Integers are stored as 32-bit quantities and reals as double-precision, 64-bit quantities.
Strings contain four bytes per cell and are padded with null characters to a cell boundary.

References. References are represented by a single cell with the two low bits zero. Hence,
a reference cell’s contents can be interpreted as a pointer to a cell-aligned data structure.

8

"

Definitions. Definitions are represented by a single cell with a tag value of 2 (hexadecimal).
The remainder of the cell contains a 29 bit cell offset from the beginning of the heap, which
is used to construct a pointer to a circular suspension queue.

Remote References. A remote reference is represented by two cells. The first has a tag
value of 3 (hexadecimal); the remainder of the cell contains a 29 bit cell offset from the
beginning of the heap, which is used to construct a pointer to a circular suspension queue.
The second cell contains a pointer to an ORT entry.

Code. Compiled code modules are represented as strings with a particular internal struc-
ture. A code module cannot be distinguished from other strings except by context. Fig-
ure 1 illustrates the format of a code module.

A module’s header cell has a string tag, an inline flag of 0, and a size corresponding to
the actual size of the module in bytes. The code string itself contains the following fields,
in the following order:

1. Counter Offset. The offset, in cells, to the Counters field.

2. FEzport Table. A sequence of cell offsets to programs which are exported by the module
(i.e., that appear in its export declaration). The last entry in the export table is a
cell containing zero.

3. Programs. A sequence of compiled programs.

4. Counters. A sequence of counters and timers.
Each compiled program has the following fields in the following order:

1. Idle Offset. The offset to the timer used to accumulate idle time attributed to the
program.

2. Module. A cell containing the cell offset from itself to the beginning of the module.
This field is only used during garbage collection.

3. Arity and Code Size. A cell whose top byte is the arity of the program and whose
low three bytes contain the size of the program in cells; this corresponds to the offset
to the string for the program name. The Arity field must be a number less than 256,
and is used when scheduling a process for execution.

4. Code Bytes. The assembled abstract machine instructions for the program. All ab-
stract machine instructions are cell aligned.

5. Name. The program’s name, as a null-terminated string padded with nulls to a cell
boundary.

R

Figure 1: The Module Data Type

STR| O Module Size

Counter Offset

First Offset

Export . Offset to
Table * Program
0 Idle Offset
First Program — Module
Second Program Program A Code Size
Programs .
. Code Bytes
Last Program Name
N\ g

No of Counters

No of Timers

Counters < First Counter

Last Timer

10

Note that offsets within a module are always to the code cells for a program, not the
start of the program. The Module, Code Size, and Arity fields are accessed using negative
offsets from the code cells.

Finally, the Counters area contains a one-cell counter for each halt, recurse and suspend
instruction in the module, and a two-cell timer for each program and for each call_foreign
instruction. The first two cells of this area specify the number of counters and timers.
Subsequent cells contain first a sequence of counters, then a possible alignment cell to
ensure double-cell alignment, and finally a sequence of timers. The order of the counters
and the timers corresponds to the order of the corresponding instructions in the program
definitions.

Code modules may be stored on disk in files. In this case, the module is preceded
by a cell containing a magic number and version number, and the second cell contains
the size (in cells) of the remainder. To ensure portability across machines with different
byte ordering conventions, offsets, reals, and integers contained inside code are stored in
a portable format.

Code modules on disk also contain three sections which are not placed on the heap
when the module is loaded. The first two section contain lists of the foreign object files
and foreign libraries, respectively, that are needed to resolve foreign function references in
this module. These sections are (optionally) used to dynamicly link in foreign code at run
time. The third section contains a list of all foreign functions that are referenced by this
module as well as where in the code each function is called. This section is used during
both dynamic and static linking of resolve foreign function references in the module.

2.3 Registers

The state of the abstract machine is held in registers. The following registers hold pointers
to cells located on the heap:

e HP Heap Pointer, points to the top of the heap.

e AF Active queue Front, points to the first process in the active queue.
o AB Active queue Back, points to the last process in the active queue.

e GF Global queue Front, points to the first process in the global queue.
e GB Global queue Back, points to the last process in the global queue.

e CP Current Process, points to the process currently being reduced.

e SP Structure Pointer, a pointer used for building structures.

o IFL Irt Free List, points to the first entry in the IRT free list.

o OFL Ort Free List, points to the first entry in the ORT free list.

e OH Ort Head, points to the first entry in the ORT.

11

SU SUspension, either points to a definition or remote reference for which the value
is required by the current process; or contains the value 0 or -1.

ES Event Stream, points to the tail of the global event stream.
KS Keyboard Stream, points to the tail of the keyboard input stream.
PC Program Counter, points to instruction cells on the heap.

FL Failure Label, points to an instruction to branch to in case of choice failure.

Finally, the following auxiliary registers are used:

TS Time Slice, an integer designating the remaining time slice for the current pro-
cess.

BU Buffer Flag, a boolean value which is set to true during tail recursion; otherwise
false.

CA Current Arity, an integer designating the arity of the current process.

A registers A set of 256 registers which may hold references to heap cells. The A
registers are used to hold process arguments and temporary values.

F registers A set of 64 registers which may hold pointers to untagged data structures
on the heap. The F registers are used to hold arguments to foreign procedures.

FP Foreign Pointer, a pointer used for building calls to foreign procedures.
ISZ Irt Size, an integer designating the number of entries in the IRT.

RF Resize Flag, a boolean value which is set to true when the IRT has been resized;
otherwise false.

12

3 Abstract Instruction Set

The instruction set includes six types of instruction:

1.

S oA @

Control Instructions: used to encode process scheduling and manipulation of various
machine registers.

Build Instructions: used to construct data structures on the heap.
Put Instructions: used to place references to data structures in memory cells.

Test Instructions: used to encode guard execution.

. Term Manipulation Instructions: used to encode various operations on terms.

. Foreign Instructions: used to encode calls to foreign procedures.

The instruction set is summarized in Appendix A; example encodings are presented
in Appendix B. Each instruction is assembled into one or more cell-aligned values. The
top byte of the value is an op-code in the range zero to N — 1 (where N is the number of
abstract machine instructions). The main emulation loop simply inspects the op-code at
the current program counter, increments the program counter and dispatches to execute
the code for that instruction.

In the sections that follow a Pascal-like notation is used to explain the operation of
each abstract machine instruction. Block structure is represented by indentation. The
following notations are also used:

X := Y Assignment of one variable to another.
=,# Equality and inequality.
TAG<wvalue> Denotes a cell with TAG and value fields.

HEADER<tag,size> Denotes a data header cell with tag and size fields (and inline
= 0).

is-zzz(P) Testing for specific data types (e.g., is_integer(P) tests if the cell at location
P is a reference to an integer).

cell_at(P), real_at(P) Denotes the byte, cell, real, etc. at address P.

byte_1(P), byte_2(P), byte_3(P) Denotes byte 1, 2 or 3 of the cell at address P.

tag_al(P) Denotes the tag value of the cell at address P.

offset_to_pointer(P) Adds the 32-bit integer offset at location P to the pointer P and
yields a new pointer to a cell.

case A case statement in which execution enters and exits a single case and may not
fall through to alternatives.

13

o size_in_cells(tag,count) Returns the number of cells required to hold count elements
of type tag.

The following auxiliary functions will be used to define the instruction set:

o is_unknown(C) returns true if the heap cell C is a variable or a remote reference;
false otherwise.

o suspend_on(P) manipulates the suspension register (SU) to record the fact that the
current process requires the value at location P. Execution continues at the current
failure label (FL).

e fail() causes execution to continue at the current failure label (FL).

o dereference(P) causes the reference P to be followed until P does not point to a
reference.

o enqueue_process(P) places process P at the rear of the active queue using the active
queue back register (AB).

o schedule_process() schedules a process from the front of the active queue using the
active queue front register (AF). The process is made the current process by loading
a pointer to it into the current process register (CP). Its arguments are then loaded
into consecutive A registers beginning at register 0. This can be achieved since the
program associated with a process includes the number of arguments (arity) in the
process (c.f. Arity in Figure 1). The program counter (PC) is initialized to point at
the encoded program associated with a process. In addition, the BU flag is set to
false to indicate that the process arguments are currently unbuffered, and the CA
register is loaded with the process arity.

o process_susp_list(P) processes the list of suspended processes and value notes at P.
Processes are added to the active queue; Value messages are generated for value
notes. Note that processes and value notes can be distinguished by the value of their
second cell: processes contain a non-null pointer in this field and value notes a null
value.

o suspend_process() suspends a process according to the value of the suspension register
(c.f. Section 2.1).

o save_arguments(N) saves the contents of the first N A registers in the current process,
if it is large enough (register CA > N), or in a new process record otherwise.

e signal(M) appends a message M to the global event stream (c.f. register ES).

e increment_counter(P) increments the counter located at offset_to_pointer(P).

o try_events() checks whether garbage collection needs to be performed and processes
any pending keyboard input and messages from other processors.

14

Detailed specifications are provided for most instructions in following sections. Unless
stated otherwise, instructions assume that their arguments are dereferenced and available
at the time of call. Hence, calls to most instructions cannot suspend. Type and range
checking is optional; if performed, errors are signaled on the global event stream. In the
specifications that follow, no type or range checking is performed.

3.1 Control Instructions

The process pool computational model is implemented using five control instructions: fork,
halt, recurse, default, and try. The instructions are responsible for scheduling processes from
the active queue, generating suspension structures, testing if garbage collection should be
performed, etc. In addition, the run instruction is used to initiate execution of a process
using a module and the send instruction to send a message on the global event stream.

fork(Label,Arity) allocates a new process record with a specified Arity and adds it to the
rear of the active queue. The program field in the process is set to be Label and SP is set
to point at the first argument of the process.

:= make_process(byte_1(PC))
cell_at(program field(P)) := REFERENCE<offset_to_pointer(PC+1)>
SP := arguments_of(P)
PC:=PC + 2
enqueue_process(P)

recurse(Label,Arity, CountOff) encodes tail recursion. It uses the values of the A registers
and the current process record for the next reduction and thus saves process scheduling.
If the time-slice (TS) is zero then Arity arguments (buffered in A registers) are saved in a
process record (c.f. save_arguments). The process is then placed in the active queue with
its program field set to Label and a new process is scheduled. If the time-slice is not over,
execution proceeds from Label and the time-slice is decremented. The Buffer flag (BU)
is set to true indicating that the process arguments are now buffered, and the Current
Process Arity (CA) register is set to Arity. The suspension register is reset to indicate that
there are no suspensions for the next reduction attempt. A check is made to determine if
garbage collection is required. The counter associated with the instruction is incremented.

15

increment_counter(PC+1)
if (TS = 0) then
save_arguments(byte_at(PC))
cell_at(program_field(CP)) := REFERENCE<offset_to_pointer(PC+2)>
enqueue_process(CP)
schedule_process()
else
TS: =TS -1
BU := True
cell_at(program field(CP)) := REFERENCE<offset_to_pointer(PC+2)>
PC := program.field(CP) + offset_to_code_bytes
SU:=0
try_event()

halt(CountOff) is used when a process reduces using a choice which has an empty body and
thus terminates; this necessarily signifies the end of the current time-slice. The suspension
register is reset. Another process is then scheduled and a test is made to determine if
garbage collection is required. The counter associated with the instruction is incremented.

increment_counter(PC+1)
SU:=0
schedule_process()
try_event()

default(Arity,CountOff) causes the current process to proceed to the next instruction, to
suspend on a single value, or to suspend on the global suspension queue, according to the
value of the suspension register (c.f. Section 2.1). If suspension follows a recursive call
then the arguments, buffered in A registers, must be saved in a process record. Suspension
also requires that another process be scheduled and that the counter associated with the
instruction be incremented.

if (SU = 0) then
PC := PC+2

else
increment_counter(PC+1)
if (BU) then save_arguments(byte_1(PC))
suspend _process() :
schedule_process()
try_event()

16

try(Label) is used to encode conditional execution. It sets the failure label (FL) to Label;
execution continues at the next instruction.

FL := offset_to_pointer(PC+1)
PC:=PC+ 2

run(M,P) is used to initiate execution of a process represented by a string or tuple P using

the module M. An error is signaled if the program to be executed by P is not exported by
M.

P1 := Albyte_1(PC)]

P2 := A[byte_2(PC)]

C := mlookup(P1,P2)

if (C = Null) then send(undefined(P1))

NP := make_process() % Create a new process record
program field(NP) := C % New process is to execute P
“copy args from P2 to NP

enqueue_process(NP) % Add new process to active queue
PC:=PC+1

send(Reg) is used to append the term referenced by Reg to the global event stream. Any
processes suspended on the definition referenced by ES are woken up; this definition is
then overwritten with a reference to a new list structure. The contents of Reg are copied
to the head of the new list structure, and a reference to a new definition is placed in both
the list tail and ES.

P1 := A[byte_1(PC)]

if (suspensions_at(ES)) then process_susp_list(ES)
cell_at(ES) := REFERENCE<HP>

cell_at(HP) := HEADER<tuple_tag,2>
cell_.at(HP+1) := REFERENCE<P1>
cell_at(HP+2) := REFERENCE<HP+3>
cell_at(HP+3) := DEFINITION<0>

ES := HP+3
HP := HP+4
PC:=PC+1

3.2 Build Instructions

The instructions build_static, build_dynamic, and build_def construct a data structure on
the heap and place a reference to the new structure in a register. They differ only in the
structures that they build.

17

build_static(Reg,Byte, Tag,Size) constructs a data area of specified Tag and Size on the heap,
and places a reference to this area in Reg. If the data area represents a tuple, the structure
pointer (SP) is set to point to its first element. This instruction is used to build arrays,
mutable values, and tuples of size less than 31.

A[byte_1(PC)] := REFERENCE<HP>
cell_at(HP) := HEADER<byte 2(PC),integer.at(PC+1)>
if (byte2(PC) = tuple_tag) then

SP:=HP +1
HP := HP + 1 + size.in_cells(byte_2(PC), integer_at(PC+1))
PC:=PC+ 2

build_dynamic(Tag,Registerl,Register2) constructs a integer array, real array, character ar-
ray, or tuple filled with definitions (as specified by Tag), of size specified by the integer
referenced by Registerl, and places a reference to the structure in Register2.

tag := byte_1(PC)

size := integer_refed_by(A[byte_2(PC)])
A[byte3(PC)] := REFERENCE<HP>
cell.at(HP) := HEADER<tag,size>

HP :=HP + 1
if (tag = tuple_tag) then
i:= size

while (i > 0) do
cell_at(HP+size) := DEFINITION<0>

HP :=HP + 1

i=i-1
HP := HP + 1 + size.in_cells(tag,size)
PC:=PC+1

build_def(Register) constructs a definition on the heap and places a reference to the defini-
tion in a Register.

A[byte_1(PC)] := REFERENCE<HP>
cell_at(HP) := DEFINITION<0>
HP:=HP +1

PC:=PC+1

18

™

3.3 Put Instructions

The instructions put_data, put_value, and copy place a reference to a data structure in a
memory cell. They differ only in the type of reference that they construct and where they
put it.

put_data(Reg, Tag,Size,Value) places a reference to a value with tag Tag in Reg and incre-
ments PC by Size. The instruction is used to encode strings, single integers, and reals.

The instruction is followed by a negative offset to the beginning of the module, a data
header cell with the INLINE field set to 1, and one or more data cells containing the data
value.

Albyte_1(PC)] := REFERENCE<PC+3>
PC := PC + byte_3(PC)

put_value(Register) places the value in Register at the structure pointer, SP.

cell_at(SP) := A[byte_1(PC)]
SP:=SP +1
PC:=PC+1

copy(Registerl,Register2) copies the contents of Registerl to Register2.

A[byte2(PC)] := A[byte_1(PC)]
PC:=PC+1

3.4 Test Instructions

Test instructions encode test operations on process arguments. They are type, data, equal,
neq, get_tuple, It, and le. Of these, only type, data, and get_tuple can suspend. The other
instructions assume that their arguments are available and dereferenced at the time of
call.

In general, these instructions first obtain the number of an A register using the current
program counter (PC). The register contents is then compared against some value. If
the comparison succeeds execution proceeds at the next abstract machine instruction.
Otherwise, execution proceeds at the current failure label. If the argument to a type, data
or get_tuple instruction dereferences to a variable or remote reference, this fact is recorded
using the suspension register, and execution proceeds at the current failure label (FL).

type(Register, Tag) tests that Register dereferences to a cell with the specified Tag. If the
test succeeds, Register is overwritten with a reference to the dereferenced value.

19

P := A[byte_1(PC)]

dereference(P)

il (is_unknown(P)) then suspend_on(P)
if ((tag-at(P) # byte2(PC)) then fail()
A[byte_1(PC)] := REFERENCE<P>
PC:=PC+1

data(Register) succeeds when the value of the term referenced by Register becomes avail-
able. Register is overwritten as in the type instruction.

P := Albyte_1(PC)|

dereference(P)

if (is_unknown(P)) then suspend_on(P)
A[byte_1(PC)] := REFERENCE<P>
PC:=PC+1

get_tuple(Register1,Arity,Register2) is used to match structures. It tests that Registerl
dereferences to a tuple of size Arity. If the test succeeds then the arguments of the tuple
are loaded into consecutive A registers beginning with Register2.

P := A[byte_1(PC)]
dereference(P)
if (iscunknown(P)) then suspend_on(P)
arity := byte 2(PC)
if (not is_tuple(P) OR arity # cell size_at(P)) then fail()
B := byte 3(PC)
while (arity > 0) do
A[B] := cell_at(P)
P:=P+1
arity := arity — 1
B:=B+1
PC:=PC+1

le(Register1,Register2) tests that the value of the integer or real referenced by Registerl is
less than the value of that referenced by Register2.

20

P1 := A[byte_1(PC)]
P2 := A[byte2(PC)]
PC:=PC+1
if (is_integer(P1) and is_integer(P2)) then

if (integer_at(P141) > integer_at(P2+1)) then fail()
else if (isreal(P141) and is_real(P2+1)) then

if (real_at(P141) > real_at(P2+1)) then fail()
else if (is_integer(P141) and is_real(P2+1)) then

if (integer_at(P1+1) > real_at(P2+1)) then fail()
else if (is_real(P1+1) and is_integer(P2+1)) then

if (real_.at(P141) > integer_at(P2+1)) then fail()
else fail()

equal(Registerl,Register2) tests that Register]l and Register2 reference single integers, single
reals, or strings with the same value; or tuples of the same arity with equal subterms.
Strings are compared using the C functions stremp(): i.e. they are compared on a character
by character basis until the first null character. Hence, this function cannot be used to
test equality of character arrays.

3.5 Te