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ABSTRACT

Ariyawansa and Hudson recently presented a benchmark parallel implementation of the
Van Slyke and Wets algorithm for stochastic linear programs, as well as the results of a
carefully designed numerical experiment using the implementation on the Sequent Balance.
An important use of this implementation is as a benchmark to assess the performance
of certain approximation algorithms for stochastic linear programs. These approximation
algorithms are best suited for implementation on parallel vector processors like the Alliant
FX/8. Therefore, the performance of the benchmark implementation on the Alliant FX/8
is of interest. In this paper, we present results observed when a portion of Ariyawansa and
Hudson’s numerical experiment is performed on the Alliant FX/8. These results indicate
that the implementation makes satisfactory use of the concurrency capabilities of the Alliant
FX/8. The results also indicate that the vectorization capabilities of the Alliant FX/8 are
not satisfactorily utilized by the implementation.
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1. Introduction. The two-stage stochastic program with recourse, and with a dis-
cretely distributed random variable with a finite number of realizations, is the following:

Find z* € ®™ such that when z := z"*
z(z) := Tz + Q(z) is minimized, and
Az = b, z > 0, where

& k Tk
Az) := E[Q(z,h,T)] = L. p"Q(z, h*,T"),
=1
Qz,h,T):= inf {¢"y: My=h-Tz,y20},
v
A€ R™MX™M, beR™, c€R™M, g€ R™, M € R™2X™ are deterministic and given

and h € R™3, T € R™3*™ are random with (k,T') having the given probability
distribution F := {((R*,T*),p*),k = 1,2,...,K}. (1)

Problem (1) arises in operations research problem areas including industrial management.
scheduling, and transportation; in control theory; and in economics. The monograph (3] for
example, contains details of specific applications.

A popular algorithm for (1) is due to Van Slyke and Wets [8]. In [3], a parallel bench-
mark implementation of the Van Slyke and Wets algorithm for (1) was presented, as well
as the results of a carefully designed numerical experiment on the Sequent Balance. An
important use of this implementation is as a benchmark to assess the performance of the
approximate algorithms for (1) described in [4, 2]. These approximate algorithms are best
suited for implementation on parallel vector processors like the Alliant FX/8. Therefore,
the performance of the benchmark implementation on the Alliant FX/8 is of interest. In
Section 2 of this paper, we present a slightly modified version of the implementation given in
(3] that is better suited for the Alliant FX/8. We have performed a portion of the numerical
experiment described in [3] using this implementation on the Alliant FX/8. We indicate
our results in Section 3.

2. A Parallel Benchmark Implementation of the Van Slyke and Wets Algo-
rithm on the Alliant FX/8. As in (3], throughout the paper we shall make the following
assumptions regarding (1).

(Al) The set {z : Az = b,z > 0} is nonempty and bounded.

(A2) The set {w: My = w,y > 0} = R™,

(A3) The set {v: MTv < q} is nonempty.
It can be verified that when (A1), (A2), and (A3) are satisfied, (1) has a finite minimum.
Therefore, issues of unboundedness and infeasibility of (1) do not arise.

We now present the pseudo-code on which our Fortran implementation on the Alliant
FX/8 is based.



Algorithm 1:

input:
my; ny; ma: nas K A; e by M g F = {((h*,T%),p%),k=1,2,...,K};
nprocs; mazcut; tol.
/* we assume that K > nprocs */

output:
z; z.

begin
/* begin initializations */
t:=0;
for | := 1 to mazcut do
El:=0; ¢ :=0;
end do;
{call DPLO to solve the Ip
find z > 0, 8 € R such that
cTz + 6 is minimized, and
Az = b,
(ENTz+0>¢€,1=1,2,...,mazcut
from scratch};
call optimality.cut (m,y, ne, K, M, q, F, z, nprocs, E, e, Q);
ti=t+1;
Et:=F; et :=¢;
call lowerbound (my, ny, t, A, b, (E',é,1=1,2,...,t), mazcut, z, 0, z);
call optimality.cut (mq, n2, K, M, q, F, z, nprocs, E, e, Q);
/* end initializations */
while |Q - 6|/ max{1,|Q|} < tol do
t:=t+1;
if t > mazcut then
{report that more cuts than mazcut need to be added and stop};
else
Et:=E;et:=¢;
call lowerbound (my, ny, t, A, b, (E',e,1=1,2,...,t), mazcut, z, 0, z);
call optimality.cut (ma, n2, K, M, q, F, z, nprocs, E, e, Q);
end if;
end while;
end.



optimality_cut:
input:

ma; ng; Ky M; q; F; z; nprocs.

output:
E;e; Q.

begin
Etemp:=0; etemp:=0; E :=0; e := 0;
/* dimensions of Etemp and etemp are n, x nprocs and nprocs respectively */

bnchsz := | K /nprocs|;
for bunch := 1 to nprocs in parallel do
firstk := (bunch — 1) * bnchsz + 1;
if bunch # nprocs then
lastk := bunch = bnchsz
else
lastk := K
end if;
call dobnch( firstk,lastk,mo,ny, M, q, F, z, Etemp(1: ny,bunch), etemp(bunch));
end do;
for bunch := 1 to nprocs do
E := E + Etemp(1 : ny, bunch);
e := e + etemp(bunch);
end do;
Q:=e—- ETz;
return;
end.

dobnch:
input:
firstk; lastk; mq; ng; M; q; F; z.

output:
E;e.

begin
for k := firstk to lastk do



w = h* - Tkz;
if kK = firstk then
{call DPLO to solve the Ip
find y > 0 such that
¢¥ y is minimized, and
My=w
from scratch to obtain dual maximizer v};
else
{call DPLO with restart procedure and with new options to prevent
disk reads, and to prevent forming LU factorization of initial basis
to solve the lp
find y > 0 such that
¢Ty is minimized, and

My=w
to obtain dual maximizer v};
end if:

E := E + p*(T*)Tv;
e := e + pF(h*)Tv;
end do;
return;
end.

lowerbound:

input:
my; ny;t; A; by B €, 1=1,2,.. ., t; mazcut.

output:
z; 6; z.
begin
{call DPLO with restart procedure, and with new option to prevent
disk reads, and with a specification that (m; + t)-th row of constraint
matrix changes to [(E*)T, 1], to solve the Ip
find z > 0, € R such that
Tz+0is minimized, and
Az =),
(EYTz+02¢€,1=1,2..., mazcut};
z:=cTz +6;
return; .
end.



In Algorithm 1, nprocs is the number of processors. The input parameter mazcut
essentially places an upper bound on the number of calls to routine optimality_cut, while
the input parameter tol is a tolerance used in the stopping criterion. Justification for using
these parameters is given in [3].

Algorithm 1 and Algorithm 2 of [3] are equivalent (in exact arithmetic). Algorithm 2
of [3] does not contain a routine dobnch, and the steps of routine dobnch of Algorithm 1 are
explicitly included in the routine optimality_cut of Algorithm 2 of [3]. This configuration
however, prevented the Alliant Fortran compiler from choosing the “parallel do loop” in
routine optimality_cut of Algorithm 2 of 3] for concurrent execution. The reorganization
of Algorithm 2 of (3] into Algorithm 1 above by introducing the routine dobnch makes
the Alliant Fortran compiler choose the “parallel do loop” in Algorithm 1 for concurrent
execution as desired.

The routine DPLO referred to in Algorithm 1 is an lp solver of Hanson and Hiebert
(6]. The restart procedure of and modifications to DPLO mentioned in Algorithm 1 are all
described in (3]. In addition to these modifications, concurrent execution of the “parallel do
loop” in routine optimality_cut on the Alliant FX/8 requires modifications to eliminate cer-
tain COMMON blocks. (See (1, Section 5.7.11].) When we refer to DPLO in the statement
of Algorithm 1 we mean a version in which we have made these additional modifications.

3. Performance Results. We have developed a Fortran implementation of Algorithm
1 on the Alliant FX/8. Using this implementation, we have performed a portion of the
numerical experiment described in [3]. The numerical experiment described in [3] is quite
comprehensive, consisting of four parts. Since the numerical results in [3] indicate that each
part could be used to assess the performance of the implementation adequately, we selected
part (b) as our experiment here. Part (b) of the experiment in [3] involves four problem sizes
denoted by (i), (ii), (iii) and (iv). Problem sizes (i), (ii), (iii) and (iv) respectively correspond
to dimension values m, := 40, n, := 60, m3 := 10, n3 := 15; m, := 60, ny := 88, m, := 15,
n2 = 22; m, := 80, n; := 120, my := 20, n, := 30; and m, := 100, ny := 148, m, := 25,
nz := 37. For each problem size we use a binomial-related multivariate distribution (see [3]
for details) F with K := 100, K := 1000, and K := 10000. For each case characterized by
problem size and value of K, we generate three random instances of problem (1) and run
our implementation on these three instances. Any time value we give is the average of the
three time values observed for the corresponding three random instances of (1). We observe
two time values for each case characterized by problem size and value of X: the user time
for the overall algorithm, and the user time for the routine optimality_cut. The latter time
is important because when K is “large” the computation in Algorithm 1 is dominated by
the computations in the routine optimality_cut (see [3] for a discussion of this fact). In fact,
as described in (3], the parallel implementation of the Van Slyke and Wets algorithm given
in [3] and in Algorithm 1 is motivated by this observation.



Before presenting timing results we mention four options that may be used to compile
and link a code on the Alliant FX/8. More details about these options can be found in
(1, Chapters 4,5]. These options are global optimizations (also referred to as general or
scalar optimizations which generally optimize the code for better performance), associativ-
ity (which recognizes certain code forms that perform computations equivalent to intrinsic

functions that have been implemented for good performance), vectorization, and concur-
rency.

In Table 1 below we report the time values observed with global optimizations, asso-
ciativity, vectorization, and concurrency used to compile and link the code and all eight
processors used to run the resulting executable. These and all other timing results reported
in this paper were obtained on the Alliant FX/8 at the Advanced Computing Research Facil-
ity of Argonne National Laboratory, Argonne, lllinois. To measure the effect of concurrency,
we ran the same executable on a single processor. (This and all other single-processor runs
mentioned in this paper were made using the Alliant command ezecute -c1.) The observed
time values are reported in Table 2, while the resulting speedup (referred to as speedup 1)
values are indicated in Table 3.

Table 1. Time (sec) observed on eight processors with global

optimizations, associativity, vectorization, and concurrency

Problem Overall time when K is optimality_cut time when K is
size 100 1000 10000 100 1000 10000
(i) -10.8 42.2 388.4 7.5 39.7 384.8
(i) 21.1 152.7 1543.5 15.1 143.1 1529.7
(iii) 62.3 345.7 1039.4 43.1 321.2 1029.4
(iv) 80.8 254.6 1981.3 50.9 230.9 1955.4

Table 2. Time (sec) observed on a single processor with global

optimizations, associativity, vectorization, and concurrency

Problem Overall time when K is optimality_cut time when K is
size 100 1000 | 10000 100 1000 10000
(i) 51.1 264.7 2451.3 474 261.8 2447.1
(i) 101.4 931.2 9809.2 94.3 919.7 9792.8
(iii) 277.8 2162.4 7070.7 254.6 2132.3 7058.5
(iv) 325.9 1407.9 12486.9 289.1 1378.9 12454.9




Table 3. Values of speedup 1

Problem | Overall speedup when K is | optimality_cut speedup when K is
size 100 1000 10000 100 1000 10000
(1) 4.7 6.3 6.3 6.3 6.6 6.4
(ii) 4.8 6.1 6.4 6.2 6.4 6.4
(ii1) 4.5 6.3 6.8 3.9 6.6 6.9
(iv) 4.0 5.5 6.3 5.7 6.0 6.4

The speedup values in Table 3 are satisfactory for an eight-processor configuration
and indicate that the concurrency capabilities of the Alliant FX/8 are utilized satisfacto-
rily. They also compare well with similarly computed speedup values quoted in [7] for an
algorithm for bound-constrained optimization problems.

As mentioned earlier, apart from concurrency, the Alliant FX/8 can enhance perfor-
mance through global optimizations, associativity, and vectorization. To see how our im-
plementation utilizes these features, we obtained timing values by repeating part (b) of the
experiment in (3] on a single processor with the code compiled and linked as follows: with
no global optimizations, no associativity, no vectorization, and no concurrency; with global
optimizations, but with no associativity, no vectorization, and no concurrency; and with
global optimizations, associativity, and vectorization but with no concurrency. The time
values observed are indicated in Tables 4, 5, and 6, respectively.

Table 4. Time (sec) observed on a single processor with no global

optimizations, no associativity, no vectorization, and no concurrency

Problem Overall time when K is optimality_cut time when K is
size 100 1000 10000 100 1000 10000
(i) 79.1 454.3 4755.0 72.9 449.6 4748.3
(i1) 164.5 1663.5 18733.5 153.1 1643.1 18703.7
(iii) 467.5 3917.6 13743.2 423.8 3860.2 13723.7
(iv) 542.0 2552.6 24023.4 481.0 2507.1 23973.3




Table 5. Time (sec) observed on a single processor

with global optimizations, but with no associativity,

no vectorization, and no concurrency

Problem Overall time when K is optimality_cut time when K is
size 100 1000 10000 100 1000 10000
0) 37.8 213.2 | 2198.1 34.8 | 210.9 2194.9
(i1) 76.6 760.8 8573.1 71.1 751.3 8559.5
(iii) 215.2 1776.8 6215.0 194.9 1750.9 6205.5
(iv) 245.0 1144.8 10729.1 217.1 1123.7 10705.9

Table 6. Time (sec) observed on a single processor
with global optimizations, associativity, and

vectorization, but with no concurrency

Problem Overall time when K is optimality_cut time when K is
size 100 1000 10000 100 1000 10000
(i) 35.4 182.1 1722.0 32.5 179.8 1718.9
(i) 68.5 622.6 6558.9 63.3 613.8 6546.5
(iii) 185.4 1397.2 4598.6 166.4 1373.7 4589.2
(iv) 212.8 893.5 7965.2 185.0 871.9 7941.8

Before examining the time values in Tables 4, 5, and 6, let us observe that a speedup
(referred to as speedup 2) alternative to speedup 1 above may be defined as follows to
measure the utilization of concurrency by the implementation: speedup 2 is the time ob-
served on a single processor with the code compiled and linked with global optimizations,
associativity, and vectorization but with no concurrency, divided by the time observed on
eight processors with the code compiled and linked with global optimizations, associativity,
vectorization, and concurrency. Therefore, speedup 2 values are computed using time values
in Tables 6 and 1 instead of the time values in Tables 2 and 1 used in computing speedup
1 values. The values of speedup 2 that result are reported in Table 7 below.



Table 7. Values of speedup 2

Problem | Overall speedup when K is | optimality_cut speedup when X is
size 100 1000 10000 100 1000 10000
(i) 3.3 4.3 4.4 4.3 4.5 4.5
(ii) 3.2 4.1 4.2 4.2 4.3 4.3
(1ii) 3.0 4.0 4.4 3.9 4.3 4.6
(iv) 2.6 3.5 4.0 3.6 3.8 4.1

The speedup 2 values in Table 7 compare well with similarly computed values reported
in [9] for a quadratic programming algorithm.

Let us now consider the utilization of the vectorization capabilities of the Alliant FX/8
by our implementation. To measure these. we computed a speedup (referred to as speedup 3)
by dividing the time observed with the code compiled and linked with global optimizations
only and run on a single processor, by the time for the code compiled and linked with global
optimizations, associativity, and vectorization and run on a single processor. Speedup 3
values are thus computed by using corresponding values in Tables 5 and 6. We report the
values that result in Table 8 below. )

Table 8. Values of speedup 3

Problem | Overall speedup when K is | optimality_cut speedup when K is
size - 100 1000 10000 100 1000 10000
(i) 1.1 1.2 1.3 1.1 1.2 1.3
(ii) 1.1 1.2 1.3 1.1 1.2 1.3
(iii) 1.2 1.3 1.4 1.2 1.3 1.4
(iv) 1.2 1.3 14 1.2 1.3 14

The speedup values in Table 8 are not satisfactory. (The possibility of vectorization
speeding up computations by a factor of two to four is mentioned in (1, Section 1.2.2].)
Since the computation in Algorithm 1 is dominated by work in the routine optimality_cut
(especially for large K'), and the routine optimality_cut essentially involves calls to DPLO,
the poor vectorization indicated by the speedup 3 values in Table 8 is due to poor vector-
ization of DPLO. DPLO is a large package of subroutines, and in the runs mentioned in this
paper we have not attempted to manually introduce Alliant compiler directives into DPLO
for better performance; that is, only the automatic optimizations (including vectorization)
introduced by the Alliant compiler were in effect. The speedup 3 values in Table 8 suggest
that we may be able to improve the performance by manually tuning routines in DPLO for
better vectorization.



Let us now examine the effect of global optimizations on the performance of our imple-
mentation. A convenient approach would be by examining the values of a speedup (referred
to as speedup 4) obtained by dividing the time on a single processor for the code compiled
and linked with no global optimizations, no associativity, no vectorization, and no concur-
rency, by the corresponding time on a single processor for the code compiled and linked
with global optimizations, but with no associativity, no vectorization, and no concurrency.
The values of speedup 4 are indicated in Table 9 below.

Table 9. Values of speedup 4

Problem | Overall speedup when K is | optimality_cut speedup when K is
size 100 1000 10000 100 1000 10000
(i) 2.1 2.1 2.2 2.1 2.1 2.2
(i) 2.1 2.2 2.2 2.2 2.2 2.2
(iii) 2.2 2.2 2.2 2.2 2.2 2.2
(iv) 2.2 2.2 2.2 2.2 2.2 2.2

Speedup 4 values in Table 9 indicate that the global optimizations can speed up the
performance of the unoptimized code by a factor of about two. Again, since most of the
computation takes place within subroutines of DPLO (especially when K is large), this
performance improvement occurs in those subroutines.

The above performance results indicate that the implementation satisfactorily utilizes
all the major performance improvement features of the Alliant F X/8 except its vectorization
capabilities, and that it may be possible to manually tune DPLO to make the implementa-
tion utilize vectorization better.
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