Exploiting Parallelism in
Automatic Differentiation

Christian Bischof
Andreas Griewank
David Juedes

CRPC-TR91141
1991

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Exploiting Parallelism in Automatic
Differentiation*

Christian Bischof
Andreas Griewank
David Juedes

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, Illinois 60439-4801

Abstract. The numerical methods employed in the so- fori=1,2,do

lution of many scientific computing problems require the com-
putation of first- or second-order derivatives of a function f :
R» — R™. We present an approach that, given a serial C
program for the computation of f(z), derives a parallel execu-
tion schedule for the computation of f and its derivatives in a
completely automatic fashion. This is achieved by overloading
the computation of f(z) in C++ to obtain a trace of the com-
putations to be performed and then transforming this trace into
a data flow graph for the computation of f(z). In addition to
the computation of f(z), this graph also allows us to ezactly
and inezpensively compute derivates of f by the repeated use
of the chain rule. Parallelism is exploited in two ways: rows or
columns of derivative matrices can be computed by independent
passes through the computational graph, and parallelism within
the processing of this computational graph can be exploited by
processing independent subgraphs concurrently. We present ex-
perimental results that show that good performance on shared-
memory machines can be obtained by using a graph interpreter
approach. We then present some ideas that are currently un-
der development for improving computational granularity and
for implementing parallel automatic differentiation schemes in a
portable and more efficient fashion.

1 Introduction

The methods employed for the solution of many sci-
entific computing problems require the evaluation of
derivates of some objective function. Probably best
known are gradient methods for optimization and New-
ton’s method for the solution of nonlinear systems [8,
10]. Other examples can be found in [9]. For example,
given a function

f:R*" =R,

one can find a minimizer z. of f using variable metric
methods that involve the iteration

*This work was supported by the Applied Mathematical Sci-
ences subprogram of the Office of Energy Research, U. S. Depart-
ment of Energy, under Contract W-31-109-Eng-38. The third
author was also supported through NSF Cooperative Agreement
No. CCR-8809615.

The itted ipt has been hored
by 8 contractor of the U.S. Government
under contract No. W-31-109-ENG-38.
Accordingly, the U. S. Government retains &
nonexclusive, royaity-free license to publish
or reproduce the published form of this
contribution, or sliow others to do so, for
U. S. Government purposes.

Solve Bis; = —V f(z;)
Tip1 =2 + a8
end for

for suitable step multipliers o; > 0. Here

72 f(2)
V()= z 1)

7= f(2)
is the gradient of f at a particular point z,, and B'is
a positive definite matrix that may change from iter-

ation to iteration. For finding the root of a nonlinear
function

h
F:R®" = R",F= : ,
ffl
Newton’s method requires the computation of the so-
called Jacobian matrix

= fi(z) - gEfi2)
F'(z) = 2)
32—‘f,,(z) ‘%fn(z)

Then we execute the following iteration:

fori=1,2,.. do

Solve F'(z;)s; = —F(z;)

Tip1 = Ti+ 8
end for
In many applications, F’ is large and sparse, and the
solution of an equation system involving F’ requires
the use of an orthogonal factorization. From the view-
point of the designers of mathematical software, the
computation of derivatives was often considered to be
expensive. If derivative information was employed,
derivatives were approximated by finite differences, or
the user was required to provide a program that com-
puted the necessary derivative information. Both alter-
natives are unsatisfactory, as finite difference approxi-
mations can lead to loss of accuracy, and the computa-
tion of derivatives by hand is tedious and error-prone.

One has to keep in mind that, in particular for large-
scale problems, the objective function usually is not
represented in closed form, but is given in the form of
a computer program that computes f or an approx-
imation thereof. Symbolic differentiation techniques
currently are often not feasible, since they do not fully
utilize common subexpressions, and therefore are com-
putationally inefficient. These issues are discussed in
more detail in [12].

The situation is even more complicated if one wishes
to exploit parallelism. Considerable progress has been
made in the implementation of linear algebra kernels,
such as orthogonal factorizations, on parallel machines
[2, 3, 21, 23]. With respect to the computation of
derivative information, approaches to computing finite-
difference approximations in parallel using graph col-

oring approaches have been successful (7,19, 22], but

again accuracy may be lost.

We, in turn, suggest the use of automatic differen-
tiation to compute derivative information. This ap-
proach computes derivative information without trun-
cation error, and in an automatic fashion. That is, a
user can take a black-box view of the differentiation
process. Automatic differentiation techniques rely on
the fact that every function, no matter how compli-
cated, is executed on a computer as a (potentially very
long) sequence of elementary operations such as addi-
tions, multiplications, and elementary functions such
as sin and cos. By applying the chain rule

2 Ho@lemta) = (2 Famstea)ggoDhms))

over and over again to the composition of those elemen-
tary operations, one can compute derivate information
of f exactly and in a completely mechanical fashion.
In the next section, we will expand on the ideas be-
hind automatic differentiaton and give an overview of
the various ways in which it can be implemented. In
section 3, we then discuss how automatic differentia-
tion can be used to derive in an automatic fashion a
parallel execution schedule for the computation of the
objective functions and its derivatives. We also present
some experimental results obtained on the Symmetry.
In Section 4 we discuss ongoing work to improve the
efficiency of parallel automatic differentation.

2 Automatic Differentiation

The idea behind automatic differentiation is best un-
derstood through an example. Assume that we have
the sample program shown in Figure 2 for the com-
putation of a function F : R? — R2. Here, zl and

z2 are the independent variables, and y1 and y2 the
dependent variables.

If we were to execute this program to compute

F(1,1.5), the the list of elementary instructions shown
in Figure 2 would be executed. Here r1 through r4 refer

if ((x1 - 2) > 0) then

a=xl
else

a = 2*xl
end if

=1
fori= 1:2do

b = b + sqrt(b)*a

end for
y0 = b/x2
yl = a*x2

Figure 1: Sample Program

i operation t; d; d;
1: xl=1 1 1 4.41
2: x2=1.5 1.5 0 -2.87
3: rl=x1-2 1 - -
4: r1=2%*xl1 2 2 2.21
5: 2=1 1 0 1.05
6: r3 = sqrt(r2) 1 0 2.10
7: 4 =rl *1r3 2 2 1.05
8: 12=12+r4 3 2 1.05
9: 13 = sqrt(r2) 1.73 0.58 1.33

10: rd =rl *1r3 3.46 4.61 0.67
11: 12=12+414 6.46 6.62 0.67
12: yl =12/ x2 4.31 4.41 1.0
13: y2=rl*x2 3 3 0

Figure 2: Trace of Function Execution

to main memory or register locations where interme-
diate results are stored. The code shown in Figure 2
is a trace of the computations performed to compute
F(1,1.5). As long as z1 < 2, this trace can be used
as a blueprint for the computation of F(z;,z2), when
we change the initializations in line 1 and 2 accord-
ingly. To compute derivatives in an automatic fashion,
we now associate a unique variable ¢;, ¢ = 1,13 with
each computed value. This value (rounded to three
significant digits) is shown in the column labeled ¢; in
Figure 2.

Derivatives can now be computed by associating a
value d; with each intermediate quantity and by us-
ing elementary differentiation arithmetic. For exam-
ple, if we wish to compute 3:—11"’(:1, 22)|(z1,22)=(1,1.5)
d; will hold g:-:';- for every intermediate quantity t;.
Hence, after setting dy = 1 and d2 = 0, we can pro-
ceed to diz = 32 f1(z1,22)|(z,,22)=(1,1.5) and diz =
3-2—‘-f2(::1,zg)l(,h,,)=(1.1_5) by simple use of the chain
rule. For example, if

t; =t +t,

then
d,' = di + d;.

For
t; =1k 1,

we have
dj =tpxdi+t *xdg.

For univariate functions g = g(¢) such as sin, cos, or
sqrt,

t; =g(te)
implies
8
d; = Eg(tk) *dp.

The values of the d;’s in our particular example are
shown in the column labeled d; in Figure 2. After
we have traversed all statements, we have computed
FI 52 F(z,, 32)|(=,,:,)-(1 1.5), i.e. the first column of the
Jacobian matrix. To obtain the second column of the
Jacobian matrix, we initialize d; = 0 and d2 = 1 and
repeat the previous procedure. Since the propagation
of the d;’s is about as costly as that of the ¢;’s, each
derivative pass costs roughly the same as the evaluation
of the original function.

This mode of automatic differentiation, where we
maintain the derivalives of intermediate quantities
with respect to the independent variables, is called the
forward mode of automatic differentiation. Instead
of having two passes over the code, we could also
have computed J in ome pass by associating a two-
vector storing Vi; = (3—‘- 3;';)7 with each intermedi-
ate quantity. In genera.l for a function with n inde-
pendent variables, we could associate an n-vector with
each intermediate quantity and then perform a vector
operation at each step. If J is dense, the evaluation
of J then requires on the order of n times the work
that is required to evaluate the function. Often Jacobi
matrices are sparse, and sparse storage techniques can
be employed rather advantageously. Then the ratio
between the cost of evaluating F’/ and f is bounded
by the maximum number of nonzeros in any row of
the Jacobian (see for example [11]). We also mention
that if one does not need J per se, but instead Jv for
some vector v, the additivity of differentiation allows
us to compute this quantity in one pass by initializing
di=v,i=1,...,n.

Another way to compute derivatives is the so-called
reverse mode of automatic differentiation. Here we
maintain the derivative of the final result with respect
to an intermediate quantity. These quantities are usu-
ally called adjoints, and they measure the sensitivity
of the final result with respect to some intermediate
quantity. This approach is closely related to the adjoint
sensitivity analysis for differential equations, which has
been used at least since the late sixties, especially in
nuclear engineering [5,6], weather forecasting [25], and

even neural networks [26]. The discrete analog used

" in automatic differentiation was apparently first dis-

covered by Linnainmaa [18] in the context of rounding
error estimates.

Again we associate a scalar d; (say) with each inter-
mediate quantity. As a consequence of the chain rule
it can be shown that for an intermediate quantity ¢;
whose value is used in the computation of ¢,k € Ij,

we have
=Y 24,
kel a”’

where g; is the elementary operation that defines t;.
This is best understood with an example. Assume that
we wish to compute V f1(z1, 22)l(z,,2,)=(1,1.5), that is,
the first row of the Jacobian of F. We then initialize

~ di2 =1 and dy3 = 0. Since t; alias z, is used only in
the computation of ¢, and ¢,3, we can compute
0fi _ 7 _ O9g12 0913 3
=dy = *d, d;3.
6::2 3‘!2 12+ 3t2 * s
Now g12 =t11/t2, and g13 = t4 * t2, so
3912
= -t 4
B =t/ (t2)?
and _
0913 =t
at, *

By starting from the dependent variables in this fash-
ion, and traversing the computation in reverse or-
der, we emerge at the independent variables with
Vfi. The adjoint quantities are shown in the col-
umn labeled §; in Figure 2. If we were to compute
Vfg(zl,zg)l(,h,,)_(l 1.5), We could repeat this proce-
dure with d;, initialized to 0 and di3 initialized to 1.
Again we can compute all rows in one pass by associat-
ing an m-vector with each intermediate quantity, and
a product wTJ can be computed in one pass by ini-
tializing d; = w;,i = 1,...,n. Exploiting the sparsity
of these vectors, one can bound the ratio between the
cost of evaluating J rowwise and that of evaluating f
by the maximum number of nonzeros in any column.

Both the reverse and forward mode of automatic dif-
ferentiation have been implemented in the ADOL-C
package. Using the operator overloading features of
C++, ADOL-C generates a computational trace (the
so-called tape) of the evaluation of F(z,). First- and
higher-order derivatives can then be computed using
either the forward or reverse mode by passing over the
tape in the appropriate fashion. While the tape itself
may be quite large, it is always accessed in a purely
sequential fashion, and RAM storage requirements are
modest by exploiting the fact that only few temporary
variables are active at any given point in time. Details
can be found in [13].

We mention that the automatic differentiation of
computer arithmetic has been investigated since before

Figure 3: Computational Graph for the Eval-
uation of f

1960. Since then there have been various implementa-
tions of automatic differentiation. Most of these imple-
mentations have concentrated on the simple forward
evaluation of derivatives. For scalar functions of the
form y = F(z,,...2,), the forward evaluation of par-
tial derivatives requires O(n) times the execution time
of the original function. Speelpenning [24] mentioned
and Baur and Strassen [1] later published a proof that
the number of operations required to compute a scalar
function and its partial derivatives is bounded above
by a fixed constant times the number of operations re-
quired to compute the function. This theoretical result
leads to the more efficient reverse mode of derivative
evaluation. Speelpenning [24], Iri and Kubota [16], and
Horwedel et al. [15] have all implemented the reverse
mode of evaluating derivatives in their respective For-
tran precompilers.

3 Exploiting Parallelism

While the computation of derivatives has been pre-
sented in a strictly serial framework until now, there
is actually considerable scope for the exploitation of
parallelism. Before we go further, let us change our
view of the computation from the serial nature of the
trace to a data flow graph. For example, we can rep-
resent the trace of Figure 2 by the graph shown in
Figure 3. The leaves of this directed acyclic graph are
the independent variables; the roots are the dependent
variables. We have noted the operation performed at

Figure 4: A Chain of Nodes Resulting from a
Nontrivial Right-Hand Side

a node inside the node, and the number next to a node
indicates the intermediate value that this node repre-
sents in Figure 2. Note that we eliminated ¢t3. This
intermediate value would have been a “spurious root,”
since it has no influence on the final results, but was a
result of some control flow computation. Our assump-
tion is that the control flow through a program will not
change with every traversal, so that we can amortize
the efforts to parallelize a given schedule over many
executions of this schedule. This assumption is true
for most optimization approaches. Even if the control
flow should change, chances are that the change would
be mostly local, so that incremental computation tech-
niques like those described in [14] would be applicable.

We have implemented a system that takes the “tape”
produced by ADOL-C and converts it into a compu-
tational graph. Several transformations are performed
to reduce the size of the graph: we eliminate spuri-
ous roots and all assignments, and we coalesce nodes
that result from the expansion of nontrivial right-hand
sides. The ADOL-C tape contains many assignments
as a result of the compiler’s actions. If we, for example,
evaluate the expression

t=a+b,

the GNU C+4 compiler will actually generate two as-
signments: It will first assign the sum of a + b to a
temporary and then assign this temporary to t.

On the other hand, nontrivial right-hand sides will
generate chains of nodes. For example, an expression

such as
sin(cos(tan(vz +)))

would result in the graph fragment shown in Figure 3.
In our current implementation, we will collapse those
nodes on the fly into a “supernode” that will contain

all those operations. We call this operation hoisting.
In general, we can hoist a node n into a node p if p
is the only node that uses the result computed by n,
and p represents a unary operation. Details on how
this transformation is implemented can be found in
[4]. These transformations can have a significant effect
on the number of nodes in the graph. For the Bratu
problem, a classical problem in combustion modeling,
the ADOL-C tape contained 1,142 nodes, of which 184
were assignments. Through elimination of assignments
and hoisting, we arrived at a graph representation with
613 nodes, a savings of 46%. A shallow-water model
for weather modeling [20] contained 281,805 operations
on the tape. After eliminating the 61,236 assignments,
we eliminated another 29,694 nodes through hoisting,
for a final representation with 153,484 nodes — again a
savings of 46%.

In computing derivatives and the function itself, par-
allelism can be exploited in two fundamentally differ-
ent ways: either through independent passes over the
computional graph, or through concurrent computa-
tion of nodes in the graph itself. The first approach
is the easier one. Different processes can compute dif-
ferent rows or columns of the Jacobian independently,
as long as they have access to the tape representation
of the functions to be performed. For example, if one
were to evaluate the gradient of a function f : R® - R
using the forward mode, one could assign different pro-
cesses to the task of calculating the partial derivative
with respect to one particular independent variable. In
this manner the main problem is broken into n smaller
problems, which can be solved concurrently.

More difficult is exploitation of parallelism within
the graph itself. However, if one evaluates the function
or computes its gradient using the reverse mode, only
one pass over the graph is performed, and thus this is
the only chance for exploiting parallelism.

Juedes and Griewank [17] produced a parallel im-
plementation for the reverse mode of automatic differ-
entiation on the Sequent Symmetry, a shared-memory
multiprocessor. This parallel implementation of the
reverse mode traverses the dependency graph, evalu-
ating partial derivatives at each node. The embedded
dependency information is inverted during the reverse
sweep. The node that corresponds to the dependent
variable is seeded with the value 1 and placed on an
evaluation queue. Each node placed on the evaluation
queue will eventually be visited and its derivative in-
formation propagated to the nodes that depend on it.
An unevaluated node is placed on the evaluation queue
once all of the nodes it depends on have been evalu-
ated. When a processor is available, it accesses the
evaluation queue and evaluates the next node. When
the evaluation queue is empty, the reverse sweep of
derivative evaluation is complete.

In order to ensure the consistency of a section of

shared memory, locks are used to surround critical sec-
tions of code. The extensive use of locking mechanisms
can be a drain on the performance of any parallel pro-
gram; thus we minimized the use of locking mecha-
nisms. We saw the evaluation queue to be the main
bottleneck of our implementation; we therefore chose
to use a multiple-layered approach to simulate a single
evaluation queue. Qur approach is as follows.

e Each processor uses a local evaluation queue. This
queue is accessed locally and does not need to be
locked. If the local queue has an element, it is
evaluated first. This queue is of fixed length.

e Each pair of two processors has a local/shared
queue. If a processor’s local queue is full, it places
elements ready for evaluation on its local/shared
queue. When a processor’s local queue is empty,
it first searches its local/shared queue for the next
element to be evaluated. This queue is shared and
accessed via locking mechanisms.

e If both a processor’s local and local/shared queues
are empty, then the local/shared queues of the re-
maining processors are searched in a round robin
fashion.

This scheme is illustrated in Figure 5.
This approach led to promising results. The function

z, _zTAz og LT (1+v2)7z
—b57z 8bTz C1+(1-v2)hiz

f(z) = RTEz;log 1

=1

is the Helmholtz energy at the absolute temperature
T of a mixed fluid in a unit volume. Here R is the
universal gas constant, and

. 0<z,beR" A= AT e R™*",

This function and its gradient are used extensively in
the simulation of oil reservoirs. Computing the gradi-
ent of the Helmholtz energy function with 300 indepen-
dent variables, we were able to execute it over 11 times
faster using 15 processors than using a single processor.
We obtained similar results for up to 18 processors on
the Sequent Symmetry. Figure 6 plots our results with
respect to the theoretical linear speedup in the number
of processors used.

4 Work in Progress

Our main concern at the moment is to develop a
more efficient schedule for the parallel evaluation of the
function and its derivatives using the reverse mode of
automatic differentiation. We are working on improv-
ing the efficiency of parallel automatic differentiation
in several ways:

e To increase the granularity of parallelism,

Run Time Ratio (Time Using 1 processor / Time Using N processors)

Shared
Queue

\ /

Local Queues

Shared

.............. o Queue P

Shared
Queue

\ /

Local Queues

\ /

Local Queues

Figure 5: Simulating a Global Evaluation Queue

ADOL-C Implementation

Linear Speedup

1

2

3

4

5

T

Number of Processors Used

6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 6: Parallel Test Results vs. Linear Speedup

e to decrease the synchronization overhead for lock-
ing queues and nodes in the computational graph,

e to decrease storage requirements.

The small granularity of parallelism is a consequence
of the fact that our differentiation arithmetic deals only
with elementary operations at a scalar level. This ap-
proach has the advantage that the run-time system
needed to support automatic differentiation is easy to
implement, since it only has to support relatively few
and simple operations. If we want to maintain this
view, we could increase processing granularity by iden-
tifying subgraphs of the computational graph that have
comparatively few edges crossing the subgraph bound-
aries (that is, we can look for good edge separators).
Subgraphs thus defined will be assigned to one proces-
sor and will be completely evaluated on this processor.
Finding good edge separators is a hard problem, how-
ever, and the sheer size of the computational graphs
that we are dealing with is likely to make this approach
rather expensive.

An in our view more promising approach is to in-
crease the granularity of the operations that are part
of our differentiation arithmetic. The Helmholtz en-
ergy function is a good example. The loops in the
computation of g(z) = zT Az will be completely un-
rolled, resulting in O(n?) vertices for an n x n matrix
A. The gradient Vg(z) = 2Az will then be evaluated
by traversing those vertices, applying differentiation
arithmetic on O(n?) scalars in succession. This is a
rather complicated way of computing a matrix-vector
product. Since derivative information for the basic
vector-vector and matrix-vector operations is known,
we are much better off to make these operations part
of our differentiation arithmetic. The advantages are
two-fold: we increase computation granularity by go-
ing from n scalar nodes to a supernode containing n
scalar operations, and we tremendously decrease the
storage required for either the tape or the graph. Note
that the hoisting operation introduced in the precedmg
section applies to “vector nodes” as well.

Vector nodes are a special case of an operation
where we may rely on a system other than ADOL-C
to produce the required derivative information. As-
sume for example, that the user program repeatedly
(£ times, say), calls a subprogram computing a func-
tion G : R® — R™. In the current implementation,
the computational graph will contain £ traces through
G, one for each of the separate invocations of G. On
the other hand, if we were to regard G as part of our
differentiation arithmetic, we really need (z%,...,z%),
and the function values G(z)l;=(z¢,... z¢) (the Jacobian
G'(2)lz=(st,....z¢) may be recomputed during the re-
verse pa.ss) If we have this information, we can com-
plete our pass through the computational graph, and
treat g as an atomic operation. This extension is at-

tractive for several reasons. For one, storage for the
trace of the computation is likely to be decreased con-
siderably, since usually the number of operations per-
formed in a subroutine is significantly higher than the
number of input and output arguments. Secondly, we
can use whatever method is best suited for evaluat-
ing G and its first derivatives. If G can make use
of user- or vendor-supplied optimized routines, or has
been parallelized itself, we will exploit this efficiency in
a transparent fashion. The same applies to the compu-
tation of the derivatives. If we know a closed form for

‘G'(z), or have an optimized, and perhaps parallelized

code for computing G’(z), we can exploit it. This also
would allow for selective tuning of performance-critical
subroutines: We write by hand code for the computa-
tion of the derivatives of simple, but compute-intensive
functions, and let ADOL-C take care of the rest.

Lastly, we must find a way to exploit user intuition
about parallelism. Currently, if we are evaluating a
parallel do loop, we cannot capture the user’s intuition
that all the different iterations of the loop body could
be done at the same time (and as a consequence, the
corresponding forward and reverse passes through the
loop body). Obviously, user-supplied parallelism can
usually be exploited very advantageously, and with lit-
tle synchronization overhead, and in the long run, we
have to be able to capitalize on that information.

We are currently working on an improved and
portable implementation of our graph evaluation
scheme using the P4 communication library that has
been developed by Lusk et al. at Argonne National
Laboratory. In order to decrease graph storage and
processing overhead, we are working on incorporating
the hoisting chains of nodes, eliminating dead roots
and assignments. As a next step, we will then incor-
porate hooks for user-supplied subroutines, with vector
and matrix operations as the first choice, and also work
on ways to incorporate user-supplied parallelism.

Acknowledgments

We thank Brad Karp, James Hu, Shawn Reese, and
Jay Srinivasan for their dedicated collabora.tlon in this
project.

References

[1] W. Baur and V. Strassen. The complexity of par-
tial derivatives. Theoretical Computer Science,
22:317-330, 1983.

[2] Christian H. Bischof. A parallel QR factorization
algorithm with controlled local pivoting. Tech-
nical Report ANL/MCS-P21-1088, Argonne Na-
tional Laboratory, Mathematics and Computer
Sciences Division, 1988.

[3] Christian H. Bischof and Per Christian Hansen.
Structure-preserving and rank-revealing QR fac-
torizations. Technical Report MCS-P100-0989,
Argonne National Laboratory, Mathematics and
Computer Sciences Division, September 1989.

[4) Christian H. Bischof and Brad N. Karp. Increas-
ing the granularity of parallelism and reducing
contention in automatic differentiation. Technical
Report MCS-TM-142, Argonne National Labo-
ratory, Mathematics and Computer Sciences Di-
vision, November 1990.

[5] D.G. Cacuci. Sensitivity theory for nonlinear sys-
tems. i. nonlinear functional analysis approach.
Journal of Mathematical Physics, 22(12):2794-
2802, 1981.

[6] D. G. Cacuci. Sensitivity theory for nonlin-
ear systems. ii. extension to additional classes
of responses. Journal of Mathematical Physics,
22(12):2803-2812, 1981.

[7] T. F. Coleman and J. J. Moré. Estimation
of sparse Jacobian matrices and graph coloring

problems. SIAM Journal on Numerical Analysis,
20:187-209, 1983.

[8] Thomas F. Coleman. Large Sparse Numerical Op-
timization, volume 165 of Lecture Notes in Com-
puter Science. Springer Verlag, 1984.

[9] George F. Corliss. Applications of differentiation
arithmetic. In Reliability in Computing, pages
127-148. Academic Press, 1988.

[10] John Dennis and Robert Schnabel. Numeri-
cal Methods for Unconstrained Optimization and
Nonlinjear Equations. Prentice-Hall, Englewood
Cliffs, New Jersey, 1983.

[11] L. C. W. Dixon. Automatic differentiation and
parallel processing in optimization. Technical Re-
port No. 176, The Hatfield Polytechnic, Hatfield,
U.K., 1987. ’

[12] Andreas Griewank. On automatic differentiation.
In Mathematical Programming: Recent Develop-
ments and Applications, pages 83-108. Kluwer
Academic Publishers, 1989.

[13] Andreas Griewank, David Juedes, and Jay Srini-
vasan. ADOL-C, a package for the automatic
differentiation of algorithms written in C/C++.
Technical Report MCS-180-1190, Argonne Na-
tional Laboratory, Mathematics and Computer
Sciences Division, 1990.

[14] Roger Hoover. Incremental Graph Evaluation.
PhD thesis, Cornell University, Department of
Computer Science, 1987.

[15] J. E. Horwedel, B. A. Worley, E. M. Oblow,
and F. G. Pin. GRESS Version 0.0 Users Man-
ual. Technical Report ORNL/TM 10835, Oak
Ridge National Laboratory, Engineering Physics
and Mathematics Division, 1988.

[16] M. Iri and K. Kubota. Methods of fast auto-
matic differentiation and applications. Technical
Report Research Memorandum 87-0, Department
of Mathematical Engineering and Instrumenta-
tion Physics, Faculty of Engineering, University
of Tokyo, 1987.

[17] David Juedes and Andreas Griewank. Implement-
ing automatic differentiation efficiently. Technical
Report MCS-TM-140, Argonne National Labo-
ratory, Mathematics and Computer Sciences Di-
vision, 1990.

[18] S. Linnainmaa. Taylor expansion of the accumu-
lated rounding error. BIT, 16:146-160, 1976.

[19] Jorge J. Moré. SIAM, Philadelphia, 1990.

[20] I. M. Navon and U. Muller. FESW - a finite-
element Fortran IV program for solving the shal-
low water equations. Advances in Engineering
Software, 1:77-84, 1979.

[21] Paul E. Plassmann. The Parallel Solution of Non-
linear Least-Squares Problems. PhD thesis, Dept.
of Applied Mathematics, Cornell University, 1990.

[22] Paul E. Plassmann. Sparse Jacobian estimation
and factorization on a multiprocessor. In T. F.
Coleman and Y. Li, editors, Large-Scale Optimiza-
tion, pages 152-179, Philadelphia, 1990. SIAM.

[23] Alex Pothen and Padma Raghavan. Distributed
orthogonal factorization: Givens and Householder
algorithms. Technical Report CS-87-24, The
Pennsylvania State University, 1987.

[24] B. Speelpenning. Compiling Fast Partial Deriva-
tives of Functions Given by Algorithms. PhD the-
sis, Department of Computer Science, University
of Illinois at Urbana-Champaign, 1980.

[25] O. Talagrand and P. Courtier. Variational assimi-
lation of meteorological observations with the ad-
joint vorticity equation. i: Theory. Q. J. R. Me-
teorological Society, 113:1311-1328, 1987.

[26] P. Werbos. Applications of advances in nonlin-
ear sensitivity analysis. In Systems Modeling and
Optimization, pages 762-777, New York, 1982.
Springer Verlag.

